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A main objective of this book has been to illustrate how probabilistic inference over rich structured
representations provides a powerful machinery for modelling human intelligence. We have seen that
structured representations from graphical models to logic can help represent knowledge and categories,
encode the perceptual world, or reason about näıve physics or other minds. Yet the domain in which
structured representations are most transparently relevant to cognition is, of course, human language. In
this chapter, we apply some of the foundational ideas developed in this book to understand the cognitive
processes underpinning language processing.

Probabilistic ideas have often been overlooked or even actively pushed aside in the study of language
(e.g., Chomsky, 1969, see Norvig, 2012). One reason for this is that it is sometimes been assumed that a
probabilistic approach to language can only work if language has a very simple structure, corresponding
to statistics over pairs or triples of phonemes or words (for discussion, see Jurafsky & Martin, 2008), or
through learning associations between words or distributional patterns linking words and their contexts
(Landauer & Dumais, 1997; Redington, Chater, & Finch, 1998). Indeed, probabilistic approaches to
language, and by extension connectionist approaches, have sometimes been viewed as something close to
a covert return to behaviorism (Fodor & Pylyshyn, 1988). But we have seen that this reaction against
probabilistic ideas as incompatible with structured symbolic representations is out of date (Chater &
Manning, 2006). Indeed, understanding how language is processed and learned crucial requires the
integration of both structured representations and probabilistic methods.

Probability enters crucially into the cognitive science of language in two ways. First, we have the
problem of interpreting language—i.e., creating a rich representation of the phonemes, words, syntactic
structure and, crucially, the meaning, or linguistic input from a noisy and highly ambiguous stream of
speech (or the similar ambiguous stream of visual input in the context of sign language). The problem of
inferring the most likely structure from a noisy input is, of course, a paradigm example of probabilistic
inference—and as we have seen throughout this book, the standard Bayesian approach to this type
of problem is to attempt to invert a generative model of the language. Thus, to work out the most
likely analysis of the speech input requires inverting a model for generating, or synthesising, this speech
input. This general line of thinking has a long history in the psychology of language, tracing back to the
analysis-by-synthesis models of speech perception developed at the Haskins laboratory in the 1950s and
1960s (e.g., Halle & Stevens, 1962), and is, of course, in line with the Bayesian viewpoint on cognition
explored throughout this book. We shall see that many of the computational problems associated with
symbolic approaches to language processing, such as the spectacular ambiguity of natural language, are
greatly eased when multiple levels of probabilistic constraints can be applied to prune the vast number
of possible readings of sentence, or indeed, an acoustic wave form. We note that there is an increasing
body of experimental evidence across a range of linguistic levels which fits well with the probabilistic
framework.

The second way in which probability enters the story concerns how the generative model of language
is learned. Here, the objective is not merely to infer the structure of the speech or other linguistic input
in real time. It is instead to infer a model of the entire language itself, and to thus be able to use this
model in using language—to correctly produce language, to understand novel sentences that may never
have been heard before, and to distinguish between sentences which are grammatically acceptable and
those that are not. This model is learned through experience, particularly crucially, in the first years of
life. Learning language is, then, yet another problem of probabilistic inference, where now the aim is not
to infer the structure of a particular speech signal, given a generative model of the language, but to infer
the generative model itself, given a history of linguistic (and potentially other) input. Bayesian models
of learning natural language grammars also throw a radically new perspective on nativist arguments by
(Chomsky, 1980; Pinker, 1994) and many others. These authors have argued for the necessity of an
innate universal grammar due to the supposed impossibility of learning an infinite language from the
finite, and indeed somewhat noisy, sample of assurances available to children. The claim that learning a
language without a great deal of innate information is impossible is back up by poverty of the stimulus
arguments: that the child has too little, and too poor-quality, data for learning to be possible (Chomsky,
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1986).

As in the case of understanding individual utterances, purely symbolic models of language acquisition
have no principled way of prioritizing between the vast range of possible models of the language that will
fit with a particular body of linguistic data (and indeed, they also tend to fare badly when dealing with
noisy data). The Bayesian approach addresses this problem, by focusing on grammars that are a priori
more plausible1 but which also fit well with the observed data.

Mathematical arguments show that this approach can work in principle, to overcome the apparent
“logical” problems of language acquisition, without building in strong language-specific prior information
(e.g., Chater, Clark, Goldsmith, & Perfors, 2015; Chater & Vitányi, 2007). Here we will describe recent
computational work that has demonstrated that Bayesian learning models can acquire a wide range
of aspects of natural language from language corpora, without needing to build language-specific prior
information. Later in this chapter, we review work that focuses on the acquisition of the key grammatical
patterns hypothesized by Chomsky and others as central to language, using probabilistic inference over
programs. This work uses adaptor grammars and similar approaches, which allow the possibility of
gradually constructing an increasingly complex grammar as more linguistic data is encountered, using
the principles of nonparametric Bayesian modeling introduced in Chapter 9). This approach is readily
compatible with item- or construction-based models of language that are currently prevalent in linguistics
and language acquisition research. We also consider how Bayesian learning over symbolic structures
relates to the astonishingly high-levels of performance in principle natural language tasks by very large
deep neural networks trained on vast linguistic corpora. Nonetheless, we argue that such large language
models do not yet provide a plausible cognitive model of human language processing, for a number of
reasons, including the lack of a natural interface with meaning and pragmatic use of language (Chater,
2023).2

16.1 Language Processing

According to conventional approaches in linguistics and psycholinguistics, language is governed by many
layers of representations, which can be ordered in increasing levels of abstraction (see Figure 16.1). When
interpreting speech, for example, we might begin with an acoustic representation of the input arriving
at the ear (which might be something akin to a Fourier analysis, picking out the spectral power at each
frequency). The acoustic input arriving at the ear will, of course, contain not merely the speech we are
attempting to understand, but background noises of all kind—ranging from the chatter of other speakers,
to background music and the rumble of traffic. One immediate challenge is, then, to split out the acoustic
signal associated with speech. Another challenge is to infer the phonemes in the signal (irrespective of the
enormous variations between accents, individual speakers, acoustic environments (down a phone line, in
an echoey swimming pool, etc), patterns of intonation and many more variations). Then there is the task
of inferring how the stream of phonemes splits into words (and morphemes, such as verb endings, case
markings and so on), and how these words cohere to convey meaningful phrases and sentences and more
abstract of levels of meaning concerning how what is being said fits into the rest of the conversation, or
how it relates to current perceptual input or to background knowledge. Each of these steps is formidably
challenging and potentially interdependent (so that information about meaning may, for example, help
us decode noisy or corrupted speech Mattys, Davis, Bradlow, & Scott, 2012).

In view of our focus on probabilistic models of structured representations, we focus here on language
interpretation at or above the level of the word. Language scientists typically assume the patterns in

1One natural a priori bias is in favor of simpler grammars, as we will discuss further in the final substantive chapter of
this book

2Nonetheless, Contreras Kallens, Kristensen-McLachlan, and Christiansen (2023) convincingly argues that the spectacu-
lar success of large language models does severely undermine the credibility of in-principle arguments that language learning
is impossible without substantial innate grammatical knowledge.
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Figure 16.1: Computing levels of linguistic representation in real-time language understanding and pro-
duction. In language understanding, the brain is assumed to begin with acoustic representations and to
successively compute more abstract and temporally extended representations (from phonemes, to words,
all the way up to representations of the entire discourse—theorists differ concerning the number and
nature of the specific representations). In language production, the process is reversed, beginning with
abstract representations of meaning and generating an acoustic signal. Yet the computational mecha-
nisms underpinning understanding and production may be tightly coupled (Pickering & Garrod, 2013):
when we are listening to speech, we are engaging in top-down processing to (re-)construct what a person
is saying to us in real time. This “analysis-by-synthesis” perspective on the perception of speech is natu-
rally aligned with the Bayesian approach to interpreting sensory input more broadly (Yuille & Kersten,
2006). Figure redrawn and adapted from Christiansen and Chater (2016b).

language above the level of the word (or more strictly, the morpheme, to include meaningful sound units,
such as tenses and cases) is internally represented as a grammar: that is, a system of symbolic rules
that can generate the sentences in a language, and which provide an analysis of sentence structure which
provides a framework for semantic analysis (i.e., the analysis of the meaning of a sentence).

16.1.1 The challenge of ambiguity

The process of grammatical analysis is fraught with difficulties. One set of problems concerns the spectac-
ular ambiguity of individual words. You most likely interpreted the word set, in the last sentence without
pause or difficulty. But, taken in isolation, it has at least thirteen different possible meanings assuming
set is functioning as a noun, and even more verb and adjective meanings, according to a psycholinguistic
database of meanings like WordNet (Miller, 1995). We have the set lived in by a badger, a set of tennis,
we get set, read set texts, we can set our heart on something, set off on a journey, wonder whether our ice
has set, be set up, and many, many more—where the same word has many syntactic functions, as well as
different meanings. This lexical syntactic and semantic ambiguity likely helps to make language efficient
by allowing us to leave out information which is redundant with the context (Piantadosi, Tily, & Gibson,
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2012) but in turn it makes language processing and understanding more complex because comprehenders
need to sort out which meaning was intended. If we created distinct words for every possible meaning of
set, for example, these words would necessarily be, on average, longer and more complex—there are, after
all, only a limited number of short words to go around. But the same point applies to resolving ambiguity
in any way—it takes extra linguistic material to remove ambiguity, which slows down communication.
The cognitive system must find a balance between using snappy but highly ambiguous language, which
needs to be disambiguated by inferences from context, and less ambiguous but more ponderous language.
It turns out that the humans prefer a surprisingly high level of ambiguity, with which our brain copes
remarkably well.

