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Abstract
Humans naturally group the world into coherent categories defined by membership rules. Rules can be learned implicitly by
building stimulus-response associations using reinforcement learning or by using explicit reasoning. We tested if the
striatum, in which activation reliably scales with reward prediction error, would track prediction errors in a task that
required explicit rule generation. Using functional magnetic resonance imaging during a categorization task, we show that
striatal responses to feedback scale with a “surprise” signal derived from a Bayesian rule-learning model and are
inconsistent with RL prediction error. We also find that striatum and caudal inferior frontal sulcus (cIFS) are involved in
updating the likelihood of discriminative rules. We conclude that the striatum, in cooperation with the cIFS, is involved in
updating the values assigned to categorization rules when people learn using explicit reasoning.
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Introduction
Humans possess a remarkable ability to learn from incomplete
information, and rely on multiple strategies to do so. Consider
a card game where hearts are rewarded and other cards are
not. A simple learning strategy, model-free learning, directly
associates stimuli and/or actions with rewards that they pre-
dict (Sutton and Barto 1998). This algorithm would efficiently
learn that card suits predict different reward values. Now, con-
sider a more complex game in which the queen of spades is
also rewarded, except when it is paired with all the hearts. A
more efficient strategy than model-free learning would be to
learn the abstract rules or categories that apply to the cards.
This strategy requires a cognitive model of the environment
based on explicit rules (Miller and Cohen 2001). A large body of
work has mapped the neural circuitry underlying model-free
learning as well as the circuitry underlying the execution of

well-learned cognitive models (Badre and D’Esposito 2009).
However, little is known about how cognitive models are
acquired or where the variables required to learn models are
represented.

Model-free and cognitive model learning have typically been
associated with different neural systems: a mesolimbic striatal
system for the former and a lateral cortical system for the latter
(Glascher et al. 2010; Daw et al. 2011). In model-free learning,
striatal neurons encode the value of different stimuli and
actions and communicate values to cortical regions via recur-
rent loops (Haber and Knutson 2010). Ascending midbrain
dopamine projections carry signed reward prediction errors
(RPEs) (Montague et al. 1996; Schultz 1997) that underlie the
learning of stimulus- and action-outcome associations
(Reynolds et al. 2001; Kawagoe et al. 2004; Daw et al. 2005;
Morris et al. 2010). Conversely, in cognitive models, prefrontal
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neuronal pools represent abstract rules, implement control
over behavior, and update rules when appropriate (Buschman
et al. 2012). We tested the hypothesis that learning cognitive
models depends on parallel striatal-prefrontal neural circuitry
to what is known to be involved in model-free reinforcement
learning (RL).

This hypothesis may appear straightforward, but it faces
several theoretical challenges. First, RL and rule-based learning
operate on different information: the former assigns values to
stimuli or actions and the latter reasons explicitly over abstract
rules, concepts, or structured relationships (Goodman et al.
2008; Glascher et al. 2010; Tenenbaum et al. 2011). We propose
that, in addition to encoding stimulus and action values, stria-
tal neurons also encode values of the rules represented in cor-
tex (e.g., the value of “all hearts and the queen of spades”).
Second, explicit rule-learning requires a different learning sig-
nal than the RPE calculated in RL. We propose that the dopa-
mine system is not specialized for conveying RPEs; rather, it
encodes update signals derived from new information in a vari-
ety of learning contexts.

In order to test this hypothesis, we focused on the robust
observation in RL research that striatal activation changes in
proportion to RPE (McClure et al. 2003; O’Doherty et al. 2003;
Rutledge et al. 2010; Garrison et al. 2013). We tested whether
the striatum represented RPEs when subjects are biased to
learn by reasoning over explicit rules, rather than by incremen-
tally adjusting stimulus-response relationships. If you are
learning a card game where hearts are rewarded unless they
are paired with a queen, and for many hands you have seen no
queens, then discovering that hearts and queens together fail
to deliver a reward is highly surprising and also delivers a nega-
tive RPE. If the striatum represents RPE as part of a RL algo-
rithm (Garrison et al. 2013), then the striatum should respond
negatively to this unexpected and incorrect outcome.
Conversely, if the striatum is involved in updating rule values,
then it should respond positively to this surprising outcome.

Material and Methods
Participants

Nineteen participants completed the study (11 female; mean
age 21.7 years; SD age 7.3 years). Stanford University’s
Institutional Review Board approved study procedures, and all
participants provided informed consent. Three were excluded
because their accuracy was not significantly better than
chance. An additional 2 participants were excluded for exces-
sive head motion (exceeding 2mm in any direction), leaving 14
participants for analyses. Although this sample size is small,
our analyses are focused on robust and large effects of error
response in the striatum, which have been reliably detected
with samples of this size (O’Doherty et al. 2003; Rutledge et al.
2010). However, we are underpowered to detect reliable
between-subject brain-behavior correlations, and so we do not
test for them (Yarkoni 2009).

Rule Learning Task

We used a task that was designed to bias participants toward
an explicit rule-learning strategy, rather than an incremental
build-up of stimulus-response contingencies. On each trial, a
stimulus was shown that varied on 3 perceptual dimensions
(color: blue or yellow; shape: circle or square; and texture:
striped or checkered). Participants assigned stimuli to 1 of 2
possible categories, “Dax” or “Bim,” based on perceptual

features. Participants were informed that rules linking features
to categories changed with each new block of trials. Blocks
were separated into clearly demarcated scanning runs to mini-
mize interference between rules. Six different rules were
learned in counterbalanced order across blocks: A (e.g., blue sti-
muli are Bims; yellow are Daxes); A and B (e.g., blue square sti-
muli are Bims); A or B; (A or B) and C; (A and B) or C; and A xor B
(e.g., all blue or square stimuli, with the exception of blue
square stimuli, are Bims). Structurally, the order of trials within
a given rule block was identical across participants, enabling
direct comparison of performance on a trial-by-trial basis.
However, the mapping of stimulus features (e.g., A to the color
blue, or the shape square, etc.) was randomized across both
subjects and rules. For complex rules, it is necessarily the case
that simpler rules sufficed to explain the data for initial trials,
and then discriminating examples subsequently require updat-
ing to more complex rules.

Each trial was divided into 3 phases: cue, response, and
feedback. Each phase lasted 2 s and was separated by a random
4–6 s delay. During the cue phase, the stimulus to be catego-
rized was shown in the center of the screen. During the
response phase, a question mark was shown in the center of
the screen, which prompted participants to categorize the stim-
ulus by pressing one of two buttons. During the feedback
phase, a message was displayed in the center of the screen that
indicated whether the response was “correct” (green text) or
“incorrect” (red text).

