
Intrinsic Whole Number Bias in Humans

Santiago Alonso-Díaz, Steven T. Piantadosi, Benjamin Y. Hayden, and Jessica F. Cantlon
University of Rochester

Humans have great difficulty comparing quotients including fractions, proportions, and probabilities and
often erroneously isolate the whole numbers of the numerators and denominators to compare them. Some
have argued that the whole number bias is a compensatory strategy to deal with difficult comparisons.
We examined adult humans’ preferences for gambles that differed only in numerosity, and not in factors
that influence their expected value (probabilities and stakes). Subjects consistently preferred gambles
with more winning balls to ones with fewer, even though the probabilities were mathematically identical,
replicating prior results. In a second experiment, we found that subjects accurately represented the
relative probabilities of the choice options during rapid nonverbal probability judgments but nonetheless
showed biases based on whole numbers. We mathematically formalized and quantitatively evaluated
cognitive rules based on existing hypotheses that attempt to explain subjects’ whole number biases during
quotient comparisons. The results show that the whole number bias is intrinsic to the way humans solve
quotient comparisons rather than a compensatory strategy.

Public Significance Statement
When people learn or decide about fractions, they reveal a whole-number bias: The value of the
numerator or denominator guides the assessments and causes erroneous choices and learning
outcomes. A plausible explanation is that individuals fail to compute ratios, perhaps due to bad
educational practices. However, this study demonstrates that the whole-number bias can also occur
in the presence of good ratio estimates. Part of the difficulties children and adults exhibit may stem
from a more generic feature of cognition that places importance on numerical magnitudes.
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Human children have significant difficulty learning to represent
and compare quotients, and even college-educated adults struggle
to order the values of fractions, ratios, and probabilities (Bonato,
Fabbri, Umiltà, & Zorzi, 2007; DeWolf & Vosniadou, 2015; R.
Gelman, 1991; Reyna & Brainerd, 2008; Siegler, Fazio, Bailey, &
Zhou, 2013). For instance, when trying to pick the largest value
between 27/42 and 43/77, adults and children are wrongly inclined

to pick 43/77, because its numerator, 43, is larger than 27 (Ni &
Zhou, 2005). This is known as the “whole number bias” in quotient
comparison.

Educational research has described the whole number bias as an
explicit fall-back strategy that students use to compensate for
unsuccessful reasoning about quotients (Fazio, DeWolf, & Siegler,
2016). Adults and children are thought to use whole numbers to
compare fractions when they fail to generate an integrative, holis-
tic representation of the quotient (Reyna & Brainerd, 2008). Some
have argued that humans do not have an intuitive sense of frac-
tional magnitudes and mostly rely on whole number comparisons
(Bonato et al., 2007). This explanation predicts that the type of
strategy used to compare quotients, whether integrative or whole-
number, will depend on the specific fractions being compared.
People will compare fractions based on whole numbers when they
are too difficult to compare with an integrative representation.

However, recent research has shown that under some conditions
people can accurately represent the magnitudes of ratios (Fabbri,
Caviola, Tang, Zorzi, & Butterworth, 2012; Jacob, Vallentin, &
Nieder, 2012; Schneider & Siegler, 2010). When subjects are
asked to choose the larger value from two fractions, for example,
their accuracy is reliable and is modulated by the quantitative
difference between the fractions, a “distance effect” (Meert, Gré-
goire, & Noël, 2009). Distance effects in fraction estimation show
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that adults approximate the holistic magnitude of the fractions
when they compare them. There is even research showing that
human infants accurately track the relative values of ratios non-
verbally (Denison & Xu, 2010; McCrink & Wynn, 2007). Thus,
there is tension between research showing that ratio representation
is accurate, versus research showing that it is learned slowly, often
incorrectly, and is riddled with whole number biases.

The possible origins of the whole number bias in cognitive
processing of quotients have been discussed in several studies
(Bonato et al., 2007; Denes-Raj, Epstein, & Cole, 1995; Fazio et
al., 2016; Jacob et al., 2012; Reyna & Brainerd, 2008; Schneider
& Siegler, 2010; Siegler et al., 2013). One possibility is that, when
faced with a proportional comparison, humans strategically rely on
whole numbers when denominators are close in value and only
proceed to compute proportions when denominators are not com-
parable (Schneider & Siegler, 2010). For example, in 2/10 versus
5/10 the denominators are identical and comparing numerators
leads to the correct identification of the larger quotient. But in 2/10
versus 5/100 the denominators are too far apart and the whole
number strategy breaks. In this case, subjects will attempt to
compute the proportion associated with each fraction and compare
them. Thus, under this “strategic bias,” subjects compare values
based on either ratios or whole numbers, depending on the distance
between denominators.