The challenges increase when we turn to syntactic ambiguity, where a single sequence of words can
have multiple possible sentence structures, and often these alternative structures have distinct meanings.
For example, “I tripped the clown with the skateboard” could mean that I used the skateboard to trip
the clown, or could mean that the clown had the skateboard.

Psycholinguists—who use primarily experimental methods to study how the brain represents and
processes language—have studied even more diabolical examples, such as garden path sentences. To
choose a famous example from (Bever, 1970), consider the sentence fragment The horse raced.... This
is naturally (and, one might think, inevitably) viewed as a sentence in which the horse as the subject
of the verb raced ; but if the sentence turns out to be the horse raced past the barn fell, this assumption
is revealed to be incorrect, and the language processor will be confounded. To understand the sentence,
we have to reanalyze the beginning and resolve the ambiguity of The horse raced... another way. The
only way to make sense of the structure of this sentence is to see it as a contraction of the horse (that
was raced past the barn) fell—a structure analogous to The picture painted by the artist fell. The horse
turns out not to be the subject of the verb raced after all, but of the verb fell—and we are picking out
the particular horse that was raced past the barn, by person or persons unknown. This example shows
that even a simple string of three words the horse raced. . . can turn out to be unexpectedly locally
syntactically ambiguous—until we see the rest of the sentence, the language process often cannot know
for sure that it has the right structure.

The language processor does, though, tend to jump to conclusions. Indeed, it turns out that the
brain typically uses all the information it can to resolve syntactic, and other, ambiguities as quickly as
possible. But this approach to ambiguity resolution will sometimes lead to trouble if the brain’s first
guess is incorrect. Thus, once the language processor has jumped to the conclusion that the horse is the
subject of the past tense verb raced, the arrival of the next word fell leads the language processing system
run aground: a recalculation is required.

This type of garden path phenomenon is no mere curiosity. Indeed, one of the remarkable discoveries
of symbolic computational linguistics has been that lexical ambiguity, and local syntactic ambiguity, is
everywhere—so that the space of possible ‘readings’ of the parts of a sentence that the brain has to
choose between typically grows exponentially with sentence length. It is easy to imagine we can dismiss
such phenomena by the riposte that in context and with the right intonation (if the sentence is spoken,
not written), it will almost always be “obvious” which structure is the right one. This is quite right
(Piantadosi et al., 2012; Miller, 1951)—but it raises the scientific questions targeted by linguistics and
psycholinguistics of how the language processing system is able to succeed in using context to resolve
such ambiguities, and to do so in real time.

One simple strategy is for the language processor to have a bias in favor of common syntactic strutures.
And indeed, people have been shown to use cues like the baseline frequency of different readings in order
to make the best guess about the appropriate structure. But lots of other factors matter too, such as the
specific words involved, prior context, stress, intonation, and many more. The integration of different
types of probabilistic cues to provide the best overall interpretation is precisely where a probabilistic
approach to inference is especially helpful. Jurafsky (1996) outlines a pioneering model of how to frame
and solve this type of problem in probabilistic terms, accounting for a wide range of psycholinguistic
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phenomena (see also Jurafsky, 2003).3 This model ranks possible ambiguous meanings and syntactic
constructions by their conditional probability, pruning “low-ranked” options using a popular heuristic
breadth-first search algorithm called beam-search. The pruning of unpromising interpretations in parsing
explains why, for example, the reading of the horse raced past the barn as meaning the horse that had
been raced by the barn has been rejected as highly unlikely, before the arrival of fell. So when fell is
encountered, the language processor becomes stuck, and finds it difficult to recover to make sense of the
sentence.

16.1.2 Probabilistic parsing

Let’s look at the problem of assigning syntactic structures to sentences—the problem known as “parsing”—
more formally from a probabilistic point of view. Probabilistic parsing involves estimating the probability
of different parse trees t (or whatever grammatical formalism we favor, which might take the form of de-
pendency diagrams, or attribute value matrices, among many others), given a sequence of words s.4

Suppose we have a probabilistic model Pm of the language. Then, using the normal Bayesian formula,
we have:

Pm(t|s) = Pm(s|t)Pm(t)∑
t′ Pm(s|t′)Pm(t′)

(16.1)

So we need a prior Pm(t) over tree structures t; and a way of working out the conditional probability
Pm(s|t) of a sentence s, conditional on a particular t. But, to work out the denominator, we face the usual
problem of summing over a potentially very large set of possible trees—which can be computationally
costly.

The prior Pm(t) can, perhaps most naturally, be determined by the complexity of the parse tree.5

Specifically, if the shortest code that could express the parse tree is length(t), then one natural prior
is proportional to 2−length(t). But the task of finding the shortest possible code for a parse tree (or
almost any other representation) will not in general be computable—the space of possible codes is too
difficult to search. But a crude heuristic is to use instead the length of the parse tree when expressed a
standard form, and a simple coding language (or even more crudely, simply to count the number of, e.g.,
grammatical rules invoked). The more crucial question concerns working out the conditional probability
of the sentence given the tree. If the language model has a simple form, such as a stochastic phrase
structure grammar, then this may be fairly straightforward.

Figure 16.2a shows a simple grammar fragment, with phrase structure rules and rules for converting
syntactic categories into specific words. Each of these rules can be associated with a probability. So,
for example, generating any sentence begins with an S symbol which in this simple grammar generates
NP VP with probability 1. The NP then generates either V NP with probability .75 or a V NP PP
(i.e., adding a prepositional phrase) with probability .25. A crucial simplifying assumption here is that
the rules operate independently—each NP has the same probability of converting into an NP VP or a
V NP PP structure, for example, whatever its role in the rest of the sentence. The process of applying
rules continues until we have a string of words, e.g., the girl saw the boy with the telescope. This whole
process provides a generative probabilistic model Pm for syntactic structures and thereby over strings of
words (the parse tree t specifies a string of words s, so that Pm(s|t) = 1). Thus, the probability Pm(t, s)
of a particular string of words s with a parse tree t is simply the product of the probabilities of the
different rules in the parse tree. Then the total probability of a string of words, Pm(s), is just the sum

3Many influential early psycholinguistic models deliberately ignored probabilistic cues and focus instead on attempting
to prune syntactic ambiguities based on principles based on syntactic structure alone, with principles such as “minimal
attachment” and “late closure” (e.g., Frazier & Fodor, 1978). This perspective was partly driven by the idea that syntactic
processes in language should be independent of other linguistic levels (e.g., Fodor & Garrett, 1974).

4We’ll abstract away from details of the speech input henceforth, and consider s to be a string a words—but this is an
oversimplification. Intonation, in particular, provides useful guidance about the syntactic structure of a sentence.

5We will return to these issue in Chapter 20, on algorithmic probability and related ideas
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of these probabilities for the different trees, t′ that yield that string of words:
∑

t′ Pm(t′, s) (this is just
a rearrangement of the denominator in the Bayesian equation above).

Figure 16.2b-c illustrate how two different syntactic trees can generate the same string of words—
generating a syntactic (and here also semantic) ambiguity. The structures differ regarding whether with
the telescope is a prepositional phrase modifying how the action of seeing was achieved: the girl [saw ]
[the boy ] [with the telescope] or whether this phrase picks out a particular boy who was seen the girl [saw ]
[the boy with the telescope].

When faced with a string of words which is ambiguous, the usual Bayesian procedure will prefer the
parse tree with the highest probability. For example, if Bayesian inference is approximated by sampling,
it may be biased towards choosing high-probability trees, in proporition to their probability. As can
be seen in Figure 16.2, these preferences can sometimes be determined locally, by considering only the
relevant parts of the parse tree that differ. From a probabilistic viewpoint, which structure is preferred
depends on the specific probabilities in play, in contrast with previous structural models of parsing where
the shape of syntactic tree is decisive. Experiments have indicated that parsing preferences do seem to
follow probabilistic, rather than a purely structural, principles across a number of languages (Levy, 2008;
Desmet & Gibson, 2003; Desmet, De Baecke, Drieghe, Brysbaert, & Vonk, 2006).

Note, though, that capturing such psychological data requires a much richer probabilistic model
than specified here, in which the resolution of syntactic ambiguities can be influenced by specific lexical
items, and the hearer’s recent experience and general background knowledge (Traxler, 2014). Thus, for
example, if the hearer is listening to a report of evidence that boys have been stealing equipment from
the observatory then the much more likely interpretation is that the boy, not the girl, has the telescope.
Similarly, the parallel sentence the girl saw the boy with the microscope, while equally syntactically
ambiguous, will not typically be interpreted as imply the girl is looking through the microscope; on the
other hand, as part of a story in which some children have been magically shrunken to a minuscule
size, then this interpretation will suddenly become more probable. This last example illustrates that
the probabilistic approach to language focuses on the probability that particular strings of words will be
said (and the underlying meanings and syntactic structures that might underlie people’s generation of
these strings), not the probability that these sentences are true. After all, the language processor has no
difficulty understanding fairy tales, by assuming that each new sentence is a plausible continuation of the
story, even though the probability of the events being true may be close to zero.