Bayesian Rule-Learning Model

The rule-learning model was based on the “rational rules”
model (Goodman et al. 2008) and implemented in the Python
library LOTlib. This model formalizes a statistical learner that
operates over the hypothesis space of Boolean propositional
logic expressions (e.g., (A and B) or C). It implicitly defines the
infinite hypothesis space of possible expressions using a gram-
mar that permits only valid combinations of logical primitives
(AND, OR, NOT) and observable perceptual features. This gram-
mar also defines a prior probability P(H), that biases learners to
prefer short expressions (H) that re-use grammar rules. The
prior is combined with a likelihood, P(D|H), which quantifies
how accurately a rule H predicts observed true/false labels.

We used Markov-Chain Monte-Carlo to perform inference
by sampling hypotheses according to P(H|D). To predict incre-
mental responses as the task progressed, sampling was also
run incrementally for 10 000 steps at every trial, based on
observed data up to that point. The top 100 hypotheses for
each amount of data and concept were collected into a set that
was treated as a finite hypothesis space for the purposes of effi-
ciently computing model predictions (Piantadosi et al. 2012).

RL models

We designed our task to study the mechanism by which
humans learn using explicit rules or concepts. Nonetheless, RL
is a powerful algorithm that can perform well in most tasks,
including ours. We compared different RL models with differ-
ent state space representations. Naïve RL had one feature for
each stimulus (e.g., blue striped square). Feature RL had a dif-
ferent feature dimension for each stimulus feature (i.e., blue,
striped, and square), and weights for each feature were learned
independently. Exhaustive RL (designed to perform best on our
task) had a state associated with each stimulus feature, each
pairwise combination of features, and each triplet of features.
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The value of a state-action pair on trial t was determined by
taking a weighted sum of each of the feature-action pairs:

∑( ) = ( )
∈

Q S a W f a, ,t i
f S

t i

where there are two actions (ai) associated with the 2 choices
(Bim or Dax). After trial feedback, the model uses RL to update
each feature weight for the next trial:

( ) = ( ) + λ[ − ( )]+W f a W f a R Q S a, , , ,t t t t1 chosen chosen chosen

where λ is the learning rate and Rt is the reward earned. We
departed from standard Q learning by making additional
updates to the weights of the unchosen feature-action pairs:

( ) = ( ) − λ[ − ( )]+ − −W f a W f a R Q S a, , ,t not t not t t1 chosen chosen chosen

This encodes the symmetry of the task (i.e., if a stimulus is a
Bim then it is not a Dax). It also improved the likelihood of the
observed data without adding an extra parameter, which
favored RL in model comparison. This change also made the
model homologous to a standard value learning model that
directly learns the probability that a stimulus is a Bim.

Each model used a softmax decision rule to map task state
Q values to the probability of a given action:

( ) =
∑

β ( )

β ( )
P a

e

e
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Q S a

,
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t j

Each RL model had 2 free parameters: λ (learning rate) and β
(inverse temperature of the softmax).

In addition, we fit a version of each RL model with a Pearce-
Hall style update that augments learning rates for states with
recent surprising outcomes (Pearce and Hall 1980; Li et al. 2011):

η η

( ) = ( ) + λ ( )[ − ( )]
( ) = | − ( )| + ( − ) ( )

+

+

W f a W f a A f R Q S a

A f R Q s a A f

, , ,

, 1
t t t t t

t t t t

1 chosen chosen chosen

1 chosen

where ( )A ft is the “associability” of feature f at trial t. An addi-
tional parameter, η, governs the degree to which associability
depends on recent trials. If η = 1, then associability is fully
dependent on the previous trial, whereas if η = 0, associability
never changes from its initial value, 1, and the model reduces
to standard RL.

Finally, we fit a mixture model of RL and Bayesian rule
learning that took a weighted combination of the choice proba-
bilities from both models. The probability of the action on trial t
was modeled as:

ω ω( ) = ( − ) ( ) + ( )P a P a P a1t i t
RL

i t i
Bayes

We fit models by maximizing the likelihood of observed
choices for each subject, using Scipy’s minimize function with
the BGFS method. For neuroimaging analyses, we calculated a
single λ and β across subjects, which provides regularization
that biases results away from extreme parameter settings (Daw
et al. 2011).

Model Comparison

To compare different models, we used a leave-one-rule-out
cross-validation approach (Niv et al. 2015). For each model and
rule, the model was fit to the data of the remaining rules for
each subject. The model, along with the maximum a posteriori
parameter estimates, was then used to predict choice on each

trial of the held-out rule block. We computed the average likeli-
hood per trial of the held-out rule for each subject. This metric
varies from 0 to 1, where 0.5 is the expected chance perfor-
mance of a null model and 1 is perfect prediction. This
approach allows for comparison of non-nested models with dif-
ferent numbers of parameters, as overfitting is naturally penal-
ized by a reduced out-of-sample prediction accuracy.

fMRI Acquisition

Functional images were acquired with a 3 T General Electric
Discovery scanner. Whole-brain BOLD weighted echo planar
images were acquired in 40 oblique axial slices parallel to the
AC–PC line with a 2000ms TR (slice thickness = 3.4mm, no gap,
TE = 30ms, flip angle = 77°, FOV = 21.8 cm, 64 × 64 matrix,
interleaved). High-resolution T2-weighted fast spin-echo struc-
tural images (BRAVO) were acquired for anatomical reference
(TR = 8.2ms, TE = 3.2ms, flip angle = 12°, slice thickness =
1.0mm, FOV = 24 cm, 256 × 256).

fMRI Analysis

Preprocessing and whole-brain analyses were conducted with
Analysis of Functional Neural Images (AFNI; Cox, 1996). Data
were slice-time corrected and motion corrected. No participant
included in the analyses moved more than 2mm in any direc-
tion. Data used in whole-brain analyses were spatially
smoothed with a 4mm FWHM Gaussian filter. Voxel-wise BOLD
signals were converted to percent signal change.

We transformed the T2-weighted structural image to
Talairach space and applied this transform to preprocessed
functional images. Normalized functional images were then
analyzed using a general linear model in AFNI. The model con-
tained multiple regressors to estimate responses to each task
component, which were then convolved with a two-parameter
gamma variate hemodynamic response function. For surface
plots, we projected the group data onto the freesurfer template
brain using Pysurfer with the default settings and a 6mm corti-
cal smoothing kernel.