Another possibility is that subjects always compare both the
whole numbers and the values of the quotients, regardless of
difficulty. Under this “intrinsic bias” scenario, subjects would
show evidence of whole number biases across all ratio compari-
sons. Both of these explanations predict more errors on “close”
ratios than “far” ratios, but they differ in their predictions for when
the whole number bias should emerge. Disentangling these expla-
nations is important for understanding the sources of humans’
difficulties learning fractions, and the degree to which the whole
number bias is a fundamental and pervasive component of how
humans conceive of ratios.

In order to measure adults’ intuitions about ratios, and their
spontaneous representations of whole numbers versus ratios, we
tested them with a rapid two-alternative forced choice gamble task
(2AFC). Subjects chose between hypothetical random draws of
colored balls from urns to maximize their chances of selecting a
“winner.” The stimulus (and cognitive modeling) was mainly
presented in nonsymbolic format, that is, visual dots presented on
screen. Only one of the conditions used Arabic numerals. Non-
symbolic stimulus is relevant to the question of fraction cognition
for two reasons: 1) It is more intuitive than symbolic fractions: It
does not require formal education (Fontanari, Gonzalez, Vallorti-
gara, & Girotto, 2014), and robust proportional reasoning with
visual fractions has been reported across development and in many
species (Denison & Xu, 2010; Fabbri et al., 2012; O’Grady,
Griffiths, & Xu, 2016; Rakoczy et al., 2014; Xu & Garcia, 2008);
and 2) whole number biases are not exclusively present in sym-
bolic fractions; they also appear with visual proportions (Fabbri et
al., 2012; O’Grady et al., 2016; Passerini, Macchi, & Bagassi,
2012). Thus, by using a nonsymbolic stimulus we made sure to
capture proportional reasoning susceptible to undue numerosity
influences.

It is important, however, to clarify that the source of symbolic
and nonsymbolic whole-number biases may differ to some degree.
For example, the time it takes to compare fractions is much longer

in Arabic formats (Fabbri et al., 2012 vs. Schneider & Siegler,
2010), suggesting additional computations/strategies (Fazio et al.,
2016). Beyond the potential differences, there is a link between
symbolic and nonsymbolic systems (Halberda, Ly, Wilmer,
Naiman, & Germine, 2012; Halberda, Mazzocco, & Feigenson,
2008; Melnick, Harrison, Park, Bennetto, & Tadin, 2013; Park &
Brannon, 2013). Perceptual systems are relevant for formal math-
ematical cognition because they seem to support generic intuitions
in symbolic domains (Dehaene, 2009).

We found that subjects in two different experiments accurately
represented the relative ratios of the choice options but showed
biases to select the option with the larger numerator, even when the
numerator was irrelevant or misleading. We mathematically for-
malized and compared influential hypotheses from the ratio pro-
cessing literature to test the likely decision rule subjects used to
make their selections. The results showed that subjects consistently
factor both whole numbers and ratios into the mental comparison.
We argue that whole number comparison is intrinsic to how adults
reason about quotients.

Experiment 1: Whole Number Bias in a
One-Shot Gamble

We first aimed to replicate and extend prior evidence of the
whole number bias by testing subjects with speeded ratio compar-
isons in a gambling task, and assessing subjects’ explicit estimates
of the ratio values in the choice options. Each subject was given a
one-shot gamble to pick the option most likely to yield a “winner.”
Based on prior research, we expect that participants will prefer
gambling options that have a greater number of winning instances
despite having equal ratios (e.g., 4/8 � 1/2; Denes-Raj et al.,
1995). An open question is whether participants accurately repre-
sent the ratios of the choice options despite their whole number
bias.

Method: Participants, Materials, and Procedures

All experimental procedures adhered to university standards, as
approved by the Research Subjects Review Board. We approached
individuals in a public location on the University of Rochester
campus. We aimed to recruit around 90 participants per group for
3 conditions: nonsymbolic stimuli (dot size equal), nonsymbolic
stimuli (cumulative surface area equal), and symbolic numeral
stimuli (see Figure 1). Sample size was based on previous reports
(Denes-Raj et al., 1995; Kirkpatrick & Epstein, 1992; Pacini &
Epstein, 1999; Passerini et al., 2012). We confirmed the appropri-
ateness of the sample size with a power calculation using the
reported average effect in the original ratio bias study by Kirkpat-
rick and Epstein (1992). In their report, on average, 65% of
participants picked the lottery with larger numerosity in the 0.1
win and 0.9 lose conditions of Experiment 2 (65% is an interme-
diate value; in a review made by Passerini et al., 2012 some ratio
biases were as large as 80%). To obtain a power of 0.8 in a
binomial test comparing chance level (50%) against 65%, the
required sample is 81 subjects (power calculation with the binom
package in R, function binom.power). The final sample was 284
subjects (145 female; mean age: 25.4 years, SD: 8.3).