To calculate what is a plausible sentence in a particular communicative context, and given a complex
and noisy speech input, can depend, in principle, on information of any and every sort—what is plausible
depends on the speech signal itself, the immediate environment, prior linguistic context, the hearer’s
model of the mind of the other person, their general knowledge about the world (and hence, indirectly,
what it is reasonable to say about that world) and so on.

This full complexity is surely too great to be mentally represented in a probabilistic model of the
language; and, in any case, even moderately complex probabilistic models are too complex for exact cal-
culation, as problem exacerbated by the time-pressure under which language processing operates. And,
indeed, the language processor does often settle for what seem to be “good enough” parses, using incom-
plete probabilistic analysis, although these analyses may turn out to be incorrect. Thus, for example,
people typically, but wrongly, interpret while Anna dressed the baby spit up on the bed as implying that
Anna dressed the baby (Christianson, Hollingworth, Halliwell, & Ferreira, 2001; Ferreira, Christianson,
& Hollingworth, 2001). Indeed, people’s interpretations of anomalous sentences can be well-explained by
Bayesian decoding that takes into account both plausibility, as well as the probability of different kinds
of mistakes or mis-hearings in the sequence of words (Gibson, Bergen, & Piantadosi, 2013).

The calculations in Figure 16.2 may suggest that the language processor considers the probability of
different readings of a sentence its entirety—but this would require waiting for the end of the sentence
before a probabilistic analysis. This would make communication painfully slow; but more importantly,
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(a) S → NP VP (1) V → saw (.8) N → cat (.1)
VP → V NP (.75) V → prodded (.2) Det → the (1)
VP → V NP PP (.25) N → telescope (.2) P → with (1)
NP → Det N (.7) N → stick (.3)
NP → NP PP (.3) N → girl (.3)
PP → P NP (1) N → boy (.1)

(b)

 
 
 

S:1 

NP:.7 VP:.25 

P:1 

N:.3(
.30 

Det:1 

the girl 
V:.8 

saw 

with 

NP:.7 

N:.1 Det:1 

the boy 

PP:1 

NP:.7 

N:.2 Det:1 

the telescope 

VP:.25 

V NP PP 

Pr(tree) = 1 x .7 x 1 x .3 x .25 x .8 x .7 x 1 x .1 x 1 
x 1 x .7 x 1 x .2 ≈ 0.00041 

Pr = .25 

(c)

 
 
 

S:1 

NP:.7 VP:.75 

P(1) 

N:.3 Det:.1 

the girl 
V:.8 

saw 

with 

NP:.7 

N:.1 Det:1 

the boy 

PP(1) 

NP:.7 

N:.2 Det:1 

the telescope 

NP:.3 

Pr(tree) = 1 x .7 x 1 x .3 x .75 x .8 x .3 x .7 x 1 x .1 x 
1 x 1 x .7 x 1 x .2 ≈ .00037 

PP 

VP:.75 

V 

NP 

NP:.3 

Pr =.75x.3=.21 

Figure 16.2: Ambiguity and phrase structure. (a) A fragment of a stochastic context-free phrase structure
grammar, which can generate a simple sentence in two ways (b), (c). A Bayesian parser should prefer
trees with higher probability. Focusing on the conditional probability of the sentence, given the tree, note
that the two options (b) and (c) differ only regarding whether the prepositional phrase with a telescope
attaches to the verb (modifying how the seeing is done) or the object noun phrase the boy (i.e., it is
the boy with the telescope who is seen). The parts of the tree that differ are highlighted to the right.
Here, the flatter tree structure invokes one less grammatical rule and assigns the word string a higher
conditional probability, and hence should be preferred. Figure adapted from Chater and Manning (2006).

would run into fundamental limitations of human memory, which requires linguistic information to be
chunked and recoded as soon as it is received, because otherwise it will immediately be overwritten by
the onrushing torrent of speech (Christiansen & Chater, 2016b). So the language processor has to make
probabilistic guesses in-the-moment, in the light of whatever information is available; and, as fresh words
arrive, these guesses will sometimes prove to be incorrect (as we saw with the horse raced past the barn
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fell above).

From this point of view, we can think of language processing as requiring continual anticipation of
what is likely to come next, suggesting a tight coupling between language understanding and language
production (Pickering & Garrod, 2013). This viewpoint captures the fact that we are often able to
finish off one another’s sentences, and that turn-taking handovers in fluent dialogue are astonishingly
fast, implying that we often know what people will say before they have finished saying it, and are
preparing our reply (Levinson, 2016). Moreover, a wide range of psycholinguist experiments and models
have indicated a powerful role for predictive processes (Levy, 2008; Lowder, Choi, Ferreira, & Henderson,
2018). Indeed, it is natural to think of language understanding as analogous to word-by-word language
production. This viewpoint fits, of course, with the broader analysis-by-synthesis perspective on language
understanding, mentioned earlier, and aligns accounts of language processing with Bayesian accounts of
perception (Yuille & Kersten, 2006).

16.1.3 Rational speech acts: Inferring what people are doing with language

Language processing must, of course, go beyond the analysis of individual lexical items, and syntactic
and semantic structure, to work out what message the speaker is attempting to convey—and, again,
to do this in real-time. This “pragmatic” interpretation of linguistic utterances is extremely complex
and will involve knowledge of language, social conventions, the nature of the conversational interaction,
and arbitrary background knowledge about the world. While a full discussion is far beyond our scope
here, note that one approach is to view the problem of pragmatic inference as one of inferring people’s
intentions from what they say, just as we attempt to infer people’s actions from what they do: using an
inverse planning approach, that we discussed in the previous chapter. The idea is that in communication
both parties assume that communicative signals are chosen to convey the meaning of interest as efficiently
as possible. So, when a person says some of my fish are black we tend to infer that they aren’t all black—
because otherwise, the person could communicated more precisely (and at no extra communicative cost)
that all my fish are black. Equally, if we see an escaped cow running down the street, we remark look
at that! without having to give any further details, because it is clear that the escaped cow is the
most unexpected aspect of the scene (indeed, saying look at the escaped cow running down the street! )
would seem bizarrely prolix. But if you happened to want to draw attention to some other aspect of
the scene, you would clearly have to be much more precise. The pragmatic principles underlying these
types of inference can be formulated in Bayesian terms, in the rational speech act framework(Frank &
Goodman, 2012; Goodman & Frank, 2016; Goodman & Stuhlmüller, 2013).

The rational speech act approach assumes that both speaker and hearer have common knowledge of
literal meanings of their linguistic terms.6 In particular, we can begin the analysis with the notion of a
literal listener, who is presumed to use possible utterances from a speaker, combined with background
knowledge, to make inferences about the state of the world. The literal listener, by virtue of being literal,
makes no assumptions about the speaker being, for example, as helpful or informative as possible. But,
in reality, of course, the speaker will choose messages in a thoughtful way. Thus, an utterance such as I
have a dog means, to the literal listener, that the speaker has at least one dog. But in most contexts, if
the speaker had two dogs, it would be more informative and helpful to say I have two dogs–this would
provide the literal listener with more precise information. More generally, the speaker is assumed to
choose what to say in order to maximize some utility function.7 Knowing that the speaker will do this,
the real listener (rather than the hypothetical literal listener) will assume that if the speaker had more

6The very idea of literal meanings is somewhat controversial in philosophy and the language sciences. Some theorists, for
example, argue that context-specific meanings are primary, and abstract literal meaning that applies across contexts is at
best a useful approximation (see, e.g., Christiansen & Chater, 2022). But even so, assuming literal meanings may provide
a useful assumption.

7The speaker is assumed to choose probabilistically, use a soft-max function, rather than deterministically choosing to
maximizing utility—otherwise the probabilities in the calculations all become jammed at 0 or 1.
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than one dog, she would probably have said so; and hence that it is likely, though not certain, that the
speaker has exactly one dog. This pattern of reasoning is not specific to language or communication—the
listener is inverting a model of the speaker’s actions, to infer the speaker’s intentions. Now we can take
a further step: knowing that the listener will make such inferences, the speaker can deliberately choose
what she says, by inverting the model of the (non-literal) listeners inferences. So, for example, the speaker
might not choose to say I have one dog precisely because the speakers knows that the more informal and
slightly easier-to-say a dog will be interpreted as implying a single dog in any case. Thus, the listener
is inverting the speaker’s model, which will itself involve inverting the model of the literal listener. In
principle, this hierarchy might continue further, though many iterations may be both unnecessary and
cognitively infeasible.

The rational speech act approach has been applied to capturing a variety of what are known as
conversational implicatures of language–i.e., inferences that go beyond the literal meaning of what is said
in highly predictable ways (Grice, 1975). Thus, following the logic described above, the approach can
explain why some of the people enjoyed the party seems to preclude the speaker knowing that all of the
people enjoyed the party (or the speaker would have chosen to provide this more informative message).
Related, though distinct, reasoning can help explain other non-literal uses of language, such as hyperbole,
as when a person describes the weather as boiling or objects that there are millions of reasons why a
project won’t work (Kao, Wu, Bergen, & Goodman, 2014); or why unusual ways of expressing a meaning
tend to suggest that this meaning applies in some unusual way, so that Maria has the ability to finish the
homework seems to have very different import than the plain Maria can finish the homework (Bergen,
Levy, & Goodman, 2016). The model captures the following line of reasoning: if there is nothing unusual
about the situation being described, then the simplest way of expressing it would have been chosen. But
it wasn’t—so the speaker will intend, and the hearer infer, that the case is not usual. Mostly like, of
course, the unusual aspect of the claim is that while John has the ability to finish his homework later,
the usual implication that he is likely to do so is blocked.

