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Abstract

The extent to which people can infer new mathematical con-
cepts in the absence of cultural support is not clear. We test
such learning with a simple math concept: additive commuta-
tivity. Experimental work with children in industrialized cul-
tures suggests that cultural support is necessary, since children
take time to learn commutativity and ultimately show signs of
knowing it after entering school. However, children are at a
disadvantage in learning because they are not yet cognitively
mature. Moreover, they have only had a short time to experi-
ence the world and possibly learn principles like commutativ-
ity on their own. Unschooled adults, on the other hand, may
be in a better position to have inferred commutativity on their
own. We test indigneous Amazonians with variable levels of
math cultural supports, and find that those with low cultural
supports do not show signs of knowing additive commutativ-

ity.
Keywords: commutativity; cultural supports; arithmetic; edu-
cation

Introduction

Most adults in WEIRD cultures (Henrich, Heine, & Norenza-
yan, 2010) understand principles that characterize our knowl-
edge of arithmetic, such as commutativity. Formally, addi-
tive commutativity holds that natural numbers a and b always
obey a+b = b+ a. There is no firm consensus on when
commutativity is acquired developmentally, but WEIRD chil-
dren have been shown to possess an abstract understanding
of the principle as early as 3 years old (Sophian, Harley, &
Manos Martin, 1995), and a more complete understanding by
around third grade (Haider et al., 2014). One question that
remains is whether commutativity is learned only with strong
cultural supports like formal education, or whether it could
be deduced by learners autonomously.

We define autonomous learning as acquisition of knowl-
edge through individual experience rather than cultural sup-
port like school and trade. For instance, commutativity might
be learned based on simple observations of physical interac-
tions in the world. Results from Petitto and Ginsburg (1982)
are consistent with the possibility that commutativity may
be autonomously inferred. The researchers recruited Dioula
adults with no formal schooling. Participants were given a
battery of math tasks, and succeeded on symbolic additive
commutativity. However, this study had some limitations.
Besides the fact participants were only asked one question on
this concept, they were selected from a fairly uniform group
(17 tailors and 3 cloth merchants), with a uniformly high level

of market integration. Results from this population would not
necessarily generalize to unschooled adults with low market
exposure.

An alternative possibility is that substantial cultural math
support is required to learn commutativity and related prin-
ciples. Cultural support is social and could potentially in-
clude: formal schooling, specific language-based skills (e.g.
the meanings of number words, exact arithmetic), and occu-
pational experience (e.g. selling goods). These experiences
have been individually implicated in general math achieve-
ment (Nguyen et al., 2016; Posner & Baroody, 1979; Boni,
Jara-Ettinger, Sackstein, & Piantadosi, under review), and
in commutativity mastery specifically (Baroody & Gannon,
1984; Baroody, 1987).

While these are helpful for commutativity acquisition, it is
still unclear if they are necessary. We explore this question in
the Tsimane’, a farmer-forager population who reside in the
Bolivian Amazon. Similar to the participants in Petitto and
Ginsburg (1982), our participants are adults with little to no
schooling. Unlike Petitto and Ginsburg (1982), we sampled
participants from 9 different villages varying in their level of
market integration, allowing us to test market exposure as
a novel predictor of commutativity knowledge. Other cul-
tural predictors we include are formal schooling, exact arith-
metic knowledge, and number knowledge. Including formal
schooling can help determine the relevance of a heavily struc-
tured learning environment. Arithmetic and number knowl-
edge are specific mathematical abilities that may be necessary
to scaffold commutativity knowledge. We also include age as
a proxy for amount of time to autonomously experience quan-
tities.

Our participant variability is an asset. Tsimane’ living in
separate villages have varying amounts of market exposure.
They have attended different schools. Individual schools may
emphasize dissimilar mathematical skills. Additionally, adult
Tsimane’s ages don’t cleanly relate to their education. We
are thus able to disentangle the effects of different predic-
tors on commutativity knowledge. Ultimately, if it is possible
to know commutativity without cultural support, our partici-
pants with limited math-related cultural support will succeed
on commutativity, replicating the Dioula results. Addition-
ally, age—a measure of possible time in which to experience
quantities in the world—may be a positive predictor of com-
mutativity knowledge. On the other hand, if commutativity
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requires support like substantial formal schooling or occu-
pational experience, only participants with these experiences
will succeed on commutativity.

Method

We worked with the Centro Boliviano de Investigacion y de
Desarrollo Socio Integral (CBIDSI), a local research cen-
ter. CBIDSI recruited participants, coordinated logistics, pro-
vided us with native translators, and served as experts on Tsi-
mane’ culture.