Subjects saw images of two urns, and their task was to choose
one of them (Figure 1; stimuli were 21.6 by 27.9 cm laminated
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cards showing orange and white balls). They were told to imagine
that if they pulled a white ball from the selected urn they would
win $100 dollars, and if they pulled an orange ball, $0 dollars (the
winning color was randomized and counterbalanced across sub-
jects). We used a nonleading verbal instruction (“Please select the
urn you prefer”) to avoid inducing a response bias (Passerini et al.,
2012). Subjects were instructed to report their choice as quickly as
possible. The test stimuli were presented for 2 seconds. All sub-
jects reported their choice within the 2-second display time. Sub-
jects conveyed their answer by saying A or B, for left and right urn
respectively (the side with more balls was counterbalanced ran-
domly across subjects). All participants did one trial, and the
numbers presented to them are shown in Figure 1 (i.e., all saw the
same images).

We tested the accuracy of each subject’s ratio estimations. In the
nonsymbolic conditions subjects were asked to verbally report the
proportion of white (or orange) balls in each urn. In the nonsym-
bolic and symbolic conditions subjects were asked, “If an urn has
15 green balls and 15 red balls, what is the probability of pulling
a red ball?”

The effective sample was 262 subjects (92% of the total).
Twenty-two subjects were excluded for lack of motivation or signs
they did not understand the task or stimuli (e.g., wildly incorrect
responses to explicit probability question). This was to ensure,
conservatively, that results were not contaminated by confused
subjects.

Results

Participants were attracted to the urn with more balls (see Figure
2). In the nonsymbolic condition, the ratios between orange and
white balls were 1:1, or 50–50, for both choice options, yet the

majority of subjects chose the numerically larger option (63%, n �
108/171, binomial test: p � .001, 95% CI � 55%–70%). Subjects
were biased toward the larger number regardless of whether they
saw stimuli with dot size equal (Figure 2, NS; 63%, n � 55/88,
binomial test: p � .02, CI � 51%–72%) or cumulative dot area
equal (Figure 2, NSc; 63%, n � 53/83, binomial test: p � .01,
CI � 52%–74%). The majority of subjects accurately reported the
proportion of winning for each urn within 5% of the exact value
(65% of subjects, n � 111/171; the mean smaller number urn
estimate: M � 49.8%, SD � 0.01; larger number urn estimate:
M � 47.5%, SD � 0.06). We analyzed the responses of subjects
who had perfect estimates of the ratios of orange to white balls in

Figure 1. Subjects were presented with a one-shot gamble in which they were to select one of two urns from
which to pull a single ball. Their task goal was to pull a winning color (either orange or white). Subjects were
tested in one of three conditions: Nonsymbolic with ball size equated between urns (top left, n � 88),
Nonsymbolic with cumulative surface area covered by the balls equated between urns (top right, n � 83), and
Symbolic numerals (bottom, n � 91). See the online article for the color version of this figure.

Figure 2. Ratio bias. When subjects faced two bags with equal proba-
bility they were biased to pick the one with more balls. This happened
across experiments: Experiment 1: NS (nonsymbolic, i.e., dots), NSc
(nonsymbolic cumulative area control), and S (symbolic, i.e., arabic nu-
merals). Experiment 2: PPP (psychophysics of probability). Error bars are
95% confidence interval of a binomial test.
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both choice urns, and they also showed a whole number bias for
the numerically larger option (66%, n � 66/99, binomial test: p �
.001, CI � 56%–75%). Finally, we conducted a logistic regression
with the three experimental factors: number of winners, experi-
mental condition (dot size equal, cumulative area equal), and
explicit ratio estimate of the larger urn (accurate, inaccurate). The
only significant effect was of the number of winners (� � 1.0675,
std. error � 0.3243, p � .0009). Effects of experimental condition
(� � �0.1757, std. error � 0.3208, p � .5839) and ratio estimate
(� � �0.2665, std. error � 0.3419, p � .4357) were not signif-
icant. Conservatively, we tested an additional model with interac-
tions, but it did not add additional explanatory power; if anything,
it was worse (AIC simple model: 230.1; AIC interaction model:
234.68).