There are, of course, other unusual situations that might be relevant instead. For example, suppose
that the homework consists of a very hard set of math problems, and Maria is the class’s star math
student. So one teacher might remark to the another: “Maria has the ability to finish the homework, but
none of the other students have the slightest chance.” Here the can is avoided to stress Maria’s specific
aptitude for math. The open-ended nature of pragmatic reasoning, and its dependence on background
knowledge of all kinds, makes it challenging to model. It also, of course, suggests that such inference will
need to be seen as continuous with commonsense reasoning about the physical and social worlds, which
we have argued should be formulated in Bayesian terms in this book.

We have so far assumed the existence of a literal listener as a “base case” from which successive
layers of recursive inference can arise. If this assumption is removed, then the above Bayesian reasoning
strategy based on inverse planning runs the risk of circularity. Indeed, this type of case arises when
people use communicative signals that have no conventional meaning (whether or not those conventions
are linguistic, or concern, say, facial expressions or gestures). For example, suppose that a professor
ostentatiously uses a rival’s book to stabilize a wobbly table (where other books and papers would work
equally well; and perhaps the wobbly table is not a problem in any case). This action may be intended,
and interpreted, as expressing contempt for the book (or perhaps even its author)—and might successfully
convey this dismaying message to the audience present (particularly if they know about the rivalry). All
may agree that such an action conveys a sense that the book is most useful as a physical object, rather
than deserving to be read. But there is, of course, no such prior convention (and, of course, no literal
meaning). The general problem of inferring meanings from signals in cases like this raises new and perhaps
unexpected challenges. As Clark (1996) points out, communication is a joint activity—the parties have
to have common understanding of what signals convey which messages.8 And finding this understanding

8For experiments illustrating the sophistication of human joint reasoning with simple communicative set-ups (see, e.g.,
Galantucci, 2005; Misyak, Noguchi, & Chater, 2016).
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requires that each can align with the mind of the other. Thus, a traditional Bayesian mind-reading
approach to this problem can appear to lead to regress (Chater, Zeitoun, & Melkonyan, 2022). The
receiver tries to guess what the sender intends the signal to convey. But in choosing her signal, the
sender should therefore try to second-guess what the receiver will infer (so that she infers whatever the
sender intended). But now the receiver has to “third-guess” what that second-guess might be, and so on,
indefinitely. Following Clark (1996), one way to proceed is to assume that both parties should aim not to
read-the-minds of the other, but rather to jointly infer the most appropriate signal-meaning mappings,
based on their common ground (Chater & Misyak, 2021). This type of problem is particularly pressing,
if we suspect that viewing communication as involving joint action and joint reasoning applies even to
linguistic communication, perhaps because of a doubts that literal meaning is well-defined (Clark, 1996;
Christiansen & Chater, 2022). Capturing this type of reasoning in a Bayesian framework is an interesting
challenge for future research (for related work, see Stacy et al., 2021; Wang et al., 2021)).

16.2 Language acquisition

Children’s astonishing learning abilities are nowhere better exemplified than in language: in just a few
years babies transform themselves from helpless, nonverbal blobs to linguistic whizzes with a vast vocab-
ulary, mastery of complex abstract syntax, and even the ability to indulge in wordplay and sarcasm. How
do they do this? This is a vast question, impossible to do justice in one small part of one small chapter.
Here we address three topics in language acquisition (learning how to recognize phonemes, how to seg-
ment speech into words, and learning grammar), providing a quick glimpse at how Bayesian approaches
have been useful for shedding light on enduring questions within these areas.9 The goal is to highlight
the scientific insight that can result from the ability of Bayesian models to clarify what can be learned
and from what input and (most importantly) why.

16.2.1 Phoneme learning

Phoneme learning refers to the process of acquiring the speech sounds specific to the language one
speaks. One of the most interesting issues in this area is the perceptual magnet effect, which occurs
after successful learning: discriminability between vowels is reduced near prototypical vowel sounds (this
phenomenon is also discussed in Chapter 4). The pattern underlying this shrunken perceptual space is
marked by decreased distance between items within a phonetic category and increased distance between
items across categories: as an example, all /i/ exemplars sound more similar than their raw acoustic
representations suggest, while /a/ and /i/ exemplars sound more dissimilar.

The perceptual magnet effect has been thoroughly empirically studied. For a long time most com-
putational models either implicitly assumed that it was a categorisation effect parallel to categorical
perception (Iverson & Kuhl, 1995) or focused on purely process-level accounts of how the effect might
be implemented (Vallabha & McClelland, 2007). But key questions remained unanswered: W hy should
prototypes exert a pull on nearby speech sounds? And why should a learner shrink phonetic space in
particular directions as they learn phonetic categories? Feldman, Griffiths, and Morgan (2009) presented
a Bayesian analysis that answered these questions by approaching speech perception as a problem of
Bayesian statistical inference. They asked to what extent learners perform this task optimally given cer-
tain assumptions about their hypotheses, likelihoods, and priors. The model assumes that vowel sounds
are generated from phonetic categories by sampling them from a target and adding noise; the learner must
then work backwards from the exemplars of sounds they hear to infer the nature of the most probable
target production. The model predicts that with experience, learners will realise that sounds near the

9One obvious omission here is learning the means of individual words, which we omit because many of the relevant issues
are discussed in Chapters 3 and 8.
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centre of categories are more frequent; they will then compensate for the noisy speech signal by biasing
perception to the centre of the category. The model captures this intuition mathematically and also
explains a range of empirical effects while making predictions about others. For instance, it predicts that
category variance and degree of noise in the environment should affect the strength of the perceptual
magnet. For more details on the model, see Chapter 4.

Extensions of this approach maintain the idea of speech perception as optimal statistical inference,
and use Bayesian models to investigate how additional knowledge or assumptions can help. They indicate
that categorical perception of consonants can indeed be accounted for within the same framework
by assigning consonants less variability (compared with the variation due to noise) than vowels (Kronrod,
Coppess, & Feldman, 2016). Other work indicates that learning to segment words at the same time as
phonetic category learning can make both tasks more tractable, since word-level information is useful
for disambiguating English vowel categories (Feldman, Goldwater, Griffiths, & Morgan, 2013). This may
help to explain how tasks that individually might seem too difficult for an infant can jointly constrain and
simplify each other (rather as the interweaving of answers in a crossword makes solving the individual
clues easier, rather than more, difficult, as the answers mutually constrain each other).

Other work, similar in approach, can help clarify at what level the perceptual reorganisation underlying
the perceptual magnet effect occurs (Kuhl, 2004). Are people more sensitive to overall d imensions
that encompass many potential phonetic contrasts, like general voice-onset time distinction applied to
many phonemes? Or do they become differentially sensitive only to specific contrasts, like the /b/-/p/
distinction? Results suggest that perceptual reorganisation involves making inferences about general
dimensions, and that this constitutes a kind of hierarchical learning of the sort captured by a hierarchical
Bayesian model of the kind discussed in detail in Chapter 8 (Pajak & Levy, 2014). One consequence
of this is that second-language sound categories may be filtered through the prior learning shaped by
a person’s native-language phonetic inventory (e.g., Strange, 2011). This might, of course, lead to a
systematic distortion of the phonetic categories in the second language, as is evident in the distinctive
“accents” of second language speakers with different first languages.

Still other work has adapted this approach to the question of how speakers adapt to the phonetic
variability in the world. Within a language, dialects vary systematically; and even within a speech com-
munity, individual speakers vary markedly from each other, such that one person’s /b/ might sound like
another person’s /v/. Kleinschmidt and Jaeger (2015) developed a Bayesian model that views adapta-
tion and learning as parts of the same process – inferring the correct generative model for the current
speaker – but operating over different time scales. This model accounts for phenomena as disparate as
perceptual recalibration, selective adaptation, and generalization across groups of speakers. It has also
been extended to capture aspects of patterns by which phonology changes over successive generations of
language users, whereby the phonetic cues that are more likely to be reduced over time are those that
carry less information (Hall, Hume, Jaeger, & Wedel, 2018).

16.2.2 Word segmentation

The problem of word segmentation is the problem of identifying a lexicon by segmenting words out
of continuous streams of speech of the sort that learners hear. There has been a long-tradition of
research exploring the possibility that people solve this issue, at least in part, by learning the transitional
probabilities (TPs) between phonemes or syllables. Specifically, it is assumed that low TPs are an
indication of a word boundary (Saffran, Aslin, & Newport, 1996). Learning based on TPs is well-studied
experimentally, but this work has mostly been limited to exploring how well people use TPs, sometimes in
combination with other information, to segment artificial languages. These artificial languages are often
learned in less than an hour. By contrast, modelling is valuable for exploring how different assumptions,
and the utility of different kinds of information, scales with extremely large amounts of data – an amount
comparable to what people hear over multiple years of life.
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Consider one of the most influential Bayesian models of word segmentation (Goldwater, Griffiths,
& Johnson, 2009), built on an earlier model developed by Brent (1999). This model, given continuous
speech input, was able to infer a vocabulary whose size did not need to be pre-specified (thanks to a
prior that assigned a positive probability to all vocabulary sizes, though with a strong bias towards
small vocabularies, based on the ideas from nonparametric Bayesian statistics introduced in Chapter 9),
and was originally used to explore the impact of different assumptions learners might make about how
words are generated. One question was whether words are presumed to be generated independently,
or are thought to be predictive of other words in the sentence. The model showed that assuming that
each word is independent from all others means that under-segmentation errors are more likely (e.g.,
thinking thedoggie is one word rather than two), while assuming that each word constrains its neighbors
reduces such errors considerably. Intuitively, this follows because the model can allow that the frequent
co-occurrence of the and doggie can be explained as a result of a statistical connection between these
words, rather than the assumption that they must form a single word—the independence model only has
the latter option.