In our study, we: collected demographic information, gave
participants general mathematical tasks, and subsequently ad-
ministered our main commutativity experiment.

Participants

We recruited 45 Tsimane’ participants, aged 18-66 years old
(female=23, male=22), from 9 different villages. These vil-
lages are all located in Beni, a department in the Bolivian
Amazon. We specifically recruited Tsimane’ with low levels
of formal schooling (0-5 years).

Prior to Experiment: Measuring Cultural Supports We
first administered the Give-A-Number task, a test of number
knowledge (Wynn, 1990). We placed a pile of 10 tokens on a
table, and asked participants to grab different quantities of to-
kens, from 1 to 8. This was administered in number list order,
and then in random order. Each participant’s “knower-level”
was then determined using a Bayesian inference model (Lee
& Sarnecka, 2010). According to this model, subset-knowers
(e.g. 1-,2-,3- and 4-knowers) are participants who only know
a limited subset of number meanings, and CP-knowers are
participants who succeed on the Give-N task for arbitrarily
large “N.”

Secondly, we measured arithmetic competence by giving
participants twelve different addition problems. Problems
were given visually and verbally, translated into Tsimane’
by native Tsimane’ speakers. Participants stated their answer
verbally.

The main demographic measures relevant to this study we
collected were years of formal education, village, and age.
We considered age a proxy for amount of time in the world in
which to possibly experience and manipulate natural quanti-
ties. Additionally, we obtained village-level market integra-
tion measurements from R. Godoy, CBIDSI, and Luz (2012).
We selected travel time to nearest market in particular, as a
good measure of market integration. We reasoned that that
temporal proximity to a market (regardless of distance) would
seem to make more frequent trips and participation in the
market economy possible. Travel time from village to market
is in hours.

Commutativity Experiment

The general design of our commutativity tasks was based
on Baroody and Gannon (1984); Wilkins, Baroody, and Ti-
ilikainen (2001). We administered two kinds of commutativ-
ity tasks: “symbolic” (first) and “word problem” (second).

(a)  Symbolic
task lem task

(b) Word prob-

Figure 1: Setup for the symbolic and word problem tasks

Both problem sets included commuted experimental trials,
and non-commuted control trials.

To start, we administered the Symbolic task (Figure 1a).
We used 28 blank index cards. Each index card had a pair of
sums on them, one on top of the other.

To start, participants were first given two practice trials (not
included in our analyses): [2+ 1 ;2 + 8] and [11 + 13 ; 11
+ 11]. For each practice trial, participants were instructed to
compute the result of the first pair, then the result of the sec-
ond pair. Then, they were asked whether the pairs resulted
in the same answer or a different answer. Participants were
given feedback if they gave the wrong answer. Both of our
practice trials had an answer of “different” because we did
not want to introduce a “same” bias, which could lead us to
over-estimate commutativity knowledge. After practice tri-
als, participants were told they would be given further pairs,
but quickly, and that they just had to say whether the pairs
resulted in the same answer, a different answer, or it was not
possible to know either way. The total time each card was
presented was approximately 4 seconds.

In our analyses, if participants ever said an answer that was
not exactly the right answer (“same” or “different” according
to the problem type), such as “not possible to know” or a non-
sequitur, these answers were counted as wrong. The pairs of
sums (Table 1) were presented in random order. An example
experimental trial would be: 12 4 14....14 4 12. Different,
the same, or not possible to know?” The trials were counter-
balanced, so that on one trial, the question was “different, the
same, or not possible to know” and on the next the question
was “the same, different, or not possible to know.” Partici-
pants were not given feedback on experimental trials.

The Word Problem task followed the Symbolic task, and
was meant to present problems in a slightly more naturalis-
tic context. See Table 2 for the specific problems used, and
Figure 1b for the physical setup. For each sum shown, we
had two index cards, each representing one addend with an
Arabic numeral. No plus signs were used in this task. Sta-
pled underneath each card was another card, containing a dot
cloud with a cardinality corresponding to the Arabic numeral
above it. In the task, as we verbalized each number, we would
open the index card to reveal the dot cloud underneath, in an
effort to reinforce the number as a concrete quantity.

The story given to participants was that there are two men,
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Table 1: Problems used for the symbolic task: 12 commuted, 16 non-commuted.