The whole number bias toward the numerically larger option
also emerged in subjects from the symbolic condition. A signifi-
cant majority of subjects chose the urn with the greater whole
number of winning items (66%, n � 60/91, binomial test: p �
.003, CI � 55%–75%). In this condition, all participants accu-
rately reported that the urns had equal proportions of winning balls
and an equal probability of yielding a win.

These results indicate that subjects’ choices are biased by the
whole numbers of items represented in the two prospects, despite
their knowledge that the relative proportions of winning in the two
urns were equal.

Experiment 2: Whole Number Bias in Rapid
Nonverbal Probability Judgments

Experiment 1 replicated a well-known effect, the whole number
bias, while confirming that participants have knowledge of the
ratios involved. But we only tested urns with equal ratios, and the
pre and post questionnaires are a qualitative confirmation that ratio
estimates are available. Experiment 2 aimed to properly quantify
the degree to which subjects’ choices are influenced by relative

ratio versus whole numbers during ratio comparison. For this we
tested subjects with a rapid 2AFC ratio comparison task across a
broad range of ratios and numerical values.

Method

In Experiment 2, new subjects performed a computerized ver-
sion of Experiment 1 (Figure 3A) over several hundred trials (816).
We recruited 21 participants from an undergraduate population (16
females; mean age: 19.7 years, SD: 1.48). Sample size was based
on comparable multitrial perceptual tasks (Fabbri et al., 2012;
Jarvstad, Hahn, Rushton, & Warren, 2013; O’Grady et al., 2016).
To confirm the appropriateness of sample size we used the overall
accuracy improvement found in congruent trials (larger ratio has
larger numerosity) relative to incongruent trials (larger ratio has
smaller numerosity). Improvements in previous reports were
around 20%–25% (Fabbri et al., 2012; O’Grady et al., 2016). For
sample size estimation, we conservatively used 20%: from 0.7
correct in incongruent trials to 0.9 in congruent trials (see Fabbri
et al., 2012). The obtained sample size estimate for a Chi-Square
test of proportions with 0.8 power was 23 subjects (pwr.p.test; pwr
package in R). Our final sample of 21 subjects had a power of 0.76.
This is slightly below the rule of thumb of 0.8, but we considered
a power of 0.76 appropriate as whole number biases are routinely
found in the literature (Fabbri et al., 2012; Ni & Zhou, 2005;
O’Grady et al., 2016; Reyna & Brainerd, 2008). The added value
of our work lies in testing hypotheses via a generative model (see
below) rather than confirming a novel phenomenon.

Experimental tasks were implemented in Matlab’s Psychtool-
box. A base payment of $8 was provided. Instructions asked for a
quick but accurate response. Feedback (a beep) signaled that the
urn with higher probability was correctly selected. If both urns had
equal probability a beep occurred regardless of choice. To ensure
proper motivation, subjects were informed that at the end of the
experiment one random trial was going to be selected and if in that

Figure 3. Probability task and main results of Experiment 2. (A) Subjects had to pick the option with the
greater chance of selecting a winner by imagining that if they pulled an orange ball (lighter grey) they would win
$100 and if they pulled a green ball (darker grey) $0. The panel has an example of a trial with a 0.25 probability
distance (the numbers below the images are the actual probability values of the options). (B) Number intrusions:
Accuracy improved when the larger probability also had more numbers of winning balls (the green trace (darker
grey; the one higher in accuracy) is trials where the larger probability also had more winners; the red trace
(lighter grey; the one lower in accuracy) is trials where the larger probability had fewer winners). There was also
a clear distance effect. (C) Reaction time (RT) improved with probability distance between the urns. Shading is
2 s.e.m. See the online article for the color version of this figure.
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trial the urn with the better ratio was chosen they would receive an
additional $2.

The probability of winning in each urn ranged from 0.125 to
0.94, and the probability distance between the two urns ranged
from 0 to 0.38. There was an equal number of trials for each
probability ratio, and the winning probability was balanced across
sides (left, right).

The range of numerical values of the winning set ranged from 1
to 30 (the numerator), and the total number of balls ranged from 4
to 32 (the denominator). The number of winning balls was bal-
anced in that on half of the trials the higher probability had the
larger numerator and the remaining half, the smaller numerator.
Under these conditions, a numerator strategy would result in
chance performance. The sets had equal density, defined as the
total number of dots divided by the spatial extent of the array
(dashed circles surrounding the balls in Figure 3A; subjects saw
the dashed circles). Half of the trials were equated for the cumu-
lative area covered by the dots, and the remaining half were
equated for dot size.