Frank, Goldwater, Griffiths, and Tenenbaum (2010) compared a variety of segmentation models and
found that a Bayesian model was better able to capture human performance on an artificial segmentation
task with varying word and sentence lengths, exposure times, and total vocabulary size than simpler
models. Interestingly, however, all models did poorly unless they were modified to take human memory
limitations into account. Other related models have been used to explore different ways to implement and
test such limitations (Borschinger & Johnson, 2011; Phillips & Pearl, 2015). Still other questions have
been addressed with Bayesian models of word segmentation. One is how (and whether) different kinds
of information besides TPs are useful in helping learn with learning word segmentation – information
such as stress, phonotactics, or referential information (Doyle & Levy, 2013; Borschinger & Johnson,
2014). These models have also been used as a basis for explanation or comparison while investigating
how segmentation performance is affected by the distribution of words (Kurumada, Meylan, & Frank,
2013) or the size of the input (Borschinger, Demuth, & Johnson, 2012). Overall, while it is possible to
defined moderately successful algorithms of segmentation by looking directly at TPs, viewing the problem
of segmentation in the framework of Bayesian inference allows a range of productive extensions to be
defined and explored.

16.2.3 Abstract linguistic structure

One of the most important topics in linguistics is the abstract structure of language, including questions
about morphology (roughly, the system which composes the form and meaning of a word from its part,
including markers for tense, case, or plurals and of course word-stems themselves) and syntax (roughly,
the principles that determines allowable arrangements of words and morphemes to compose phrases and
whole sentences). Developing full Bayesian models for learning these patterns is difficult because the
space of possible patterns is very large. Nonetheless, such models have proven useful for investigating the
learning of specific aspects of linguistic structure, or casting new light on the apparently severe problems
inherent in learning abstract linguistic patterns from partial and noisy linguistic data.

Consider the no-negative-evidence problem (Baker, 1979), which centres around the issue of how
language learners can make correctly pick up on the right linguistic generalizations (when the are often
so many possibilities) in the absence of evidence about which ones are incorrect. Thus, the child hears
positive examples of what can be said (e.g., by hearing the speakers around her)–but does not seem to have
access to negative examples of what cannot be said. This problem arises, for example, in the problem of
learning verb-argument constructions. Such constructions correspond to the set of possible arguments
each verb can take, and are highly specific to individual verbs. Crucially, they vary considerably and are
hard to predict based on underlying features like phonology or meaning. In English a verb like give can
occur in two constructions, one taking a direct object dative (as in “he gave her the package”) and one
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indicating the recipient using a prepositional phrase (as in “he gave the package to her”). Other verbs, like
donate, occur on only one of those constructions: in most dialects it is ungrammatical to say “he donated
her the package.” This is particularly puzzling, given that the meaning of give and donate are otherwise
extremely similar. The puzzle is that the child doesn’t make the apparently reasonable assumption that
“he donated her the package” is likely to be acceptable. Of course, she never hears it—but then again
this will be true of an almost limitless number of perfectly viable sentences. One might suspect that part
of the story is that child might get negative feedback from care-givers, either through direct correction
or indirectly through incomprehension. But many language acquisition researchers, following (Brown &
Hanlon, 1970) have assumed that such feedback is rarely available and/or not sufficient even when it is
provided (although see Chouinard & Clark, 2003; Hirsh-Pasek, Treiman, & Schneiderman, 1984).

In any case, let us suppose that negative evidence is at least not required for successful language
acquistion. Without such evidence, how might a learner figure out which constructions go with which
verbs without being told when she incorrectly overgeneralizes? Bayesian modeling suggests an answer,
at least in principle. Just as hypotheses in any domain that more tightly predict the data should be
preferred, so too should a learner (given enough data) be able to learn that some verbs take different
constructions than others. Indeed, take the parallel with science: all we can ever observe are things that
can occur. But we develop principles (including, for example, the conservation of energy, or the second
law of thermodynamics) which powerful precisely because they specific what can’t occur (e.g., no energy
mysteriously coming into being out of nowhere; no spontaneous heat flow from cool bodies to hot bodies,
and so on). So we can’t decisively rule out the possibilities that these principles don’t hold, and perhaps
merely appear to hold by coincidence so that we might expect to see violations at any moment. But, for
the Bayesian, the coincidence story is not impossible, just spectacularly unlikely. This general perspective
is part of the motivation for the Bayesian approaches in the philosophy of science, (e.g., Earman, 1992;
Horwich, 1982). Can it work in the more confined domain of learning verb argument structure and other
puzzling aspects of language learning?

This approach is embodied by multiple specific computational models that differ dramatically in
their representational assumptions, ranging from language-specific and intricate (Alishahi & Stevenson,
2008) to domain-general (Hsu & Griffiths, 2009; Perfors, Tenenbaum, & Wonnacott, 2010). Overall,
such models demonstrate that it is the abstract behaviour of the probabilistic reasoning instantiated
within the likelihood that drives the effect, while a prior preference for simplicity prevents overfitting.10

Bayesian models have also been applied to extensions of the purely syntactic problem of learning verb
constructions, such as the question of how the learner links the syntactic argument positions of a verb
with the thematic roles specified by its semantics (Pearl & Sprouse, 2019).

The tradeoff between likelihood (which favours models that tightly fit the input data) and prior (which
favours simpler models with shorter representations) is evident in many Bayesian models of morphology
and grammar learning. Work by Perfors, Tenenbaum, and Regier (2011) demonstrates that a Bayesian
learner given typical child-directed input can infer that grammars with hierarchical phrase structure
provide a better representation for that data than grammars without it. This emerges out of a general
prior favouring simplicity, since grammars with hierarchical phrase structure can capture typical English
input more parsimoniously while still fitting the data well. Other research shows that human learning of
artificial grammars can be captured by models that implement this kind of likelihood-prior tradeoff (Frank
& Tenenbaum, 2011), and that children’s early utterances can be captured by item-based grammars
(Bannard, Lieven, & Tomasello, 2009). Indeed, Bayesian models have been applied to many classic
learnability problems, from syntactic island effects (Pearl & Sprouse, 2013) to interpreting the anaphoric
one in English (Foraker, Regier, Khetarpal, Perfors, & Tenenbaum, 2009) to linking logical and syntactic
forms (Abend, Kwiatkowski, Smith, Goldwater, & Steedman, 2017). In some cases, it is use to the
question purely in terms of simplicity (we’ll explore the deep connection between Bayesian and simplicity-

10See also Chater et al. (2015) and Pearl (2021) for more general overviews of how Bayesian models can be applied to
syntactic questions in language acquisition.
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based ideas in Chapter 21). Specifically, where specific hypotheses about the abstract struture of language
are being compared, we can estimate whether the additional complexity in formulating the hypothesis
(e.g., specifying that give and donate have different argument structures) pays off providing a more
precise encoding of the observing linguistic data (i.e., a higher likelihood, and a shorter code), to provide
an overall shorter, simpler description (Hsu & Chater, 2010; Hsu, Chater, & Vitányi, 2011). These various
types of analysis shows that the amount of linguistic data that must be encountered by a language learner
(typically, a child) in order to overcome the problem of no negative evidence. Each case of the problem
can be dealt with a separate analysis—giving different verdicts for different linguistic phenomena. It
turns out, for example, that a few years of language input easily suffices to distinguish the arguments
structures for give and donate. Other aspects of language, such as Chomsky’s observation that, in many
dialects at least, there are linguistically subtle restrictions on when we can, and cannot, contract want to
to wanna in casual speech, seem to require infeasibly large amounts of data.11

Finally, as in other areas, Bayesian models of abstract linguistic structure have been useful in inves-
tigating to what extent synergies between different kinds of knowledge might lead to improved learning.
For instance, Johnson, Demuth, and Frank (2012) shows that a learner who acquires collocational struc-
ture (roughly which words go next to each other) at the same time as attempting to link words to their
referents and following social cues does better than a learner without these cues. This is because the
tasks mutually constrain each other, as in solving a crossword, so that a learner that is sensitive to all
can make more headway than a learner who tries to learn only one area at a time.

Many of the models that investigate the role of multiple sources of information use an approach
called the adaptor grammar framework (Johnson, Griffiths, & Goldwater, 2007). It posits multiple
layers of representation, some which capture the frequency of observed items (e.g., sentences, rules, or
constructions), others which capture which linguistic patterns are permissible. Such models have been
extended to incorporate contextual information (Synnaeve, Dautriche, Börschinger, Johnson, & Dupoux,
2014) and function word learning (Johnson et al., 2007) into models of word segmentation. Adaptor
grammars have also been applied to problems like native language identification (Wong, Dras, & Johnson,
2012) and discourse structure (Luong, Frank, & Johnson, 2013). A similar framework is called fragment
grammars (O’Donnell, 2015), which have been used to capture aspects of phonotactic learning (Futrelle,
Albright, & O’Donnell, 2013), sentence processing (Luong, O’Donnell, & Goodman, 2015), and argument
structure (Bergen, Gibson, & O’Donnell, 2013).