Parametric regressors derived from the Bayesian model
were used to identify brain regions where activation scaled
with trial-by-trial estimates of surprise, as well as the degree of
change to the hypothesis space as each new exemplar was
integrated. Surprise was calculated as the probability against
the label assigned to the stimulus on each trial by the model.
Rule updating was calculated as the KL divergence between the
posterior distribution on hypotheses before and after the trial.
Rule updating and surprise were moderately correlated, r(12) =
0.27, P = 0.003, but they were included in the same linear model
to ensure that each captured a distinct component of neural
activation. Our model included (1) surprise at feedback, (2) rule
updating at feedback, and (3) rule updating from the previous
trial during the subsequent cue period.

Each event in our general linear model was assumed to
occur over a 2 s period (boxcar). We included three additional
regressors to model mean activation during the cue, response,
and feedback periods. A parametric regressor was included to
control for activation that varied with reaction time during the
response period. Finally, regressors of noninterest were
included to account for head movement and third-order poly-
nomial trends in BOLD signal amplitude across the scan blocks.

Maps of beta coefficients for each regressor were resampled
and transformed into Talairach space. Whole-brain statistical
maps were generated using a 1-sample t-test at each voxel to
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localize brain areas with significant loadings on regressors
across subjects. Whole-brain maps were thresholded at P <
0.05, cluster corrected (P < 0.005 voxel-level α with a minimum
of 42 contiguous voxels, AlphaSim). Of note, we used AFNI ver-
sion 16.0.06, in which AlphaSim better estimates type II error.
Coordinates are reported in Talairach space with the LAS
convention.

A hierarchical analysis was conducted to assess neural
responses to Bayesian surprise and RL prediction error. First,
activation was modeled with two regressors that encoded acti-
vation during positive and negative feedback, as well as task
and nuisance variables described above. A second analysis was
performed on the residual values obtained from the first regres-
sion. Two regressors were included in the second model: a
parametric regressor encoding activation that scaled paramet-
rically with surprise during feedback, and a parametric regres-
sor encoding activation that scaled with prediction error during
feedback, with prediction error derived from the best-fitting
(exhaustive) RL model. Because the prediction errors of the
Pearce-Hall version were highly correlated with those of the
standard version, r(118) = 0.98, and they had very similar pre-
dictive likelihoods, we opted to use the errors from the simpler
RL model. To test for voxels that varied with RL prediction
error, we performed a conjunction between the first-level anal-
ysis of positive > negative outcomes and the second-level
parametric prediction error regressor. To test for voxels that
varied with surprise, we performed a conjunction between the
first-level analysis of negative > positive outcomes and the
second-level parametric surprise regressor (see Results section
“Striatum activation does not reflect reinforcement learning
prediction errors” for the finding that surprise was greater fol-
lowing negative than positive outcomes). We repeated the
above analysis separately for the parametric rule updating
analysis to ensure that the cIFS cluster we identified did not
merely respond to outcome valence. Additionally, we directly
compared surprise > RPE, as well as RPE > baseline, without
requiring a conjunction with outcome valence.

We analyzed outcome valence serially and in conjunction
with parametric error signals for two related reasons. First,
testing for a correlation between BOLD signal and error alone is
likely to identify regions that truly only have bimodal
responses based on outcome. This is because outcome valence
accounted for 54% of variability in prediction error variance in
our data. Various effects that are not of direct interest in this
study (e.g., attention, arousal, sensory differences during posi-
tive vs. negative feedback) will differ by outcome and we
wished to diminish the influence of such spurious factors in
our results. Second, factoring out outcome valence, which
would eliminate such spurious results, dismisses a critical
component of RL. An RL model absent outcome valence infor-
mation cannot learn to distinguish actions and will respond
randomly, while a RL algorithm that has access only to out-
come valence, but does not remember recent trials, will imple-
ment a win-stay/lose-shift policy. Therefore, it is necessary to
examine outcome valence and parametric error signals
together (i.e., in a conjunction analysis) in order to make strong
conclusions about the relationship of the BOLD response to pre-
diction error or surprise.

We conducted an ROI-based analysis of the evoked response
in the striatum. Based on the results of the rule-updating
analyses, in which cIFS correlated with rule-updating and was
functionally connected with the striatum, we hypothesized
that surprise might be represented in striatal regions that inter-
act with lateral PFC (Haber and Knutson 2010). We used an

“executive caudate” ROI taken from a 3-way subdivision of stri-
atum based on diffusion tractography imaging estimated con-
nectivity with cortex, crossed with a caudate anatomical ROI
(Tziortzi et al. 2013). We extracted preprocessed data from this
ROI and regressed out (1) head motion, (2) third-order polyno-
mial trends, and (3) cue, response, and reaction time related
activation, as in the main GLM. For statistical analysis, we aver-
aged the response between 6 and 10 s after feedback. We ana-
lyzed data using a mixed linear model with a random slope for
each subject as implemented in LMER in R.

Results
Behavior

We collected fMRI data while participants completed six 20-
trial blocks of a rule-learning task (Fig. 1a). In each trial, partici-
pants were shown an image and were instructed to classify it
as belonging to one of two possible categories (“Dax” or “Bim”)
based on perceptual features. Category membership was deter-
mined based on logical rules like “stimuli that are either blue or
square are Bims”. Learning proceeded rapidly, generally reach-
ing an initial asymptote within the first 5 trials (Fig. 1c). For all
but the simplest rules, accuracy diminished on later trials, evi-
denced by accuracy curve spikes. These accuracy drops
occurred on trials where new, highly informative evidence was
presented that required updating from a simpler to a more
complex rule.

All participants included in analyses performed above
chance in categorizing stimuli. Accuracy was significantly
greater than chance for all rules (Fig. 1c, A: t(13) = 14.7, P <
0.001; (A and B) or C: t(13) = 7.1, P < 0.001; A or B: t(13) = 16.0, P <
0.001; A and B: t(13) = 12.9, P < 0.001; (A or B) and C: t(13) = 33.7,
P < 0.001; A XOR B: t(13) = 3.25, P = 0.038; all P’s Bonferroni cor-
rected). There was an effect of condition on accuracy (within-
subjects ANOVA with Greenhouse-Geisser spherecity correc-
tion, F3,38.6 = 10.1, P < 0.001, η = 0.40g

2 , Supplementary Table S2).
There was additionally an effect of condition on reaction times,
F2.7,26.8 = 3.1, P = 0.03, η = 0.02g

2 (Supplementary Table S3).
Accuracy is not the ideal measure of learning, as subjects

are expected to sometimes answer incorrectly. Figure 1C shows
on the right panels average accuracy compared to the accuracy
of an ideal Bayesian model that deterministically selects the
rule with highest likelihood. Although the Bayesian model out-
performed subjects, z = 4.5, P < 0.001, the average difference in
accuracy between subjects and the model was only 5.2%.
Therefore, subject behavior reflected near-optimal performance
given the demands of the task.

