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Abstract

People can identify the number of objects in small sets rapidly and
without error but become increasingly noisy for larger sets. How-
ever, the cognitive mechanisms underlying these ubiquitous psy-
chophysics are poorly understood. We present a model of a limited-
capacity visual system optimized to individuate and remember the
location of objects in a scene which gives rise to all key aspects of
number psychophysics, including error-free small number percep-
tion and scalar variability for larger numbers. We therefore pro-
pose that number psychophysics can be understood as an emergent
property of primitive perceptual mechanisms — namely, the process
of identifying and representing individual objects in a scene. To
test our theory, we ran two experiments: a change-localization task
to measure participants’ memory for the locations of objects (Ex-
periment 1) and a numerical estimation task (Experiment 2). Our
model accounts well for participants’ performance in both experi-
ments, despite only being optimized to efficiently encode where ob-
jects are present in a scene. Our results demonstrate that the key
psychophysical features of numerical cognition do not arise from
separate modules or capacities specific to number, but rather from
lower-level constraints on perception which are manifested even in
non-numerical tasks.

Introduction

Numerosity perception has been studied for at least 150 years
(Jevons, |1871) and its psychophysics have been well charac-
terized. Most notably, for small sets of up to about four ob-
jects, people are error-less; above that, error scales roughly
linearly with numerosity (Feigenson et al., 2004} Jevons,
1871; Revkin et al., [2008)). Weber fractions, which describe
the rate at which internal noise scales with numerosity, are by
far the most common measure in the field of numerical cogni-
tion. However, while providing a good descriptive characteri-
zation of number psychophysics, Weber fractions are entirely
agnostic to mechanism — i.e., it is entirely unclear what cog-
nitive limitations are responsible for the internal noise. While
there has been interest in characterizing what visual features
people may rely on to estimate numerosity (e.g. Anobile et
al., 2018; Gebuis et al., 2016; Lourenco, 2015; Lourenco &
Longo, 2011; Sokolowski et al.,[2017), there have been only
a handful of formal models aimed at understanding how peo-
ple convert a scene into the summary statistic of number (De-
haene & Changeux, |1993}; Stoianov & Zorzi, [2012; Testolin,
Dolfi, et al.,[2020; Testolin, Zou, et al.,[2020).

These recent models of numerosity perception have largely
used unsupervised neural networks that learn to extract sta-
tistical features of visual scenes; linear classifiers are then
trained on hidden layer representations to test latent numeri-
cal discrimination ability (Stoianov & Zorzi, [2012} Testolin,
Dolfi, et al., [2020; Testolin, Zou, et al.,|[2020). These models

have demonstrated that numerosity is naturally extracted as
a useful statistical component of visual scenes; and, like hu-
mans, the networks have representations of number that are
intertwined with other correlated visual dimensions such as
the surface area or density of objects. They also reproduce
the signature scalar variability observed in large number es-
timation, though none of them produces the phenomenon of
error-free “subitizing”.

While it is widely believed that subitizing and large num-
ber estimation involve separate cognitive processes (Carey,
2009; Feigenson et al., 2004), other recent modeling work of
ours has called this theory into question. In a recent paper, we
demonstrated that any optimal but resource-constrained sys-
tem should demonstrate a discontinuity in estimation ability
from zero error for small numbers to scalar variability beyond
(Cheyette & Piantadosi, 2020). Furthermore, we showed
that the model predicts many aspects of human number psy-
chophysics — including when subitizing should transition to
estimation — at different amounts of available visual infor-
mation. However, this model only explains in theory how
a bounded-optimal number system should behave — but nei-
ther this nor any other model has demonstrated what cognitive
mechanisms actually produce number psychophysics.

In this paper, we propose that number psychophysics arise
from the process of identifying and representing individual
objects, a theory we formalize in a computational model of
bandwidth-limited scene memory. Given a scene as input,
the model forms beliefs about where individual objects ex-
ist in space; these beliefs can then be straightforwardly con-
verted into beliefs about the number of objects in that scene.
Even though the model is explicitly optimized only to de-
tect and remember the presence of objects in various lo-
cations, we show that the resultant probability distributions
over numerosities nonetheless predict many key properties of
number psychophysics, including both subitizing and scalar
variability. The full set of model predictions that match
previously reported findings in human numerosity percep-
tion include: i) exact or near-exact estimation of small sets
(subitizing) (Jevons, |1871; Kaufman et al., |1949; Mandler
& Shebo, 1982); ii) a subitizing range that increases as a
function of display time (Cheyette & Piantadosi, [2020)); iii)
roughly normally-shaped response distributions for estima-
tion (Nieder & Dehaene, 2009 Pica et al.,|2004); iv) increas-
ingly noisy estimation (scalar variability) for larger sets (De-
haene, 2011} Feigenson et al.,|2004; Jevons,|1871); v) estima-
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Figure 1: This figure conceptually illustrates how the model works, simplifying it to assume that there are only 4 pixels for clarity. In this
example, a person sees a scene with 3 objects, which is represented as a probability distribution over all possibilities of what she saw. Possible
arrangements of objects are grouped by numerosity, shown as different colors. To get the probability of a numerosity k, the model simply
sums the probability of all possible scenes with numerosity k, highlighted at the bottom.