Overall, then, from the most basic of learning tasks to the most complex – from learning phoneme
categories to making abstract grammatical generalizations – it is evident that children accomplish a great
deal of linguistic learning in the first years of life. Bayesian models of language acquisition have been
especially useful in defining the terms of that learning: clarifying how the assumptions and capacities
of the learner lead to different outcomes. We now turn to another, still more abstract, aspect of the
challenge of learning a language, which has been highly influential in shaping nativist thinking about
language acquisition.

11So, for example, we can contract who do you want to take to the party to who do you wanna take to the party; but
it seems distinctly odd to contract who do you want to take Aishah to the party? with *who do you wannna take Aishah
to the party?, using the conventional linguists asterisk to denote ungrammaticality. A standard linguistic analysis focuses
on the restriction that there is a “hidden” gap want to in this case, where the name of a person, say, Sarah might be
inserted. And the restriction appears to be that contractions can’t occur across gaps. This type of constraint could arise
from innate aspects of language processing, or constraints required to construct the best model of the systematic patterns
across the rest of the language (i.e., just as we can figure out the answer to one crossword clue more easily by crosschecking
with the answers to other clues).
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16.3 Ascending the Chomsky hierarchy

One of the most important developments in the history of both linguistics and computer science was the
discovery the Chomsky hierarchy of formal languages. In this way of thinking, a formal language is
a technical term referring to a set of strings (Chomsky, 1957): for example, the set of strings {a, baa, aba}
is an example of a language; so is the set of English words containing the sequence ing ; so is the set of
all binary sequences that never contain 11 (e.g. {0, 1, 01, 00, 10, 001, . . .}); and so is the set of sequences
of words which are considered grammatical sentences in a natural language such as Tagalog, Swahili or
Basque. Any such set may be finite or infinite, but primarily sets are distinguished by the computational
resources that are required to generate or recognize them. This is why this area is considered to be
foundational not only in linguistics, but also in the theory of computation (Hopcroft, Motwani, & Ullman,
2001), which seeks to characterize what kinds of problems computers are able to solve using different
resources.

16.3.1 Finite and regular languages

Perhaps the simplest kinds of languages there are are finite languages. These are sets which contain a
finite number of elements and often are described just through listing the elements. The set of English
words containing ing is one such example because there are a finite number of English words, so that
there can only be finitely many containing ing. What is interesting, and perhaps not obvious at first,
though, is that we are able to define infinite sets of strings by using finite resources. Regular languages
(also called finite-state languages), can be generated by a computational device that contains a finite
set of states. Strings in the language correspond to “walks” between these states. A simple example is,

0 1

a

b

c

This machine has two states, 0 and 1. When this device generates strings, one must start at the start
state 0 (the starting state has an incoming arrow on the left) and then follow edges, while emitting the
symbols (“a”, “b”, “c”) that label those edges. For example, one could emit the string acccb, starting in
state 0, looping three times in state 1, and then transitioning back to state 0. As should be clear from
this example, there is no upper bound on the length of strings this machine can produce. Moreover, all
strings follow a specific pattern—and that pattern is determined by the nodes, edges, and labels of the
machine. For example, this machine could never emit a string with two consecutive as or consecutive bs,
because each a must be followed by either a b or a c according to the edges shown.

We note that formal presentations of finite state machines include several additional technical com-
ponents, for example labeling of some states as “accepting” states (that must be the last state visited
for a string to be valid), transitions between states that don’t emit characters, as well as other variations
like labeling states rather than edges with symbols (Hopcroft et al., 2001). Regular languages—the sets
of strings generated by these machines—are often written in a notation known as regular expressions,
which describe the strings generated. For example, if we require strings end with the machine in the 0
state, we could write the expression (ac∗b)∗ where x∗ means that x (either a symbol or a sequence of
symbols) can be repeated zero or more times. Thus, we always emit an a, any number of cs, and a b; and
then we can do that whole thing any number of times.

Finite state machines can have any finite number of states. Here is a an example of the English system
of auxiliary verbs, adapted from (Berwick & Pilato, 1987):
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0 1 2

3

5 6 7 4 8
Judy may have been being given bread

has

is

gives

does

get
give

be

give

givengiving

Walks on this graph provide acceptable strings of English, where for example we can say “Judy does get
given bread” but not “Judy does have give bread.”

Additionally, a common variant of finite state machines introduces probabilities on transitions (e.g. all
outgoing edges must sum to 1), so that the machine generates a distribution on strings rather than a set.
This is useful because it allows machines to generate probabilistic predictions about upcoming symbols.

0 1

1 : a

2
3 : b

1
3 : c

Here, we have annotated probabilities on each transition. Now, when we see an “a”, it will be followed
by a b on 2/3 of the times, and a c otherwise. Moreover, the number of cs we see in a row will be
geometrically distributed since state 1 will have a 1/3 chance of generating “c” and returning to state
1. Such probabilistic machines – which we discussed in Chapter 5 in the guise of hidden Markov
models – are amenable to a wide range of efficient algorithms for learning and inferring states from
strings (Manning & Schütze, 1999). In turn, these devices which specify particular kinds of probability
distributions on strings are widely applied throughout language technology, from speech recognition to
statistical language analysis.

It’s interesting to consider the range of possible uses for finite state machines: can any pattern
on strings be captured with such a device? You might suspect the answer is yes because a finite
state machine can have any (finite) number of states, so if we need more, we can always add them.
However, Chomsky (1956) showed that there are intuitively simple languages that generate sentences
that cannot be captured by any finite state machine (Chomsky, 1957). One example is the language
{ab, aabb, aaabbb, aaaabbbb, . . .} consisting of n “a” symbols followed by exactly n “b” symbols, some-
times written as anbn.

The key insight is that a finite machine with say k states can only “remember” k different values. The
machine’s knowledge about what characters it has produced, or can produce next, is entirely determined
by the state that it is in, and there are only finite many states. However, anbn requires you to “remember”
an unbounded number of values because n can be arbitrarily high. To put this a bit more formally, note
that a path of length n > k on a finite state machine must be in some state twice since each character
requires us to visit a state. But if a path is in a state twice, that shows there must be a loop (a state
where we can follow a sequence of states to get back to where we started). So, we could, in principle,
follow that loop as many times as we want, generating acceptable strings with as many repetitions of
that subsequence loop as we would like. Thus, if n > k, accepting the string anbn also means that the
machine accepts strings with other numbers of as (since that sequence of as must be in some state twice,
so we can follow that loop again if we like, as many times as we want). This shows that no finite state
machine can accept exactly the language anbn. This style of argument is called “pumping” and can be
found in e.g. Hopcroft et al. (2001).
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Chomsky (1956) argued that some structures in language, like if-then structures follow this pattern,
where in English each “if” (think a) must be followed by exactly one “then” (think b). Accordingly, for
example, we can say “If if coffee is good for you, then you’ll drink it, then you are making sensible
choices” (though, as the reader will be well aware, such sentences can be extremely difficult to understand
and are, needless to say, vanishing rare). There is a sense in which it makes sense to imagine that but
for memory limitations we could embed sentences indefinitely in English, yielding something like an
(if)n(then)n language, and thus English cannot be captured by a finite state machine. On the other
hand, people do reliably break down after a few of these embeddings (e.g. n ≤ 2) (Gibson & Thomas,
1999) which would indicate that these structures are possible to process with a finite number of states –
for example,

0 1 2 3 4

if . . . then . . . if . . . then . . .

There is much discord between psycholinguistic and linguistic theories whether we should formulate
scientific accounts of language that capture what people actually do (break down for n > 2) or what
people could “in principle” do (e.g. arbitrarily many embeddings). Advocates of the latter viewpoint
typically believe that an abstract knowledge of the language can be separated from the limited and
error-prone mental processing operations that deploy that knowledge to help understand and produce
sentences–and it is this abstract knowledge that should be the focus of interest. By contrast, others doubt
that such a separation is possible (or perhaps that the abstract structure of a language is a theoretical
convenience for linguists, but has no corresponding mental representation)—and hence prioritize modeling
what people actually say and understand.

16.3.2 Context-free grammars and beyond

One alternative to finite-state machines, outlined by Chomsky, was to consider systems of rewrite rules,
a grammar, that work in a fundamentally different way from finite-state machines. Rewrite rules start
with a symbol, typically S, and then specify rules for how S may be replaced by other symbols; and then
rules for how those symbols may be replaced, as we saw in Figure 16.2. For example,

S → aSb

S → ab

says that any symbol S on the left can be replaced by either aSb (creating a new S) or ab (yielding no
additional Ses). If we follow this we might get

S → aSb → aaSbb → aaabbb

where we followed the first rule twice and then the second rule. You can see that this example generates
exactly the language anbn, which shows immediately that this system of rewrite rules is more powerful
than finite state machines: it can model a language that no finite state machine can. As we note above,
this kind of grammar is called a context-free grammar: the context-freeness arises because when you
replace a symbol like S, it doesn’t matter what other characters (context) are before and after it.

In fact, context-free grammars are strictly more powerful than finite state machines, meaning that
any language you can describe with a finite state machine you are also able to describe with a system of
rules. The proof of this idea is simple: you imagine that the symbols that get rewritten are the states
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of the machine, and there is one rewrite rule for each edge, which gives the next state. For example, the
finite state machine we started with might be,

0 → a1

1 → c1

1 → b0

where following the rules of the grammar is identical to walking around states of the machine, with
the current state represented as the last character (we may also need a rule like 0 → ϵ, saying that the
computation can end by yielding an empty string ϵ in state 0). Thus, finite-state languages are a subset of
context-free languages (although the containment changes somewhat when probabilities are introduced).