Comparing Bayesian and RL Models

Our task was designed to elicit an explicit learning strategy
that relied on the generation and testing of abstract rules.
Nonetheless, RL is a powerful learning algorithm that can per-
form well on many tasks, including ours. In addition, there are
well-established cortico-striatal circuits for stimulus-response
and feature-response learning that could contribute to perfor-
mance on our task (Niv 2009). To strengthen our claim that sub-
jects adopted a rule-learning strategy, we used computational
modeling of behavior to assess the extent to which subjects
employed rule-learning rather than model-free RL.

A Bayesian model of rule learning predicted 78.5% of the
variance in subjects’ choices without any parameter fitting.
This accuracy was well-above chance, t(13) = 29.9, P < 0.001,
replicating previous work employing similar models (Fig. 1b;
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(Goodman et al. 2008; Piantadosi 2011). In spite of a large effect
of condition on model-fit, F2.5,32 = 27.7, P < 0.001, η = 0.62g

2 ,
Figure 2b, Supplementary Table S4, predictive accuracy was
well-above chance for all rules, A: t(13) = 22.5, P < 0.001; (A and B)
or C: t(13) = 8.3, P < 0.001; A or B: t(13) = 23.7, P < 0.001; A and B:
t(13) = 20.8, P < 0.001; (A or B) and C: t(13) = 34.5, P < 0.001;
A XOR B: t(13) = 4.2, P = 0.006; all P’s Bonferroni corrected.

We analyzed RL models that are (1) commonly used in the
literature to describe behavior and (2) are based on the estab-
lished circuits between sensory cortex and the striatum that
support model-free learning (Niv 2009). We contrasted the
Bayesian model fits with fits produced by five RL models of
varying complexity.

The first model, naïve RL, learns independently about each
stimulus. Since each stimulus repeats 2.5 times, on average,
this model performs quite well. In addition, this model has
described behavior well in related tasks (Niv et al. 2015).
Because our task is noiseless, it also describes an approach to
the task based on episodic memory.

The second model, feature RL, learns about each feature (e.g.,
blue, circular, and striped) independently. This model reflects
the idea that the decomposition of stimuli into constituent fea-
tures in sensory cortex can support cached-value learning based
on those features (O’Reilly and Rudy 2001). Feature RL could be
expected to learn some rules well, {A, A or B}, but should struggle
with rules that involve conjunctions of features {A and B}.

Model Prediction Subject Data
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Figure 1. Rule learning task and behavior. (a) Participants completed six 20-trial blocks of a rule-learning task. Trials were divided into three phases: cue, response

and feedback, each separated by a random 4–6 s delay. During the cue phase (2 s), the stimulus to be categorized was presented in the center of the screen. During the

response phase (2 s), a question mark was presented in the center of the screen, prompting participants to press a button to respond. During the feedback phase (2 s),

a message was displayed indicating whether the response was correct. (b) Average reaction times for each of the rule blocks, ordered by mean reaction time.

Although there was heterogeneity in reaction time between rules, only the difference between A and (A and B) was significant when correcting for multiple compari-

sons. (c) Left panels show mean participant accuracy and Bayesian rule learning model predictions, without any parameter fitting, for each rule. To the right is the

average performance, collapsed across trials, referenced against the performance of an optimal version of the Bayesian model for each rule. The dotted line repre-

sents chance performance. Participants learned to respond well-above chance and remarkably close to optimal performance for all rules. All error bars represent

bootstrapped estimates of the standard error of the mean across subjects.
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We constructed the third and fourth RL models to be ideally
suited to learning the rules in our specific task. The third RL
model, exhaustive RL, learns weights for all stimuli (unique
combinations of shape, color, texture), each individual feature,
and each pairwise combination of features. For the fourth
model, we fit a version of exhaustive RL that incorporates an
attention-like mechanism that updates features more if they
have been associated with surprising outcomes in the past
(exhaustive Pearce-Hall; Li et al. 2011).

Finally, for the fifth model, we created a mixture model that
takes a weighted average of the predictions of the Bayesian
model and the Pearce-Hall RL model with the exhausted state
space. This model directly tests whether RL provides any addi-
tional explanatory power over the Bayesian rule model.

To compare the ability of each of the models to account for
subjects’ behavior, we fit each model on five of the six rules
and contrasted the likelihood of the predicted held-out rule
data. This predictive likelihood approach balances model-fit
and complexity because over-complex models will over-fit the
training data and generalize poorly.

The Bayesian rule model predicted unseen behavior better
than standard RL models (feature: t(13) = 8.1, P < 0.001; naïve:
t(13) = 3.8, P = 0.002). As expected, both exhaustive RL models
outperformed the best standard RL model (naïve) in accounting
for behavior (exhaustive: t(13) = 3.3, P = 0.005, exhaustive Pearce-
Hall: t(13) = 4.2, P = 0.001). Further, the exhaustive Pearce-Hall
model outperformed the exhaustive model, t(13) = 2.4, P = 0.034,
replicating prior work (Li et al. 2011). Strikingly, the Bayesian
rule learning model outperformed even the exhaustive Pearce-

Hall model, t(13) = 5.1, P < 0.001. In summary, the Bayesian
model predicted behavior better than all tested RL models.

We next examined whether there was variability between
rules in the relative abilities of the models to explain behavior
(Fig. 3b). Although there was an effect of rule on the difference
between Bayesian and RL model fits, F3.4,44.1 = 16.3 P < 0.001,
η = 0.38,g

2 Supplementary Table S5, the best RL model outper-
formed the Bayesian model numerically, but non-significantly,
only for XOR, t(13) = −1.1, P > 0.3.

The fifth model, a mixture that allow for combined input
from the Pearce-Hall and Bayesian models, provides the defini-
tive test of the descriptive quality of the Bayesian model. If RL
provides any addition descriptive information over the Bayesian
model alone, then the mixture model should provide superior
predictions of behavior. Although this model predicted behavior
better than the best RL model, t(13) = 3.0, P = 0.011, indicating
that the Bayesian model provides unique information, it was
worse at predicting behavior than the Bayesian model, t(13) =
4.2, P < 0.001. This result indicates that mixing RL predictions
with Bayesian predictions results in overfitting without any
additional explanatory power over the Bayesian model alone
(see Supplemental Materials for further discussion of modeling).
We conclude that our task manipulation successfully biased
subjects toward a rule learning, rather than a RL, strategy.