At the end of the probability task, subjects completed a non-
symbolic numerosity comparison task to measure number sensi-
tivity. The stimuli were the same as those in Experiment 2, but
participants reported the side with the larger number of dots.
Subjects’ sensitivity to numerical differences was quantified by
measuring their numerical Weber’s fraction using the procedure
described in (Piantadosi, 2016). The Weber fraction represents the
proportion difference needed between quantities to reliably dis-
criminate them, with smaller Weber fractions reflecting better
discrimination abilities. For numerosity discrimination, the mean
Weber across subjects was 0.28 with a standard deviation of 0.08.

Results

Subjects performed above chance on the probability judgment
task and accurately compared the ratios of orange to white balls
between urns, t(20) � 12.91, p � .001. Choices were modulated
both by the relative ratios of orange to white balls and by the whole
numbers of winning items (Figure 3B). Subjects generally pre-
ferred urns with higher ratios of orange to white balls, and pre-
ferred them even more strongly when the whole number of orange
balls (the numerator) was large compared to when it was small. A
generalized linear model (family � Binomial, link � logit) on
accuracy rates detected significant effects of probability distance
(� � 4.50, z � 11.70, p � .001), number of winning items (� � �0.53,
z � �6.92, p � .001), and the interaction (� � �2.02, z � �4.77, p �
.001). A repeated measures ANOVA on response times (Figure 3C)
also revealed modulation by probability distance (F(9, 180) �
42.60, p � .001, �g

2 � 0.10), number of winners (F(1, 20) � 32.41,
p � .001, �g

2 � 0.01), and the interaction (F(9, 180) � 5.85, p �
.001, �g

2 � 0.01). The interaction reflects a greater influence of
“number of winners” on accuracy at small probability distances
than larger ones, because of a floor effect. Thus, subjects showed
a whole number bias on top of the distance effect.

Source of the Whole Number Bias

The experimental results so far indicate that even during rapid
nonverbal comparisons humans use representations of ratio that
are skewed by their representations of whole numbers in the

numerators (i.e., the winners). These findings are consistent with
prior reports from the education and cognitive development liter-
atures that adults and children have biases to erroneously factor
whole number comparisons into judgments of quotients (Ni &
Zhou, 2005; Siegler et al., 2013). There are several hypotheses
about the sources of the whole number bias in cognitive processing
of quotients, but these hypotheses have not been formalized. We
formalize them under a single probabilistic framework that allows
all to be quantitatively evaluated and compared (see Figure 4). The
hypotheses tested are Denominator Neglect (Pacini & Epstein,
1999; Reyna & Brainerd, 2008), Whole Number Weighting
(Bonato et al., 2007), Holistic Ratio Comparison (Jacob et al.,
2012; Schneider & Siegler, 2010), Strategic Whole Number Bias
(Fazio et al., 2016), and Intrinsic Whole Number Bias.

The Denominator Neglect hypothesis argues that subjects ex-
clusively rely on the numerator during quotient comparisons, and
fail to factor the quotient denominator into the rule (Pacini &
Epstein, 1999; Reyna & Brainerd, 2008). In the Whole Number
Weighting rule, subjects represent the numerical value of the
components and compare them (Bonato et al., 2007). Some re-
search suggests that humans compare ratios holistically and would
not predict a whole number bias in performance—so we tested this
purely holistic rule for comparison with the others (Jacob et al.,
2012; Schneider & Siegler, 2010). As described in the introduc-
tion, a dominant theory in the education and cognitive develop-
ment literature is that people behave strategically during quotient
comparisons and use the whole numbers of the numerators to
compare quotients when denominators are close in value but
compare quotients holistically when denominators are farther apart
(Fazio et al., 2016). Finally, we tested a distinct possibility from
these others, which is the hypothesis that people intrinsically
compute and compare both the whole numbers of the numerators
and the holistic quotient during probability comparison and always
factor both outcomes into their decision about “which is greater.”

The main idea behind the model is that when people compare
visual ratios their choice on which one is larger is based on a
weighted compromise among the (noisy) percepts of the actual
values on-screen. The computational model infers these psycho-
logical percepts (white nodes in Figure 4) as well as the decision
weights �c for each of the values on-screen (winners, losers, and
ratios). The inference is constrained by the data (gray nodes): the
actual numbers presented to the participant and the observed
choices.

In a Bayesian framework, we need to define our prior expecta-
tion on how the latent variables are distributed, as well as a
likelihood for the choice data. These are written next to the
graphical model in Figure 4. Number percepts follow traditional
psychophysics of number in which, on average, people perceive
the actual number with noise that scales with its magnitude (Figure
4; Whalen, Gallistel, & Gelman, 1999). Weber is the subjects’
numerical acuity. It is a constant, determined by their accuracy in
the numerosity comparison task of Experiment 2.