Importantly, we may also form a probabilistic context-free grammar (as above) which assigns
probabilities to each expansion, like

S → aSb p = 0.4

S → ab p = 0.6

This in turn specifies a distribution on strings which have a context-free structure (similar to those we
saw in Figure 16.2). Systems with dozens or even hundreds of rules have often been used in natural
language processing tasks, where the probabilities and the rules are fit to natural language usage.

Because such grammars can do everything a finite state machine can do, people talk about the
Chomsky hierarchy of different kinds of computational devices: finite languages are a subset of finite-
state languages, which are a subset of context-free languages. Further mathematical development uncovers
other classes of languages. For example, anbncn can be shown to be not generated by any context-free
grammar, but it can be generated by a context-sensitive grammar where the allowed rewrite rules
depend on what other characters it is near. Other formal languages are not describable with even context-
sensitive grammar, and eventually one ends up with computational systems that posses the full power of
Turing machines. One such formalism focuses on allowing transformations of what has been produced
by a phrase structure grammar, by moving and manipulating branches of the trees in systematic ways.

A considerable amount of work has tried to determine where natural language falls in the hierarchy
and document structures that require different kinds of computational processes (Jäger & Rogers, 2012).
Transformations were initially widely used in formal models of natural languages in linguistics (Chomsky,
1957), but their theoretical role has gradually reduced either to a single transformation (Chomsky, 1995)
or none (Pollard & Sag, 1994; Steedman, 2000). It now is typically thought that language requires more
than context-free power, but somewhat less than context-sensitive (e.g., Joshi, 1985)), and the reasons
why our communication system should occupy that place in the hierarchy remain unclear. However, the
characterization of human language in computational terms may depend on fairly philosophical question
of how to handle people’s finite memories. Should a theory of language capture what humans might do
with unbounded memory (e.g. process (if)n(then)n for any n?). Or should our theory attempt to explain
what people actually can do with their limited cognitive systems? After all, people’s memory is finite
and so the set of strings we can process is finite. But, at the same time, the regularities we can process
seem well approximated by computational devices like grammars that seem very naturally unbounded,
including hierarchical patterns in music, planning, problem-solving, and elsewhere.

16.3.3 Learnability and the Chomsky hierarchy

This brief overview of language structures and computation has highlighted some of the key conceptual
tools mathematicians, computer scientists, and linguists have developed for thinking about patterns in
sets of strings. Given these patterns, the natural question about human nature is whether or not the
computations underlying natural language must be “built in” in some sense, or whether they could be
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learned. Can a probabilistic approach really meet the challenge of learning the types of grammatical
structures found in natural language, from reasonable small amounts of data, without prior assumptions
so strong that they amount to a built-in universal grammar? Many theorists working on language
acquisition have assumed not, and indeed of then the argument for linguistic nativism relies on related
mathematical results.

Gold (1967) mathematically studies a learning situation where a learner sees strings from a formal
language and must use the examples to infer the complete (usually, infinite) language (see Johnson, 2004).
For example a learner might see the strings {aaaabbb, ab} and infer anbn. But Gold shows that even among
regular languages, not all string sets could be discovered by learners who observe examples from the set
of strings. That is, no matter what the learner does with data, there will be languages that they cannot
learn. This has often been taken to indicate that children’s learning space must be severely constrained
by, for example, an innate grammar (Carnie, 2013). As a result, Gold’s proof spurred development of
complex theories of language learning under Gold-style assumptions (Wexler & Culicover, 1983), which
often required learners to have a highly constrained set of hypotheses and transition between them in a
particular order when data was observed.

However, for reasons of mathematical tractability, Gold’s setup required assuming that parents (teach-
ers) could provide maximally unhelpful examples to learners—i.e. it studies the learning situation in the
worst case. The worst case is one where parents actively try to mislead children about the rules of
language, and thus is likely not relevant to actual language acquisition. In milder formal setting, where
learners observe strings sampled probabilistically from a target grammar, it can be shown that learners
can learn the correct languages out of the space of all computations in theory (Chater & Vitányi, 2007).
This work draws on prior idea in general inductive inference (Solomonoff, 1964), where essentially learners
try to find concise programs to describe data they see. It can be shown that learns who do that will
make optimal inferences about the structures in the world (Hutter, 2005). This work also helps address
the no negative evidence problem that we outlined earlier in the chapter—at least with sufficient data
and computational resources, it is possible to learn language from positive evidence alone.

Yang and Piantadosi (2022) implemented these ideas in a Bayesian inference model which observed
strings and inferred programs that generate strings. They showed for example, that most of the simple
formal languages used in linguistics and experimental learning studies could be discovered with a domain-
general inference scheme that does Markov-Chain Monte-Carlo over programs (Goodman, Tenenbaum,
Feldman, & Griffiths, 2008). Earlier work by, e.g., Elman (1990) and Christiansen and Chater (1999)
using neural networks indicated that this is possible in principle, but that generalization is very limited,
and no explicit representation of the grammatical regularities is created.

In Yang and Piantadosi (2022), learners were assumed to have access to a family of simple, domain-
general computational primitives, like the ability to pair tokens together in a list, call probabilistic coin
flips, recurse, etc. The model took some observed strings and inferred what program was likely to have
generated the strings. For example, when given a few strings from anbn, the model learns the program

F (x) := append(a, pair(if(flip(1/3), x, F (ϵ)), b)).

This program will combine an a at the beginning of a string with a b at the end, and flip a coin to
decide whether or not to recurse in the middle. Thus, it implements the probabilistic S → aSb grammar
described above. Note that the probabilistic operation flip is very important for this model because it
allows the program to generate a distribution of outputs. In this probabilistic setting, straightforward
Bayesian inference can compute the probability of a program h given data d as P (h | d) ∝ P (h)P (d |
h), where P (d | h) is the program H’s probability of generating the data. As Yang and Piantadosi
(2022) show, the model is able to construct programs that implement finite-state machines, context-free
grammars, context-sensitive grammars and beyond. It constructs these programs as ways of explaining
the data it observes, much like a scientist would formulate a computational theory to explain data they
they see.
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The question of whether or not the learned grammars are innate for the model is somewhat subtle.
There is a sense in which the learned computational devices are innate for this model because they are
constructed from built-in primitives and built-in rules of combination; but there is also an important
sense in which the computational devices are constructed. In this model, every possible computation can
be represented, so the model is in some sense maximally unconstrained in what it can learn—as Yang and
Piantadosi (2022) argue, this builds in the least amount of information into the learning model. Perhaps
analogously, when one opens a word processor, it is possible to write any book; and it takes real work to
construct the best one.

Critically, the model does require children to have the ability to form program-like representations
and evaluate them as probabilistic theories of data. Given the range of domains in which children learn
new algorithmic structures (Rule, Tenenbaum, & Piantadosi, 2020)—from social rules, to arithmetic, to
games—it is plausible that children deploy these general-purpose capabilities in language acquisition in
order to represent the computational structures required for language.

16.4 Have deep neural networks solved the problem of process-
ing and learning language?

The Bayesian approach to the acquisition of language aims to learn a model of the language from linguistic
experience, and, as we have seen, a model of the language has typically been viewed as specified by abstract
formal rules. We have seen that Yang and Piantadosi’s work shows that patterns governed by these highly
abstract rules can be learned from surprisingly small amounts of data using a general purpose probabilistic
programming language–and we will see other examples of learning using probabilistic programs in Chapter
19. The high level of abstraction embodied in the rules of grammar outlined by Chomsky and learned
successfully for a range of artificial languages without any built-in language-specific knowledge does
not represent the only type of regularity in human language, however. Indeed, linguists and language
acquisition researchers have increasingly been focusing on construction grammars (e.g., Goldberg,
2006; Tomasello, 2009) which capture the observation that language consists of a mix of regularity, sub-
regularity, and outright exceptions, which seem better captured by a more flexible linguistic formalism
(e.g., Dunn, 2017), consisting of constructions: linguistic patterns (at a range of level of abstraction)
paired with their meanings. A long-term challenge for Bayesian models of grammar learning is to learn
the patterns of highly abstract and very specific “constructions” that comprise a language, from naturally
occurring corpora from that language. The promising results obtained so far indicate that this may
be possible, without requiring the strong language-specific innate constraints that many authors have
assumed to be required—i.e., without recourse to any innate universal grammar (as proposed by, e.g.,
Chomsky, 1980; Pinker, 1994; Crain & Lillo-Martin, 1999).

Recent developments in neural network models of language processing might, though, appear to sug-
gest that the very attempt to build a specific model of language and language acquisition is unnecessary.
In 2020, the results from the Large Language Model (LLM) GPT-3, a giant neural network with an ex-
traordinary 175 billion trainable parameters (Brown et al., 2020), astonished many in both the academic
community and the media (at the time of writing, GPT-4 is fast evolving, alongside many competing
large language models, with some remarkable results, as we’ll mention below—but let us focus on GPT-3
for the moment). GPT-3 was trained to predict the next items in a corpus, based on previous items—
and the corpus was almost the entire contents of the World Wide Web, totally around a trillion words.
The computer power required was correspondingly vast. GPT-3 had, of course, no symbolic representa-
tional language (whether a conventional grammar or logical formulae). Nonetheless, it is able to generate
surprisingly convincing language, in any apparently highly flexible way. For example, seeded with the
author Jerome K Jerome, the title “The importance of being on Twitter,” and the first word “It,” GPT-3
provided remarkably convincing opening paragraphs before drifting into incoherence (Klingeman, 2020).
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Similarly, seeded with the identity of the philosopher David Chalmers and a series of philosophical ques-
tions on consciousness (Shevlin, 2020), it provided brief responses giving a tolerable account of Chalmers’s
views.