Commuted Pairs Non-Commuted Pairs Non-Commuted Pairs
(Correct Answer: “Same”) (Correct Answer: “Different”) (Correct Answer: “Same”)
12+14  14+12 10+12  20+20 13+13  13+13
13+16 16+13 12+12  15+12 16+11 16+11
14+16 16+14 12+15  12+20 11+18 11+18
15+13  13+15 13+11  10+11 14+14 14+14
16+12 12+16 13+15 13+10
1I8+12 12+18 17+12  13+12
12+15  15+12 12+18 20+18
12+17  17+12 14+12 10+12
13+12  12+13 14+15 11+15
13+14 14+13 15+14 15+12
I5+14 14+15 I5+15 11+15
17+13 13+17 16+13 11+11

Table 2: Problems used for the word problem task: 8 commuted, 4 non-commuted.

Commuted Pairs Non-Commuted Pairs
(Correct Answer: “Same”) (Correct Answer: “Different”)

19+17 17+19 14+19 14+14
15+18 18+15 22 +22 27427
17+14 14+ 17 20+20 26+26
17+25  25+17 13+19  13+13
16+19 19+16

18+14 14+18

15+17 17+15

23+18 18+23

Juan and Pedro, represented by caricatures placed in front of
participants. Juan was always on the participants’ left, and
Pedro was always on the participants’ right. Each man was
holding pebbles. One example of a problem given would be:
“Juan has 19 pebbles in one hand, and 17 pebbles in the other
hand. Pedro has 17 pebbles in one hand, and 19 pebbles in
the other hand. Who has more? Does Juan have more? Does
Pedro have more? Do they have the same amount? Or is it
not possible to know?” As above, any answer that was not the
correct one (whether it be an incorrect indication of cardinal-
ity or “not possible to know”) was coded as wrong. As in the
symbolic task, in the word problem task, participants were

given a short time to answer each trial, so as to prevent out-
right computation. Each trial took about 8 seconds to present
to participants. Approximate total testing time for the sym-
bolic and word problem trials was 5-10 minutes. Trials were
presented in random order.

Results

Overall, participants were more successful on non-commuted
trials (mean accuracy: 76%) than on commuted trials (mean
accuracy: 42%). We believe this may be because of a bias to
answer “different.” Some participants may have interpreted
our question of “Are the sums the same?” as “Are the ad-
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Figure 2: In these plots, dots represents individual partici-
pants, data is color-coded by trial type, and logistic curves
are fitted to the data. The y-axes on each of these panels
represents commutativity accuracy. Each x-axis represents
a different demographic predictor. Qualitatively, all predic-
tors have a positive relationship with commutativity accuracy,
with the exception of time to market, which has no relation-
ship with commutativity accuracy in the regression.

dends the same?” Also, the two practice trials we gave them
before the task had an answer of “different.” Note that, al-
though there seems to be an overall bias to say “different,”
participants say “different” more (73%) for non-commuted
trials (which mostly have a correct answer of “different”), and
less (56%) for commuted trials (which always have a correct
answer of “same”), suggesting that the bias comes on top of
genuinely correct answers. In any case, participants who an-
swered “same” on commuted trials might reasonably be said
to know commutativity, because they avoided the prevalent
“different” bias and answered correctly.

In the following results, we show how participants with low
levels of each of the cultural supports we look at also have
low accuracy in commutativity. In contrast, the non-cultural
predictor of age (as a proxy for experience with quantities
in the world) is not positively associated with commutativity
accuracy—and in fact, is negatively associated.

Commutativity accuracy according to different
predictors

Fig. 2 shows the relationship between different predictors (x-
axis) and commutativity accuracy (y-axis). The horizontal
dashed line represents chance performance on commutativ-
ity.! Each sub-plot shows a different predictor. Each point
represents an individual person and points are jittered so as to

'We choose a chance line of 50%, representing the expected per-
formance if participants guessed randomly.

Commutativity Accuracy vs Age

Trial Type
symbolic

-+- wordproblem

18 23 28 33 38 43 48 53 58 63
Age (years)

Figure 3: Commutativity accuracy vs. age. Each dot rep-
resents an individual, data is color-coded by trial type, and
logistic curves are fitted to the data. As age increases, com-
mutativity accuracy decreases.

prevent overlap. Error bars are binomial confidence intervals,
set at 50% confidence to minimize visual cluttering. Two lo-
gistic curves are fit to the data, one per trial type (symbolic or
word problem). The shadow around the curves represents the
standard error (95% confidence) for each condition, respec-
tively. All participants completed symbolic (red) and word
(teal) problems.