Striatum Activation does not Reflect RL Prediction Errors

Our behavioral analysis suggested that our task design success-
fully biased participants towards rule-learning. We next tested

(a)

(b)

Figure 2. Bayesian rule learning outperforms RL models. (a) Bayesian Rule Learning outperforms standard RL models that learn about either stimuli (Naïve) or features

(Feature) in predicting subject behavior. The model also outperforms an RL model with an exhaustive state space (features, stimuli, and pairwise combinations of fea-

tures) as well as an augmented version of this model with a Pierce-Hall update. Finally, the Bayesian model outperforms a mixture model that combines both

Bayesian and RL predictions. (b) Rule-by-rule comparison of the predictive accuracy of the Bayesian model and the best performing, exhaustive Pearce-Hall RL model.

Despite significant heterogeneity, the Bayesian model outperforms the RL model for most rules, whereas the RL model does not significantly outperform the Bayesian

model on any rule.
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whether the striatum reflects prediction errors, which would
underlie incremental stimulus-response learning, or Bayesian
“surprise”, which reflects beliefs about abstract rules. The
learning signal used by RL algorithms is the prediction error,
which is the difference between the prediction strength of the
chosen action and an indicator function on whether the action
was correct. In our case,

= ( ) − ( )I Q S aPE Correct ,t t t chosen

The analogous signal in our Bayesian rule-learning model,
which we call surprise, is equal to the difference between the
strength of evidence for a category and the actual category. If
on trial t a given stimulus St is a Bim (Ot = Bim), then the sur-
prise is given by

= − ( = | … … )−P O S S O OSurprise 1 Bim , , ; , ,t t t t1 1 1

Although RL prediction errors and surprise are generally cor-
related, they diverge in an important way. RL prediction error is
signed and therefore will almost always be greater for correct
than for incorrect responses. Although “unsigned prediction
errors” exist in other modeling frameworks such as predictive
coding and are represented in different neural circuits: tempo-
ral difference errors are signed and strongly associated with
VTA dopamine neurons and striatal BOLD responses. The
signed error is what endows the model with the ability to prefer
states and actions that lead to rewards over those that do not.
In contrast, surprise will be larger for incorrect than correct
outcomes because incorrect predictions are more surprising in
our task (see below). This implies that there would be trials
with large positive surprise and large negative prediction
errors.

Surprise was larger for negative outcomes (t = 21.8, P = 3.7 ×
10–93, Fig. 3b), and outcome valence alone accounted for 22.1%
of the variance in surprise. Conversely, RL prediction errors
extracted from the best-fitting exaustive model were larger for
positive outcomes (t = 47.2, P = 2.3 × 10–310, Fig. 3a) and outcome
valence alone accounted for 57.1% of the variance. The effect of
outcome valence on these learning signals was large and in
opposite directions. These effects are useful because they allow
for a simple and nonparametric test of RPE: a region that does
not show a larger response to positive than negative outcomes
cannot have a positive relationship with RPE (see Methods for

discussion). We therefore predicted that, if the striatum reflects
surprise in our task, then mean striatal blood oxygen level-
dependent (BOLD) activation should be larger for negative com-
pared to positive outcomes. This is a novel prediction given the
extensive body of work showing larger striatal responses to
positive than negative outcomes (Delgado 2007). We emphasize
that this prediction is specific to our particular task in which
negative feedback is generally more informative than positive
feedback.

An analysis of negative versus positive outcomes yielded a
large cluster of voxels that encompassed most of the dorsal
striatum as well as part of the ventral striatum (Fig. 3d). The
reverse contrast (positive vs. negative outcome) yielded regions
in the dorsomedial prefrontal cortex (dmPFC) and posterior
paracentral lobule (pPCL; corrected P < 0.05, Fig. 3c), but no
striatal regions were found, even at liberal thresholds (P < 0.01,
uncorrected). Together, these results are incompatible with a
positive relationship between striatal BOLD and RL prediction
error.

Striatum Activation Varies with Bayesian Surprise

We next turned to a model-based analysis to probe whether
trial-by-trial fluctuations in surprise account for striatal activa-
tion. We observed a region of the caudate that was sensitive to
surprise, in addition to regions in supplementary motor area
(SMA; P < 0.05 corrected, Fig. 3e). Conversely, we did not observe
any significant RL prediction error associated activations at our
whole-brain threshold, and did not observe any in the striatum
even at a lenient threshold (P < 0.005, uncorrected). Further, we
did not observe any striatal activation for an RL prediction error
signal even without masking by outcome valence (P < 0.005,
uncorrected). Because, the conjunction criterion established
that the striatal surprise response was not due to outcome
alone, we next formally compared surprise and prediction error
regressors without projecting out variance due to outcome.
This analysis rules out any potential impact of removing the
outcome variance associated with surprise or prediction error.
We observed a robust response in the striatum for the contrast
of surprise > prediction error (P < 0.05 corrected, Fig. 3f), but did
not observe any activation for the reverse contrast in the stria-
tum, even at a lenient threshold (P < 0.005 uncorrected).

In order to investigate striatal activation in more detail, we
examined the evoked hemodynamic response to feedback in

(a)

(b)

(c) (e) (f)

(d)
y = –13

y = –13

x = 2 y = –13

z = 9 z = 9

RL Prediction Error

Surprise
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Outcome

Negative
Outcome

0
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.6

–.1
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0

Figure 3. Striatum represents Bayesian surprise, not RL prediction error. (a) Mean prediction error from the best-fitting RL model, sorted by whether outcome was pos-

itive or negative. (b) Mean surprise from Bayesian rule learning model, sorted by whether outcome was positive or negative. (c) Whole-brain corrected results for the

contrast of positive > negative outcomes. There were no significant voxels in the striatum for this contrast. (d) Whole-brain corrected results for the contrast of nega-

tive > positive outcomes. (e) Results of a conjunction analysis displaying voxels that are significantly active for both negative > positive outcomes and the parametric

effect of surprise. Both contrasts were corrected for multiple comparisons across the whole-brain before being entered into the conjunction analysis. (f) Whole-brain

corrected results for the contrast of parametric surprise > parametric prediction error, without the effect of outcome partialed out.
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our executive caudate ROI. The evoked response to negative
feedback was larger than to positive feedback, z = 5.63, P <
0.001 (Fig. 4a). We next modeled the evoked response as a func-
tion of surprise, prediction error, and each signal’s interaction
with rule condition (deviation coding). Surprise was signifi-
cantly related to the evoked response, z = 4.1, P < 0.001 (Fig. 4b,
Supplementary Fig. S4), whereas RPE was not, z = −1.46, P =
0.145 (Fig. 4c). There were no significant interactions with rule
condition for either signal (all P > 0.1, Fig. 4d, Supplementary
Fig. S5). Together with the results of the whole-brain analyses,
we conclude that in our rule-learning task, striatal activation
reflects Bayesian surprise rather than RL prediction error. This
result is consistent with our behavioral analysis that concluded
that subjects reason over rules rather than incrementally
acquired stimulus-response contingencies.