While impressive, a closer analysis of GPT-3’s performance highlights that is better viewed as building
a model of the language to which it has been exposed rather than a model of the world that the language
describes. GPT-3 has been trained to map text onto text; and it does this in an astonishingly sophisticated
way. But is it really learning about the world, or the nature of the mapping between language and the
world, or indeed, the nature of communication itself. With GPT-3, caution seems appropriate. For
example, it might seem that GPT-3 may provide insights into how children are able to learn the complex
mixture of rules, sub-rules and exceptions that make up a human language. But this appearance may
be somewhat misleading. From the point of view of construction grammar, learning a language involves
acquiring collection of pairs of linguistic regularities and their meanings. But GPT-3 appears to have
no representation of meaning, and no representation of syntactic structure onto which meaning may
naturally be mapped (though see Pavlick, in press).

So despite its remarkable ability to write stories and answer questions, GPT-3 may have no real
understanding of any of the language that it produces. Lacker (2020) nicely illustrates that while GPT-3
can answer an impressive range of general knowledge queries (it has almost the entire contents of the Web
at its disposal, after all), it generates complete bizarre answers when asked bizarre questions: Q: How
many eyes does my foot have? A: Your foot has two eyes. And it happily gives nonsense answers when
asked nonsense questions: Q: How many rainbows does it take to jump from Hawaii to seventeen? A: It
takes two rainbows to jump from Hawaii to seventeen. GPT-3 is flummoxed here, presumably, because
these bizarre strings of words don’t occur on the Web. This suggests that the vastness of the corpus
used by GPT-3 is probably crucial to its success—it generalizes successfully on where its data is rich.
Human children learn language from exposure only to tens of millions of words, along with the pragmatic
and physical contexts in which those words are spoken—rich symbolic representations of the structure of
language, and the structure of the world, may be critical to generalizing so effectively.12

But what about successors to GTP-3? How will this picture change as large language models become
increasingly sophisticated? At the time of writing, later iterations of GPT, including the rapidly evolving
GPT-4, have been trained (with the assistance of human users) to block many nonsensical responses and
more generally to tune out unacceptable outputs, which are otherwise difficult to avoid give that the
training corpus is the largely unfiltered contents of the internet (Ouyang et al., 2022). Moreover, the per-
formance of LLMs continue to develop rapidly, including building surprisingly good links betwen language
and visual images, and showing what some have described as “sparks” of general intelligence (Bubeck
et al., 2023), including high-end human-level performance in IQ tests, and academic and professional
exams.

How far such models will progress over the coming years is, of course, difficult to predict—but the
kinds or errors GPT-3 makes should at least give us pause. They suggest that large language models
may have a strategy for mimicking intelligent behavior by mining vast quantities of data which may
rely on a shallower analysis of language and the world that we, as humans, might imagine.13 On the
other hand, it is possible that further iterations of large language models are leading those models to a
fundamentally different, and less shallow, mode of operation, which do indeed involve building rich and
flexible representations of the world, at least to some degree. Indeed, it is also possible that matching
human intelligence requires some combination of two different types of process: general but fairly shallow
representations of language and the world (through the analysis of vast quantities of linguistic and sensory
input), alongside limited capacity mental operations over explicit symbolic representations, which may

12For further discussion, see the Epilogue in Christiansen and Chater (2022), Pavlick (in press), and Schultz and Frank
(2023).

13Although, of course, some aspects of human cognition may themselves operate on shallower representations of the world
that we imagine (Chater, 2018).
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be required in deliberative reasoning and planning, especially in highly novel contexts.

In the context of language research, we can see Yang and Piantadosi’s work, and LLMs such as
GPT-3 and GPT-4, as representing the opposite ends of a continuum of approaches to learning language.
Yang and Piantadosi use Bayesian inference over rich general-purpose logical representations, and obtain
high levels of generalizations from relatively small training sets, albeit in simple artificial languages.
LLMs involve training very large neural networks using non-symbolic representations of linguistic input,
generalizing much less from the inputs it is given, but working successfully with a sufficiently large
training corpus that only modest generalization is often sufficient. It is likely that future cognitive
models of grammar learning may require combining insights from both approaches (McCoy & Griffiths,
2023). Moreover, we suspect that successful models of language acquisition will need to capture the fact
that use language effectively involves the skilful use of communicative signals, including the repertoire of
complex symbols comprising human languages, in social interactions (e.g., Christiansen & Chater, 2022).
In short, models of language acquisition will need to see the learning of grammar as part of a wider
process of learning to communicate and socially interact (e.g., Chater, McCauley, & Christiansen, 2016;
Clark, 2009, 1996).

16.5 Future directions

The last few decades have seen remarkable strides in reverse engineering the human language acquisition
and processing system, in parallel with a rapidly changing understanding of the nature of language itself.
But, of course, as in other areas of cognition, the astonishing performance of human brain far outstrips
any computational model that has yet been devised, whether from the perspective of Bayesian models,
deep neural networks, or classical symbolic conversational models, or any combination of these. AI models
of various kinds may perhaps be acquiring some “sparks” of general intelligence—but they still appear
far from the rich, creative and flexible performance achieved by the human mind.

One theme that we see is likely to play an increasing role in future work is understanding the rich
pragmatic inferences that allow even the simplest communicative signals (including pointing, gestures
and facial expressions, aside from full-blown language) successfully to convey information on a highly
flexible way, depending on recent discourse context, past interactions of the speaker and listener, the
current goals and environment, and background knowledge of every kind (Galantucci, 2005; Sperber,
1985). More broadly, seeing language not just as a complex system of interlocking patterns (principles of
phonology, morphology, prosody, syntax and so on), but as a set of tools for guiding human interaction,
may be productive. This will require, of course, a much better understanding of the interface between
language, social interaction, and thought.

A second, and related, theme is the interactive, conversational nature of most language (Clark, 1996;
Pickering & Garrod, 2021). Researchers have often treated languages monologue first, and dialogue
second; but recent developments in the language sciences suggests that the reverse may be the case.
Indeed, this perspective may also be crucial for acquisition: children appear primarily to learn language
through interactions with caregivers and other children rather than mere exposure to linguistic input
(e.g., from the TV or radio). Language acquisition is, primarily, the ability to acquire a skill which
allows children to join in with the many and varied conversational games played by those around them.
Reverse engineering the nature of this skill, and how it can be learned from realistic amounts of linguistic
interaction (measured in the tens of millions of words, rather than the trillion or so used by typically
LLMs) is clearly a huge challenge. As we saw in Chapter 1, a crucial question for cognitive science is how
the human brain is able to create so much from so little.

A third area of future development may, we suggest, be to understand how language has itself been
shaped by its function in social interactions and underlying computational machinery recruited by the
brain to achieve that function (Christiansen & Chater, 2016a; Kirby & Tamariz, 2021). Like any cultural
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product, human languages will be strongly shaped by the nature of biases of our cognitive systems
(and, of course, the perceptual and motor machinery through which speech and signs are generated and
perceived) – a Bayesian analysis of mechanisms of cultural transmission that could have this kind of effect
(Griffiths & Kalish, 2007) appears in Chapter 11. Reverse-engineering the language system successfully
therefore should cast light on how a child’s language changes through development, languages gradually
change over time (through, for example, process of grammaticalization), and how over the long term,
how language has evolved. Language is shaped to fit with human processing and learning biases (rather
than being a purely abstract mathematical system), and this may greatly ease the problem of acquisition.
The guesses that the child makes that structured language will tend to be correct precisely because the
language has been shaped by similar guesses by past learners (Chater & Christiansen, 2010; Zuidema,
2002).

Finally, reverse-engineering the language system successfully requires explaining how the computa-
tional processes underlying language are rooted in neural hardware. A Bayesian perspective on language
acquisition, and the success of computational models which learn linguistic structure from experience,
has suggested that poverty of the stimulus arguments for the necessity of an innate universal grammar
may be unpersuasive. But the problem of explaining how neural machinery is recruited to the challenge
of acquiring the skill of conversational interaction with others, from experience, and language is pro-
cessed with such nuance and subtlety in real time remains formidable. More broadly, though, while the
challenges of understanding human language remain substantial, progress in computational modeling,
together with important developments in linguistics and cognitive neuroscience, suggest that real, and
rapid, advances may be possible.

16.6 Conclusion

Language is perhaps humanity’s most remarkable, and far reaching, collective invention. It underpins
our ability to formulate, transmit and record knowledge; to work together over long periods on complex
joint projects; to create and enforce legal and moral codes; to invent ideologies, religions and scientific
theories; and to create social, economic and technological worlds of astonishing flexibility and richness.
Yet the fact that language is a structured symbolic system has sometimes led researchers to conclude to
probabilistic ideas can be of no more than marginal interest in understanding language. But throughout
this book, we’ve seen that symbolic and probabilistic ideas are better viewed as complementary rather
than competing. The study of language illustrates how productive this complementarity can be: showing
that the processing of language at every scale, from recognizing a word, to parsing a sentence, to acquiring
a language, requires rich probabilistic inference over sophisticated structured linguistic representations.
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