Overall, in panels 2a, 2b, and 2c, there are increasing
trends: people improve at commutativity with higher knower-
level, arithmetic accuracy, and education, respectively. More
interestingly, people are substantially below chance at the left
side of the plots, when they have low values of these cultural
support predictors. By and large, three- and four- knowers
show low accuracy on commutativity (Panel 2a). People with
low arithmetic accuracy tend to show low accuracy on com-
mutativity as well (Panel 2b). People with low years of formal
education also show low accuracy on commutativity (Panel
2c¢). Towards the right end of the panels, people approach
ceiling on the commutativity task, suggesting the Tsimane’
do learn commutativity under the right conditions (with suf-
ficient cultural supports).

Panel 2d shows an overall flat to slightly decreasing trend:
people get worse at commutativity the farther from the market
they live. The individual furthest away from the market is
below chance on commutativity, and there is a somewhat even
split (leaning below) of people above and below chance on
commutativity at distances closer to the market. This trend,
however, is not statistically reliable (see below).

One possibility for commutativity acquisition we outlined
in the introduction is that amount of time to experience quan-
tities in the world might translate to commutativity under-
standing. One way to measure this is by using a proxy for
exposure to sets in the real world: age. Contrary to this hy-
pothesis, in Fig 3, younger participants (x-axis) have higher
commutativity accuracy (y-axis) than older participants, in
both the symbolic and word problem tasks. The negative re-
lationship between age and commutativity accuracy is likely
because the oldest Tsimane’ have had the least exposure to
school. Kempf and Kempf (2018) chronicle the gradual intro-
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duction of formal schooling to the Tsimane’, starting in the
1960s and gradually increasing until today (which explains
why younger Tsimane’, born more recently, are exposed to
more formal education than their predecessors were).

Overall, Figures 2 and 3 suggest participants may perform
slightly better on word problems than on symbolic problems,
although the trend is not entirely clear, and in some cases
participants perform better on symbolic problems.

Table 3 shows a logistic regression that statistically evalu-
ates the trends in Figures 2 and 3, and allows us to test each
predictor while controlling for the others. The regression pre-
dicted accuracy on commutativity problems according to the
predictors seen in Table 3.

The regression’s intercept shows that subset-knowers
are below 50% commutativity accuracy (f = —2.04,tr =
—7.87,p < 0.01). There is also a reliable, positive asso-
ciation between CP-knower status (f = 0.61,7 = 2.68,p <
0.05) and commutativity accuracy. This shows that when the
other predictors are taken into account, number knowledge
is uniquely important to commutativity knowledge. Arith-
metic accuracy is also uniquely important to commutativity
knowledge: it is a reliable predictor even when education
(and the other predictors in that table) are taken into account
(B =0.86,7 = 2.42,p < 0.05). Furthermore, there is a re-
liable effect of formal education on commutativity accuracy
(B=0.26,t =3.44,p < 0.01). Overall each of these predic-
tors is uniquely predictive even when the other predictors are
taken into account in the regression. These findings are con-
sistent with the theory that commutativity cannot be learned
with low cultural support.

While we expected that inhabitants of villages close to a
market town might succeed on commutativity, we found that
the time to nearest market coefficient has no reliable associa-
tion with the commutativity accuracy outcome (f = 0.03,7 =
0.78, p > 0.05). If time to market is actually a valid proxy for
market integration, this implies that the extent to which Tsi-
mane’ participate in the market is not related to their knowl-
edge of commutativity. This is somewhat surprising, given
that participation in the market requires mathematical trans-
actions during sales and purchases. It is also possible that
time to market is simply a noisy measure, or a measure whose
variance is already accounted for by other factors.

The trial type coefficient shows that people perform re-
liably better on word problems than on symbolic problems
(B =0.63,r =3.81,p < 0.01). Symbolic problems require
knowledge of the concept of formal sums and/or the plus sign
notation. Even if someone has been taught these elements, it
may be more difficult to understand math concepts in this ab-
stract format as opposed to a word problem format tethered
to a concrete scenario (and not using any formal notation).

Finally, the regression shows that age has a reliable nega-
tive association with commutativity accuracy (f = —0.97,t =
—9.55,p < 0.01). This suggests that more absolute time
to theoretically experience quantities and quantity manipu-
lations in the world does not enhance commutativity knowl-

edge. As mentioned above, this is likely due to the fact that
older Tsimane’ tend to have less schooling. This further high-
lights the importance of formal education for commutativity.