tion acuity that increases with display time (Inglis & Gilmore,
2013)); and vi) an under-estimation bias for large sets that di-
minishes with increased display time (Cheyette & Piantadosi,
20191 2020).

At higher information capacity bounds, the model predicts
both a greater ability to remember the location of objects and
also sharper acuity in estimation. Thus, in order to plausibly
account for number psychophysics, people’s observed ability
to detect and store the locations of objects has to be consis-
tent with their observed estimation acuity. To test the model’s
predictions about both spatial memory and numerosity per-
ception, we ran two experiments: a change-localization task
to probe participants’ memory for the locations of objects;
and a numerical estimation task. In both experiments, we
manipulated the amount of information available to partici-
pants by varying the exposure time of the presented objects.
To preview our results, we find that participants’ ability to
remember the locations of objects — both for different expo-
sure times and for different numbers of objects present — is
entirely consistent with the observed psychophysics of num-
ber under analogous conditions.

Model
Setup

The model aims to capture how an idealized, information-
limited perceptual system would perform if its only aim was
to accurately store the presence or absence of objects in var-
ious locations. Although this formalizes the idea of object
memory—not specifically numerical estimation—its output
nonetheless yields psychophysical properties seen in number.
For a given, observed scene containing objects s, we will con-
sider the probability distribution Q(s’ | 5), giving the system’s
belief that s’ was observed instead of s. We analytically de-
rive an optimal form of Q, by specifying three components:
(1) a prior distribution representing how likely the model is
to encounter a given scene a priori, (ii) a loss function repre-
senting how good or bad a given representation of the scene
is, and (iii) an information capacity bound, representing the
maximum allowable information processing. These three el-

ements define a constrained optimization problem, which can
be solved to determine the optimal psychophysical distribu-
tion Q(- | 5), corresponding to the optimal perceptual system.
This process is not identical with, but is somewhat analogous
to, Bayesian inference that begins with a prior distribution
and combines it with evidence to produce a “posterior” distri-
bution; the key difference is that the shape of the “posterior”
O(- | s) is not derived from Bayes rule, but rather from min-
imizing the loss function (ii) subject to an information bound
(iii).

Figure [T illustrates the basic setup, assuming for the sake
of clarity that there are only 4 possible object locations (or
pixels). When a person sees a particular scene, they en-
code a probability distribution over each possible possible ar-
rangement of objects, which is a weighted combination of a
prior for small numbers and the how well the representation
matches their observation (akin to a likelihood). This prob-
ability distribution over objects can in turn be converted into
a probability distribution over numerosities by summing the
probabilities of each scene with a given number of objects.
One key simplifying assumption we make in modeling this
setup is that spatial memory encodes the presence or absence
of objects in various locations as a discrete matrix. In other
words, we assume that visuospatial memory represents a ma-
trix with M black and white pixels to specify where there are
objects (and where there aren’t). We further assume a prior on
binary matrices where the number of 1’s in a matrix matches
the naturalistic frequency of a given number. Specifically,
the naturalistic frequency of a number n follows a n% law,
where n represents cardinality (Dehaene & Mehler, |1992; Pi-
antadosi & Cantlon, 2017). There are (A: ) matrices with car-
dinality n, so a given matrix s with cardinality n has prior
P(s) e 1/ (w2 (¥)).