Rule Updating

Our analyses show that the Bayesian model described striatal
activation better than RL prediction errors in a rule learning
task. However, the striatum also tracks RPE in RL tasks
(Rutledge et al. 2010). These observations can be reconciled
under a model where striatal neurons represent values and
these values change in response to errors. In tasks for which RL
describes the learning process, errors should come from a RL-
like algorithm, and in a rule-learning task like ours they should
reflect errors in beliefs about rules. This model suggests that
apparent BOLD error signals in the striatum can be better char-
acterized as changes in value signals. However, it is very diffi-
cult to distinguish value updating and RPE in existing work that
uses RL models of BOLD data because the value update and RPE
are proportional (their ratio is the learning rate). Conversely,

Figure 4. Analysis of feedback response from a caudate ROI defined based on its connectivity to executive cortical areas. (a) Responses to negative outcomes were

greater than to positive outcomes. (b) A monotonic relationship existed between Bayesian surprise and response amplitude, with greater response for highest sur-

prise. (c) By contrast, no monotonic relationship was evident between striatal response and RPE. (d) Striatal activity is plotted as a function of surprise for each rule

learned in the task. Despite some heterogeneity, the striatum generally increases its response as a function of surprise across rules. Error bars represent bootstrapped

estimates of the standard error of the mean.
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our Bayesian model allows us to separately examine represen-
tation of surprise and rule updating.

As a further corollary to this model, we expected that rule
updating would involve both the striatum and the caudal infe-
rior frontal sulcus (cIFS), because of the known role of the cIFS
in feature-based rule maintenance and execution (Koechlin
et al. 2003; Badre and D’Esposito 2007; 2009; Waskom et al.
2014). Specifically, we hypothesized that if the cIFS maintains
and executes the feature-based rule governing behavior, then
neural activity in this region should change when the rule gov-
erning behavior was subject to change. We used trial-to-trial KL
divergence in rule likelihoods as our measure of rule updating,
and expected that this measure would predict shifts in internal
representation of rule likelihoods. In a whole-brain regression
analysis, we identified brain regions correlated with rule updat-
ing at the time of feedback in the bilateral cIFS, intraparietal
lobule (IPL), fusiform gyrus, and portions of the dorsal caudate
(Fig. 5a).

Although rule updating occurs during feedback, it is likely
that some updating of rule-response contingencies happens
during subsequent cue periods. Evidence for this comes from
task-switching paradigms, in which subjects incur a residual
switch cost even when they have ample time to prepare for the
new task (Sohn et al. 2000; Monsell 2003). This may be taken as
evidence that people do not encode a new rule until it must be
implemented. We observed activation patterns corresponding
to rule updating during the cue period of the subsequent trial
in the cIFS and fusiform gyrus bilaterally (Fig. 5b). A conjunc-
tion analysis of rule updating during feedback and the next cue
confirms that these areas track rule updating during both time
periods (Fig. 5c; Nichols et al. (2005), and follow-up analyses
established that these results were not driven by outcome
effects (Supplementary Fig. S1). Our findings are consistent
with a model in which the cIFS maintains and updates the
rules governing behavior, while the striatum maintains and
updates the values of the dominant and competing rules.

Discussion
The brain is adept at building stimulus-response relationships,
but both humans (Goodman et al. 2008) and nonhuman pri-
mates (Costa et al. 2015) exploit structured relationships in
order to learn efficiently. We designed a task in which partici-
pants are biased toward reasoning about explicit rules to cate-
gorize stimuli, rather than relying on the gradual build-up of
stimulus-response contingencies. We found that the striatal
feedback response tracks Bayesian surprise, rather than RPE, in
this learning context. We additionally found that both the stria-
tum and cIFS track changes in beliefs about rules. Together,
these results suggest that cortico-striatal interactions support
learning about rule-based structured relationships.

Our behavioral analysis confirmed that our task design eli-
cited behavior that was consistent with a Bayesian optimal rule
learning strategy. We exploited a difference between the feed-
back signals generated from RL models (RPE) and Bayesian rule
learning (surprise). RL prediction error is a signed learning sig-
nal that is larger for positive than negative feedback; in con-
trast, surprise is larger for negative feedback in our task.
Negative feedback generated a stronger response in the stria-
tum, which is inconsistent with an RL prediction error account
of the striatal feedback response in our task. Further, striatal
BOLD responses tracked a parametric measure of Bayesian sur-
prise and did not track RPE. Finally, surprise accounted for
striatal responses better than prediction error. Together, these
results indicate that the striatal feedback response reflects
Bayesian surprise in task conditions where behavior is gov-
erned by explicit reasoning about and error-driven updating of
abstract rules.

The association of the striatal feedback response with RPE
saturates the human cognitive neuroscience literature. Several
studies have hypothesized that RPE representation is the pri-
mary function of striatum during learning (Hare et al. 2008;
Daw et al. 2011; Garrison et al. 2013). Indeed, in RL tasks, the
striatal feedback response clearly tracks RPE (Rutledge et al.
2010). These differences across paradigms can be accounted for
if the striatal feedback response reflects the change in values
encoded by striatal neurons in response to new information.
This more general account of the striatal feedback response is
bolstered by several experimental observations. First, striatal
response to negative feedback increases if the feedback is less
predictable (Lempert and Tricomi 2015). Second, the striatum
responds more to negative feedback that indicates a set-shift in
the Wisconsin card sorting task (Monchi et al. 2001). Finally,
cyclic voltammetry measurements in rodents indicate that
striatal dopamine appears to track a value, rather than predic-
tion error (Hamid et al. 2015), although striatal dopamine has a
complex relationship with striatal BOLD (Lohrenz et al. 2016).
To build upon these observations, we leveraged model-based
fMRI and a novel task to examine the striatal feedback response
under conditions where learning does not depend on the incre-
mental adjustment of stimulus-response contingencies. Future
work measuring the response properties of striatal neurons in
humans should directly probe the information carried by these
neurons during rule learning.

To bolster our claim that the striatal feedback response is
linked to its role in updating internal value representations, we
showed that the striatal BOLD covaried with a parametric mea-
sure of rule updating. Our design afforded us a unique opportu-
nity to separately examine error and updating. In standard RL
these quantities are directly related so that they may not be
distinguished analytically. Our analysis identified a region in
prefrontal cortex called the cIFS, which is involved in the main-
tenance and execution of rules that depend on the features of
visual stimuli (Koechlin et al. 2003; Badre and D’Esposito 2007).
Our observation that cIFS activation scaled with rule updating
supports a model in which this area selects and executes rules
based on rule value representations in the striatum. Future work
will investigate the chain of sensory processing that connects
visual features to abstract decision rules in cortex. The hippo-
campus may play a critical role in this process (Mack et al. 2016).