Discussion

These results inform how we should think about psycholog-
ical representations of mathematical concepts like commuta-
tivity. In principle, the way humans structure our mathemat-
ical systems could provide a model of how concepts oper-
ate in the human mind. For example, in some versions of
Peano arithmetic, commutativity is axiomatic. Our results
contribute to literature showing that, in contrast to these sys-
tems, people’s natural mental concepts of arithmetic are not
commutative, at least not automatically so. In Haider et al.
(2014), school children only exhibited a mature understand-
ing of commutativity by the time they were in third grade
(Haider et al., 2014). In theory, the reason they did not
understand commutativity earlier could be that they simply
had not lived and experienced the world long enough to au-
tonomously infer it. However in our current research, even
by adulthood, commutativity is not autonomously acquired.
This strengthens the argument that it may not be a natural,
axiomatic ability to acquire. Perhaps this is not so surpris-
ing: commutativity does not hold for subtraction and divi-
sion; moreover, in the real world, order often matters (Rips,
Bloomfield, & Asmuth, 2008). Picture, for instance, form-
ing a pile of fragile and heavy objects. If you start with the
fragile objects, you will form a very different pile than if you
started with the heavy items. Interestingly, these findings co-
incide with human intuitions on the relevance of commuta-
tivity. In Rips and Thompson (2014), college students were
asked to rate mathematical properties by how essential they
are to number systems (e.g. natural numbers, integers). The
mean rated importance given to commutativity was a moder-
ate 4.14 on a scale of 1-8 (1: “need not be a part of any num-
ber system” ; 8: “must be part of every number system”)?. All
this highlights the question: how is commutativity acquired?
One possibility is that people may discover the commutativ-
ity principle through repeated exposure to addition problems,
in which they repeatedly notice that a +b = b+ a (Baroody,
Wilkins, & Tiilikainen, 2003; Baroody & Gannon, 1984).
The fact that commutativity is not axiomatic does not pre-
clude other mathematical abilities from being axiomatic. In
the study where commutativity received moderate scores for
its importance to number systems (Rips & Thompson, 2014),
in general, students weighed mathematical relations (e.g. as-
sociativity, trichotomy, etc.) and operations (e.g. addi-
tion, subtraction, etc.) as more relevant to defining number
systems than the presence or absence of specific elements
(e.g. presence of a first element, presence of successors,
etc.). The authors argue that this favors a structuralist theory,
whereby complex mathematical concepts are derived from a
pre-existing scaffold of more primitive concepts.

2Note that commutativity was rated 4.83 upon repetition in a dif-
ferent group from the same participant pool.
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Table 3: Output for logistic regression: Commutativity problem accuracy ~ Education + Arithmetic Accuracy + Knower Level
(CP or Subset) + Time to Market + Age + Trial Type (Word Problem or Symbolic). The predictors are continuous, except for
Knower Level and Trial Type, which are dummy-coded. Age is z-scored, because we tested a limited range of ages: adults

only.
Estimate 95% Cllower 95% Clupper  SE t p
Intercept -2.04 -2.56 -1.54 026 -7.87 0.00
Education 0.26 0.11 041 0.08 3.44 0.00
Arithmetic Accuracy 0.86 0.16 1.56 035 242 0.02
Knower Level: CP 0.61 0.17 1.07 023 2.68 0.0l
Time to Market 0.03 -0.05 0.11 0.04 0.78 043
Age (z-scored) -0.97 -1.17 -0.77  0.10 -9.55 0.00
Trial Type: Word Problem 0.63 0.31 096 0.17 3.81 0.00

Our study also allowed us to examine how commutativity
knowledge relates to market integration. In prior literature,
Dioula adults with no schooling were accurate on commu-
tativity (Petitto & Ginsburg, 1982). We believed this to be
because these participants had uniformly high market expe-
rience. Interestingly, in our population, market experience—
low or high—made no difference in commutativity scores.
This difference may be because Dioula participants have an
overall higher market integration than Tsimane’ participants.
Also, our village-level measure of market integration (travel
time to nearest market) may not be fine-grained enough, a
limitation of our study.

Another limitation of our research is that we define com-
mutativity in a narrow sense: success on abstract symbolic
and concrete word problems. Our symbolic problems rely on
knowledge of verbal number words and/or written numerals.
Our word problems include dot cloud representations as an
additional cue, but these representations are still pictorial. It
is possible, therefore, that these task demands led us to under-
estimate the commutativity knowledge of some participants.
A task using concrete objects may be better calibrated to re-
mote Tsimane’ culture.

Conclusion

We tested whether it is possible to infer commutativity—a
seemingly simple math skill—purely by experiencing quan-
tities in the world, or whether cultural support is necessary.
By and large, our participants with low amounts of cul-
tural support (exact number knowledge, arithmetic, and for-
mal schooling) did not succeed on our commutativity tasks.
Moreover, age (our intended proxy for experience with quan-
tities in the world) did not confer an advantage in commuta-
tivity understanding. This suggests that commutativity is not
an axiomatic psychological concept.
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