Ratio percepts follow a Beta distribution (Figure 4; Gallistel,
Krishan, Liu, Miller, & Latham, 2014). This distribution is the
result of a Bayesian agent that takes the number of winners (W)
and losers (L) and infers the ratio with a binomial likelihood
Binomial(W � L, Ratio) and a uniform prior Beta(1,1).

The likelihood of the choice data is a binomial distribution (see
Figure 4). Totali is the total number of times a ratio comparison i
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appeared across participants (i.e., a trial), and Choicei is the
number of times the bigger ratio B was selected in that comparison
across participants. The probability of the binomial was deter-
mined with the Softmax expression pSMi (Figure 4; Sutton &
Barto, 1998). This expression takes values between 0 and 1, and as
such it can be thought as a probability. fiB and fiS are functions
weighting all the available percepts, winners, losers, and ratio, on
the bag with big (B) or small (S) ratio in trial i. We used a flat prior
for the decision weights �c (	U(�5,5)). The decision weights for
ratios were restricted to be greater than 0 under the assumption that
humans follow positive expected values (i.e., negative weights
would mean that subjects are repelled by large expected values).

This general framework can reveal whether participants fol-
lowed any of the cognitive hypotheses mentioned above (except
the strategic, which we will formalize in the next paragraph). If
subjects use the Denominator Neglect rule, then the posterior
probability density (i.e., after conditioning on human responses)
for the decision weights for winners (numerator) should be posi-
tive and far from zero, while the remaining decision weights for
ratios and losers should be negligible. Similarly, if the Number
Weighting hypothesis is true, then the weight for winners and
losers should be positive or negative and only the weights for ratio
should be zero. If the Holistic Ratio hypothesis is valid then the
weights for ratio are the only ones that should be relevant. But if
the Intrinsic Number Bias is correct, then the posterior probability
of the weights for numbers and ratios should all be distant from
zero.

The final hypothesis not covered in the previous paragraph is
that people are strategic, sometimes using winners or ratio, but
never both. This assumes an additional psychological process not

present in the general framework of Figure 4: a threshold on when
the other percept is used. To formalize this, we create a second
model, which we will compare with the basic one (see Figure 4)
using a Bayesian information criterion (see below).

The strategic model main difference is that the cues used to
decide depend on how close the denominators are. Thus, the model
first compares perceived denominators (
[W] � 
[L]), and if
they are sufficiently close, the softmax probability pSMi is solely
based on the numerators (i.e., the weights for 
[L] and Ratio are
set to zero); or if on the contrary denominators are far apart, the
softmax is solely based on ratio percepts (i.e., the weights for 
[L]
and 
[W] are set to zero). Sufficiently close is implemented with
a soft-threshold,

pUseRatioi � 1
1 � e�k(Thr�rDeni)

.

pUseRatioi is the probability of using ratio in comparison i. It is
a sigmoid function employed in decision making literature as a soft
threshold (Cisek, 2006). k and Thr are free parameters of the
sigmoid, both with uniform priors: k 	 U(0,20), Thr 	 U(0, 1).
rDeni is the ratio between the smaller and larger denominator. In
concrete terms, the sigmoid compares denominators to a threshold,
and if they are too close, the probability that participants use ratio
decreases.

To sample from the posteriors defined by the model (see Figure
4), we used an MCMC sampler (Stan, 2016) with 8 chains, each
one with 10,000 iterations (half as warm-up). Convergence was
determined with the r hat measure. This measure was �1.1 for all
latent parameters. Winners (21 unique winners) and losers (23
unique losers) percepts are estimated differently to account for

Figure 4. Cognitive framework (see main text for details). Conventions: W, L: winners and losers. 
[W],

[L]: perception of W and L. Ratio: perception of ratios. Choice: choices favoring the bigger probability. �c:
decision weights. The outer plate loops through i trials (n � 458; participants did 816 trials but some of them
were redundant). The inner plate loops through both bags, one with bigger (B) and the other with smaller (S)
ratio. Gray color is for data, white for latent psychological percepts. Squares and circles are discrete and
continuous variables, respectively.
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potential artifacts, say aversion to losers. Also, ratios with different
numbers are estimated on their own (75 unique ratios). That is, we
allowed for the possibility for ratios like 3/4 and 21/28 to be
perceived differently. We reasoned that this complexity could help
some of the hypotheses, like holistic ratio or number weighting, to
better explain human performance (see the supplemental materials
for the inferred percepts).

For model comparison we used two measures: WAIC, and R2. The
first is a method to compare Bayesian models with penalties for
complexity (Vehtari, Gelman, & Gabry, 2016). Lower values indicate
better models (as a rule of thumb, differences greater than 10 are
considered relevant). The second one (R2) compares human data to
the mean of the posterior predictive distribution p(Choicepred|Choice).