Our results are related to the findings that striatal responses
to feedback reflect both model-based and model-free RPE (Daw
et al. 2011), whereas prediction errors related to knowledge of
the environment are reflected in lateral prefrontal cortex
(Glascher et al. 2010). Our finding that rule updating correlates

y = –13
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y = –13

0

10

Figure 5. Rule updating. (a) Rule updating during the feedback period in the stri-

atum and left cIFS. (b) Rule updating during the subsequent cue period in the

left cIFS. (c) Projections of a and c onto the cortical surface. Red corresponds to

rule updating during the feedback period, blue corresponds to rule updating

during the subsequent cue period.
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with cIFS activation is consistent with this latter finding.
However, we find no evidence of an RPE signal in the striatum.
We believe the discrepancy derives from the fact that the prob-
abilistic and evolving nature of the 2-step task favors an RL sys-
tem. This system stores stimulus-value associations in striatal
synapses, draws on these associations to make predictions,
and updates them in response to RPEs. In our task, the values
of rule representations may be stored in a separate population
of striatal synapses, drawn on to make predictions, and
updated in response to surprising outcomes. The nature of the
stored associations and the way they are updated may differ
between tasks, but the tasks are similar to the extent that
knowledge represented in cortex influences predictions about
reward. Future work could examine model-based learning as a
set of mechanisms by which cortical representations interact
with stored associations in the striatum to drive behavior.

We did not use explicit rewards, such as money, in our task,
which differs from some RL experiments. However, the stria-
tum is consistently sensitive to feedback in a manner that is
similar to its response to explicit rewards (Elliott et al. 1997;
Seger and Cincotta 2005; Tricomi et al. 2006; Marco-Pallarés
et al. 2007; Dobryakova and Tricomi 2013; Swanson and
Tricomi 2014; Lempert and Tricomi 2015). Also, the striatum
has been shown to respond to internally generated RPEs used
in hierarchical RL (Ribas-Fernandes et al. 2011; Diuk et al. 2013;
Iglesias et al. 2013). Both empirical and theoretical work sug-
gests that the brain’s learning system uses surrogate rewards
to learn in the absence of monetary reward receipt.

This study tested the simple idea that the role of the stria-
tum during learning is to compute the value of potential behav-
ioral policies and update them in response to new information.
We delineated the functional neuroanatomy underlying rule-
based learning and in the process ruled out a RL account of
striatal activation in deterministic category learning. Our
results suggest that value updates in cortico-striatal connec-
tions facilitate rule-based learning.

Supplementary Material
Supplementary data are available at Cerebral Cortex online.

Funding
This work was funded by a NeuroVentures grant from the
Stanford University Dean of Research.

Notes
The authors would like to thank G. Elliott Wimmer, Vishnu
Murty and Kim D’Ardenne for helpful feedback. Conflicts of
Interest: The authors declare no competing financial interests.

References
Badre D, D’Esposito M. 2007. Functional magnetic resonance

imaging evidence for a hierarchical organization of the pre-
frontal cortex. J Cogn Neurosci. 19:2082–2099.

Badre D, D’Esposito M. 2009. Is the rostro-caudal axis of the
frontal lobe hierarchical? Nat Rev Neurosci. 10:659–669.

Buschman TJ, Denovellis EL, Diogo C, Bullock D, Miller EK. 2012.
Synchronous oscillatory neural ensembles for rules in the
prefrontal cortex. Neuron. 76:838–846.

Costa VD, Tran VL, Turchi J, Averbeck BB. 2015. Reversal learning
and dopamine: a bayesian perspective. J Neurosci. 35:2407–2416.

Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. 2011.
Model-based influences on humans’ choices and striatal
prediction errors. Neuron. 69:1204–1215.

Daw ND, Niv Y, Dayan P. 2005. Uncertainty-based competition
between prefrontal and dorsolateral striatal systems for
behavioral control. Nat Neurosci. 8:1704–1711.

Delgado MR. 2007. Reward‐related responses in the human stri-
atum. Ann N Y Acad Sci. 1104:70–88.

Diuk C, Tsai K, Wallis J, Botvinick M, Niv Y. 2013. Hierarchical
learning induces two simultaneous, but separable, predic-
tion errors in human basal ganglia. J Neurosci. 33:5797–5805.

Dobryakova E, Tricomi E. 2013. Basal ganglia engagement dur-
ing feedback processing after a substantial delay. Cogn
Affect Behav Neurosci. 13:725–736.

Elliott R, Frith CD, Dolan RJ. 1997. Differential neural response
to positive and negative feedback in planning and guessing
tasks. Neuropsychologia. 35:1395–1404.

Garrison J, Erdeniz B, Done J. 2013. Prediction error in reinforce-
ment learning: a meta-analysis of neuroimaging studies.
Neurosci Biobehav Rev. 37:1297–1310.

Glascher J, Daw N, Dayan P, Doherty JPO. 2010. States versus
rewards: dissociable neural prediction error signals underly-
ing model-based and model-free reinforcement learning.
Neuron. 66:585–595.

Goodman ND, Tenenbaum JB, Feldman J, Griffiths TL. 2008. A ratio-
nal analysis of rule-based concept learning. Cogn Sci. 32:108–154.

Haber SN, Knutson B. 2010. The reward circuit: linking primate
anatomy and human imaging. Neuropsychopharmacology.
35:4–26.

Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R,
Vander Weele CM, Kennedy RT, Aragona BJ, Berke JD. 2015.
Mesolimbic dopamine signals the value of work. Nat
Neurosci. 19:117–126.

Hare TA, O’Doherty J, Camerer CF, Schultz W, Rangel A. 2008.
Dissociating the role of the orbitofrontal cortex and the stri-
atum in the computation of goal values and prediction
errors. J Neurosci. 28:5623–5630.

Iglesias S, Mathys C, Brodersen KH, Kasper L, Piccirelli M,
Ouden den HEM, Stephan KE. 2013. Hierarchical prediction
errors in midbrain and basal forebrain during sensory learn-
ing. Neuron. 80:519–530.

Kawagoe R, Takikawa Y, Hikosaka O. 2004. Reward-predicting
activity of dopamine and caudate neurons—a possible
mechanism of motivational control of saccadic eye move-
ment. J Neurophysiol. 91:1013–1024.

Koechlin E, Ody C, Kouneiher F. 2003. The architecture of cognitive
control in the human prefrontal cortex. Science. 302:1181–1185.