When shown the matrix s, we assume the model’s goal is
to represent s with as high fidelity as possible, remembering
whether an object was present at each row i and column j, s;;.
Below we will define a loss function L(s,s’) specifying how
closely a matrix s" matches s, or how costly it would be to rep-
resent s with s’. We will assume that the loss function £(s,s")
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Figure 2: a) The model’s predicted accuracy in a change detection task at information bounds ranging from 12-30 bits, assuming a 7x7
grid size and loss function parameter o0 = 1/3 (as derived from model fitting). b) The implied psychophysics of number from the model of
spatial memory. Each line shows posterior beliefs (Q(k|n)) over estimates (k) given numbers n = 1...15. Each facet shows the results of the
optimization at various information bounds (increasing left-to-right and up-to-down).

is proportional to some (perhaps unequal) combination of the
proportion of false negatives, P(s;; =0 s;; = 1), and the pro-
portion of false positives, P(s;; =1 | s;j = 0). The reason we
separate the contribution of false negatives and false positives
here is simply that it is natural to think that the visual system
might care about one more than the other. We can therefore

write,

(X'P( ;j:0|sij:1) +

i (1)
(I—a)-P(sj;=1]5;=0),

with o as a weighting parameter, where 0 < a < 1.

Given a loss function and prior, we now seek a function
O(- | s) that minimizes the expected loss between possible
inputs s and representations s’. If the set of all possible ma-
trices (for both inputs and representations) is S, we can write
the expected loss as,

E[L(s,s)] = ZP(S) Z o(s" | s)- L(s,s). 2)

sES s'es

Unconstrained, the function Q(- | s) that minimizes the ex-
pected loss would of course be,

Q(S,|s):{1, ifs=s )

0, otherwise.

However, cognitive systems are constrained by the amount
of information they can process over a given span of time.
We incorporate this constraint into the model as a bound on
the maximum allowable Kullback-Leibler divergence (KL-
divergence) between the prior distribution P(-) and posterior
distribution Q(- | s) over displays. The KL-divergence here
represents the amount of information in bits needed to rep-
resent the posterior distribution Q(- | s) starting with the dis-
tribution P(-), which is equivalent to the total amount of in-

formation processing required. Given a KL-bound B we then
have the constraint,

Dk [0(- [9) [ P()]=), Q(S/IS)~10gw <B VseS.

s’eR (sl)
“)

Now we have the components to set up a constrained opti-
mization problem. We have an objective function (2) which
quantifies how accurate a given function Q is at representing
the world. We also have a bound on how costly any given Q
is in terms of information processing (@). Using the method
of Lagrange multipliers, we can derive an analytic solution to
maximize accuracy while keeping the information processing
below the information bound s,

06 1) <Py exp (52 L65)) )

Ay

for A chosen to satisfy the bound in (E[) for each scene s.

Results

We generated predictions from the model assuming a 7x7 grid
of possible object locations, as will be used in the eventual
experiments. We first simulated the model’s predicted per-
formance on a change detection task in which the model has
to guess which location on the grid has changed — with an
object either appearing or disappearing — between two sub-
sequent presentations (see Experiment 1). Figure Zh shows
the model’s predicted accuracy (y-axis) on this task as a func-
tion of the number of objects in the scene (x-axis), at different
information bounds (color). At each information bound, per-
formance decreases as a function of the number of objects,
reflecting both the decreasing prior over numerosities and the
fact that there are more ways to arrange more numerous sets
in the range shown. Also apparent is that as the informa-
tion bound increases, the model saturates in performance for



small numbers, meaning it can veridically recall the scene it

viewed.
As described above, the model’s probability distribution

over possible object arrangements can be converted into a
probability distribution over the total number of objects. Fig-
ure shows the implicit posterior (y-axis) over numerical
estimates (x-axis) for each number 1-15 (lines), at the same
information bounds given in Figure Zh. The model demon-
strates many key properties of number psychophysics, most
notably including a transition from subitizing to scalar vari-
ability. The exact point of transition, as well as the acuity of
estimation, are both functions of the information bound. The
model enforces a relationship between the ability to individu-
ate and store the locations of objects in space with the ability
to estimate the numerosity of the set. In this way, manipulat-
ing the information bound — e.g. by varying the presentation
time of a set of objects — should allow us to test whether
this relationship actually holds. That is, the psychophysics
of number derived from the model are consistent with only a
particular level of ability at encoding the locations of objects.

Experiment 1

The goal of Experiment 1 is to determine how much spa-
tial information people represent about objects in a scene,
which will allow us to generate predictions about number
psychophysics. To do this, we constructed a change detection
task in which items flashed on a screen, disappeared, and then
re-appeared with a single modification. Participants’ goal was
to guess what changed from the first to second presentation —
either which object is new or which object wasn’t there pre-
viously. Each participant completed 90 trials. For half the
trials, an object always appeared and for the other half an ob-
ject always disappeared (split by first half of trials one way,
second half the other); participants knew whether an object
would be appearing or disappearing. For the sake of simplic-
ity, we restricted the space of locations to a 7 x 7 grid with
defaultly white cells, some of which (between 1 and 15) were
filled gray on each trial. Finally, in order to manipulate the
amount of available visual information, we varied the expo-
sure duration (50ms, 150ms, or 450ms).