Results

The first notable outcome is that the decision weights for win-
ners, losers, and ratios percepts were not zero (see Figure 5). The
credible intervals (95% intervals obtained from the posterior) were
as follows: winners [0.045, 0.070, 0.099]; losers [�0.027, �0.009,
0.007]; and ratios [3.040, 3.584, 4.263]; the center value is the
median of the posterior. These are unnormalized weights, which
explains why for winners and losers the values are smaller: The
units are different. Importantly, the mass of the posterior is clearly
tilted away from zero (see Figure 5), consistent with a mental
comparison that includes ratio and numerical values: an intrinsic
whole number bias.

It is still possible that subjects were strategic, changing between
a decision based on ratio to one based in whole number (Schneider
& Siegler, 2010), and the model that weights all the cues is just
blind to this possibility. Because of this we implemented a strate-
gic model to directly compare both alternatives. Intrinsic number
biases (Figure 6A) and strategic behavior (Figure 6B) reproduced
the qualitative patterns of observed performance: probability dis-
tance effects and whole number biases. A visual inspection of
Figure 6 also reveals that the intensity of whole number biases
relies on probability distance, suggesting again that the interaction
found in Experiment 2 is related to discernibility of the probabil-
ities (floor effect) and how perceptual information is weighted.
The obtained 95% credible intervals for the sigmoid parameters of
the strategic model were as follows: k [5.224, 7.366, 10.183] and
threshold [0.577, 0.638, 0.697]; the center value is the median.

On both measures of model comparison, WAIC and R2, the
“intrinsic number bias” rule is better at predicting the data (Figure
6A). The strategic account flips between ratio in some trials and
whole number in others, which produces lower accuracy across
probability distances (Figure 6B). To further confirm that strategic
behavior was not driving participants, we tested a numerator and
ratio strategy. Instead of using the closeness of denominator to
determine ratio or number-based choice, we used the distance of
numerators (if too close compare losers, else ratios: e.g. in 10/12
vs 10/15 the numerators are identical so the model picks, with high
probability, the one with fewer losers, but in 10/12 vs 5/15 the
numerators are apart and the model picks based on the largest ratio,
namely 10/12) and ratios (if too close compare numerators, else
ratios: e.g. in 10/20 vs 5/10 the ratios are identical so the model
picks, with high probability, the larger numerator, while in 10/20
and 9/10 the ratios are apart and picks based on the larger one).
The outcomes were subpar from the intrinsic number bias (numer-
ator strategy: WAIC � 3727 (250); R2 � �0.45; ratio strategy:
WAIC � 3316(152); R2 � 0.36).

To see how denominator neglect, whole number weighting, and
holistic ratio would behave, we fixed the appropriate weights to
zero and ran the sampler (e.g., in denominator neglect the weights
for losers and ratio were set to zero, and only the percept of
winners was inferred). In general, the implementation of these
models fared worse than the intrinsic number bias (supplemental
Figure 3).

Overall, the “intrinsic number bias” rule, in which people si-
multaneously compare the whole numbers of the numerators and
the holistic probability, and factor both into their judgment, ex-
plains behavior the best. This is not an artifact of data aggregation.
At an individual level the same pattern emerges (see Figure 7):
People appear to factor whole numbers into their ratio comparisons
across all problems, not just strategically selected ones.

People, however, seem to rely more strongly in numerosity in
ambiguous trials, relative to the intrinsic whole number bias
model. When both bags had the same ratio, the model and partic-
ipants revealed a distance effect: The probability of picking the
bag with more winning balls decreased when their values got
closer (see Figure 8). Because the model also exhibits this behav-
ior, a simple correlation is not sufficient to claim a pure

Figure 5. 95% credible intervals for decision weights. For ratios and
winners, the weights are highly unlikely to be zero, suggesting that par-
ticipants computed ratios but continued to use numerosity: an intrinsic
number bias. The blue dot in the center of the intervals is the median. See
the online article for the color version of this figure.

Figure 6. Mean accuracy obtained by the models. Dotted lines are human
data, solid lines mean of the posterior predictive. Larger R2 and lower
WAIC indicate better fits to the data. See the online article for the color
version of this figure.
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numerosity-based behavior. What is certain is that human subjects
in these ambiguous trials seem to follow numerosity with more
vigor (slopes and intercept in Figure 8). This human nuance is not
fully captured by the framework presented here, at least not in
terms of the effect size.