Lempert KM, Tricomi E. 2015. The value of being wrong: inter-
mittent feedback delivery alters the striatal response to neg-
ative feedback. J Cogn Neurosci. 28:261–274.

Li J, Schiller D, Schoenbaum G, Phelps EA, Daw ND. 2011.
Differential roles of human striatum and amygdala in asso-
ciative learning. Nat Neurosci. 14:1250–1252.

Lohrenz T, Kishida KT, Montague PR. 2016. BOLD and its
connection to dopamine release in human striatum: a
cross-cohort comparison. Philos Trans R Soc Lond B Biol
Sci. 371:20150352.

Mack ML, Love BC, Preston AR. 2016. Dynamic updating of hip-
pocampal object representations reflects new conceptual
knowledge. Proc Natl Acad Sci. 113:13203–13208.

Marco-Pallarés J, Müller SV, Münte TF. 2007. Learning by doing: an
fMRI study of feedback-related brain activations. NeuroReport.
18:1423–1426.

3974 | Cerebral Cortex, 2018, Vol. 28, No. 11

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article-abstract/28/11/3965/4508777 by U

niversity of C
alifornia, Berkeley/LBL user on 17 O

ctober 2018



McClure SM, Berns GS, Montague PR. 2003. Temporal prediction
errors in a passive learning task activate human striatum.
Neuron. 38:339–346.

Miller EK, Cohen JD. 2001. An integrative theory of prefrontal
cortex function. Annu Rev Neurosci. 24:167–202.

Monchi O, Petrides M, Petre V, Worsley K, Dagher A. 2001.
Wisconsin Card Sorting revisited: distinct neural circuits
participating in different stages of the task identified by
event-related functional magnetic resonance imaging.
J Neurosci. 21:7733–7741.

Monsell S. 2003. Task switching. Trends Cogn Sci. 7:134–140.
Montague PR, Dayan P, Sejnowski TJ. 1996. A framework for

mesencephalic dopamine systems based on predictive
Hebbian learning. J Neurosci. 16:1936–1947.

Morris G, Schmidt R, Bergman H. 2010. Striatal action-learning
based on dopamine concentration. Exp Brain Res. 200:307–317.

Nichols T, Brett M, Andersson J, Wager T, Poline J-B. 2005. Valid
conjunction inference with the minimum statistic. Neuroimage.
25:653–660.

Niv Y. 2009. Reinforcement learning in the brain. J Math Psychol.
53:139–154.

Niv Y, Daniel R, Geana A, Gershman SJ, Leong YC, Radulescu A,
Wilson RC. 2015. Reinforcement learning in multidimen-
sional environments relies on attention mechanisms.
J Neurosci. 35:8145–8157.

O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. 2003.
Temporal difference models and reward-related learning in
the human brain. Neuron. 38:329–337.

O’Reilly RC, Rudy JW. 2001. Conjunctive representations in
learning and memory: principles of cortical and hippocam-
pal function. Psychol Rev. 108:311.

Pearce JM, Hall G. 1980. A model for Pavlovian learning: varia-
tions in the effectiveness of conditioned but not of uncondi-
tioned stimuli. Psychol Rev. 87:532.

Piantadosi ST. 2011. Learning and the language of thought.
Cambridge (MA): Massachusetts Institute of Technology.

Piantadosi ST, Tenenbaum JB, Goodman ND. 2012. Bootstrapping
in a language of thought: a formal model of numerical concept
learning. Cognition. 123:199–217.

Reynolds JN, Hyland BI, Wickens JR. 2001. A cellular mechanism
of reward-related learning. Nature. 413:67–70.

Ribas-Fernandes JJF, Solway A, Diuk C, McGuire JT, Barto AG,
Niv Y, Botvinick MM. 2011. A neural signature of hierarchical
reinforcement learning. Neuron. 71:370–379.

Rutledge RB, Dean M, Caplin A, Glimcher PW. 2010. Testing the
reward prediction error hypothesis with an axiomatic
model. J Neurosci. 30:13525–13536.

Schultz W. 1997. A neural substrate of prediction and reward.
Science. 275:1593–1599.

Seger CA, Cincotta CM. 2005. The roles of the caudate nucleus
in human classification learning. J Neurosci. 25:2941–2951.

Sohn MH, Ursu S, Anderson JR, Stenger VA, Carter CS. 2000. The
role of prefrontal cortex and posterior parietal cortex in task
switching. Proc Natl Acad Sci. 97:13448–13453.

Sutton RS, Barto AG. 1998. Introduction to reinforcement learn-
ing. Cambridge (MA): MIT Press.

Swanson SD, Tricomi E. 2014. Goals and task difficulty expecta-
tions modulate striatal responses to feedback. Cogn Affect
Behav Neurosci. 14:610–620.

Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND. 2011. How to
grow a mind: statistics, structure, and abstraction. Science.
331:1279–1285.

Tricomi E, Delgado MR, McCandliss BD, McClelland JL, Fiez JA.
2006. Performance feedback drives caudate activation in a
phonological learning task. J Cogn Neurosci. 18:1029–1043.
http://dxdoiorgezproxystanfordedu/101162/jocn20061861029.

Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt
P, Douaud G, Jbabdi S, Behrens TEJ, Rabiner EA, et al. 2013.
Connectivity-based functional analysis of dopamine release
in the striatum using diffusion-weighted MRI and positron
emission tomography. Cereb Cortex. 24:bhs397–bhs1177.

Waskom ML, Kumaran D, Gordon AM, Rissman J, Wagner AD.
2014. Frontoparietal representations of task context support
the flexible control of goal-directed cognition. J Neurosci. 34:
10743–10755.

Yarkoni T. 2009. Big correlations in little studies: inflated fMRI
correlations reflect low statistical power—commentary on
Vul et al. (2009). Perspect Psychol Sci. 4(3):294–298.

A Cortical-Striatal Circuit Supporting Category Learning Ballard et al. | 3975
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/article-abstract/28/11/3965/4508777 by U
niversity of C

alifornia, Berkeley/LBL user on 17 O
ctober 2018

http://dxdoiorgezproxystanfordedu/101162/jocn20061861029

	Beyond Reward Prediction Errors: Human Striatum Updates Rule Values During Learning
	Introduction
	Material and Methods
	Participants
	Rule Learning Task
	Bayesian Rule-Learning Model
	RL models
	Model Comparison
	fMRI Acquisition
	fMRI Analysis

	Results
	Behavior
	Comparing Bayesian and RL Models
	Striatum Activation does not Reflect RL Prediction Errors
	Striatum Activation Varies with Bayesian Surprise
	Rule Updating

	Discussion
	Supplementary Material
	Funding
	Notes
	References