Discussion

When rapidly and nonverbally choosing between gamble prob-
abilities, subjects preferred options with a greater numerosity of
winners; this finding shows evidence of a whole number bias in
humans’ rapid nonverbal comparisons of ratios. However, contrary
to some reports, this effect was not a consequence of weak ratio
representations as revealed by subjects’ explicit knowledge of
relative ratios in Experiment 1 and by their overall accuracy and
sensitivity to ratio distance in Experiment 2. Using a Bayesian
computational framework, we tested 5 cognitive rules that could
explain subjects’ behavior. The cognitive model required holistic
ratio and the whole numbers to successfully reproduce subjects’
performance. Taken together, these results are consistent with the
hypothesis that we rely on intuitive mental representations of ratio
that are spontaneously affected by whole number comparisons.

People’s intrinsic reliance on whole numbers during ratio com-
parison may be a naïve theory (S. A. Gelman & Noles, 2011).
Naïve theories formed early in development can support (or hin-
der) more advanced notions and actions later in adulthood, for
instance in mathematics and physics (Hespos & VanMarle, 2012).

In our nonverbal probability judgment task, two core representa-
tions, number (Carey & Spelke, 1994) and ratios (Denison & Xu,
2010), were concurrently activated and influenced choice. The use
of whole numbers during rapid nonverbal quotient comparisons
(even when it is maladaptive) could suggest that adults’ difficulties
comparing quotients have a nonverbal, early developing origin.
There is a rich set of results connecting perceptual systems for
representing numerosity and mathematics achievement (Halberda
et al., 2008; Park & Brannon, 2013), and it is possible that
intuitions from perceptual systems that compute numerosity exert
a persistent influence over concepts of symbolic quotients like
fractions, probabilities, and ratios.

The second most plausible explanation of the whole number
bias in our results is that participants were strategic, flipping
between whole number and ratio. The computational implementa-
tion of the strategic hypothesis fell short in predicting our data.
Although strategic behavior indisputably occurs during symbolic
ratio processing (Faulkenberry & Pierce, 2011; Fazio et al., 2016),
our results just suggest that strategic behavior does not fully
capture whole number biases in rapid nonverbal probability judg-
ments. These results raise the possibility that the emergence of the
whole number strategy during quotient comparisons may have
deeper roots in nonverbal perception.

An intriguing possibility is that adults preferring, for example,
4/8 to 1/2 may reflect an incorporation of sample size into pro-
portional judgment that considers 4/8 as a better instance of a 0.5
proportion (assuming that subjects treat each image as a sample
from an underlying population). Thus, our results are perhaps
evidence for a broader mechanism at play in proportional reason-
ing: confidence in larger samples (Alonso-Díaz, 2017; Obrecht &
Chesney, 2013). However, our generative model did have ratio
representations modulated by sample size (i.e., Beta(Number of
Winners � 1, Number of Losers � 1)). Only using such ratio
representation to make decisions fell short in explaining human
behavior. We think that sample size surely plays a role, particu-
larly in tuning up ratio representations (Alonso-Díaz, 2017), but an
intrinsic number bias seems to still be present even in the presence
of sample-size effects.

Figure 7. 95% credible intervals of decision weights (A–C) and model
comparison by subject (D). For all subjects, decision weights were not con-
centrated at zero; the blue dot in the center of all the intervals is the median
(A–C). In (D) each dot is the subject-level comparison of the WAIC for the
strategic and nonstrategic models (lower values indicate better fit). The solid
red lines above and below the dashed line are differences in WAIC that are
considered substantial (�10). The dashed line is at zero. See the online article
for the color version of this figure.

Figure 8. Preference toward the more numerous bag, in trials when both
bags had the same ratio, decreased when the difference in the numerator
decreased. A linear regression (solid line) confirmed that both humans
(Slope � �0.19, t � �3.61, p � .01) and the intrinsic whole number bias
model (Slope � �0.07, t � �3.16, p � .01) had this distance effect in
ambiguous trials. However, human subjects were much more affected by
numerosity in uncertain trials (slopes and intercepts; note the difference in
scale on the y-axis). See the online article for the color version of this
figure.
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A final consideration is that the intrinsic number bias may be
part of a general phenomenon by which all available magnitudes,
be that of numerosity, ratios, length, or other, are activated and
affect choice. Even though our data cannot speak decisively on this
issue, discrete fractions do seem to be especially hard for math
learners. Young children can match two continuous proportions
but struggle with discrete ones when numerical matches are pos-
sible (Boyer, Levine, & Huttenlocher, 2008). Thus, it is possible
that the bias we reported comes exclusively from cognitive pro-
cessors in charge of discrete, rather than continuous, magnitudes.
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