Methods

Participants We recruited 40 registered users of Prolific,
an online psychology experiment platform. Participants were
18 years old or older, fluent English speakers, and physically
present in the United States based on pre-screening questions.
Each participant who completed the task received compensa-
tion of $3.

Materials The experiment was designed in JavaScript us-
ing the psiTurk framework (Gureckis et al., 2016). There
were 49 grid cells (7 x 7), with each grid cell 35px*> and
an equal margin separating the cells. Unfilled grid cells
were white and filled grid cells were gray with hex color
#A0AOAO. When a cell was clicked in the task, its border
was bolded and turned red. The noise mask was multicolored
static and had a size of 455px? to cover the entire grid.

Design There were four within-subject variables manipu-
lated in the study: the number of cells filled (1-15); the expo-
sure time of the displayed pattern (50ms, 150ms, 450ms); and
the direction of the changed cell from the first to second pre-
sentation (white-to-gray or gray-to-white). Each three-tuple
of number, time, and direction was shown exactly once, for a
total of 15 x 3 x 2 =90 trials. The initial direction of changed
cell was randomly chosen and then remained constant for the
first 45 trials, with the last 45 trials assigned to the opposite
direction. Within that constraint, the order of the trials was
randomized, i.e. number-time pairs were assigned randomly
within each direction of change. The positions of the filled
cells were chosen randomly on each trial. If the direction
of change was white-to-gray, a random white cell from the
initial exposure would turn gray on the second presentation;
conversely, if the direction of change was gray-to-white, a
random gray cell would turn white.

Procedure After providing consent and reading instruc-
tions, participants began the first section of the experiment.
Both halves of experiment — the white-to-gray section and
gray-to-white section — started with 3 practice trials. Partic-
ipants were informed whether a cell would be changing from
white to gray or vice-versa. Each trial started with a fixation
cross displayed on the center for 1000 ms, followed by the
grid with some cells filled in (50-450ms) and then a noise
mask for 600 ms. Then, the grid reappeared, with one modi-
fied cell. Subjects then clicked the cell they thought changed
color and proceeded to the next trial.

Results

Our primary interest in this experiment is determining how
accurate people’s spatial memory for objects is as a func-
tion of the total number of objects presented and the expo-
sure duration. Crucially, we want to test whether the model
we proposed captures the key trends and provides an overall
good fit to the data. To do this, we first fit model parameters
to the experimental data. We assumed that the information
bound changes as a function of time according to a power
law B = a-t*, where s and k are free parameters and ¢ is expo-
sure time in seconds. The third free parameter of the model
is the weighting parameter in the loss function ., capturing
the extent to which false negatives (high a) or false positives
(low o) are more costly. To account for attention lapses and
mis-presses, we also included a guessing-rate parameter, p,,
which captured the rate participants chose randomly from the
set of valid alternatives (as opposed to via the model).

The Maximum Likelihood Estimates (MLE) for the pa-
rameters were, a = 35.1, k= 0.21, p, = 0.16, and o = 0.34
with an overall log likelihood of -1,719,. This entails infor-
mation bounds of 18.7, 23.6, and 29.7 bits at 50ms, 150ms,
and 450ms, respectively. The relatively high inferred rate
of guessing likely reflects the fact that the model does not
account for spatial errors, treating each cell independently.
Figure [3p shows human accuracy (points and error bars) the
model’s predicted accuracy (lines) as a function of the total
number of cells filled in, grouped by the exposure duration.
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Figure 3: In (a) and (b) model predictions are shown as lines and human data from the change-localization task are shown as points with
bootstrapped 95% confidence intervals. (a) Accuracy (y-axis) in the change-localization task as a function of the number of grid cells filled
(x-axis) at each exposure duration (color). (b) Accuracy (y-axis) as a function of number (x-axis) grouped by whether or not a cell appeared or
disappeared from first-to-second presentation (color). (c) The correlation between model predictions (x-axis) and average human performance
on each trial type (y-axis), i.e. trials grouped by numerosity and duration.

The model captures the effect of decreasing performance with
larger quantities and increasing performance as a function
of exposure duration quite well. Figure [3b depicts accuracy
grouped by whether a cell appeared or disappeared from the
first to second display, and shows that participants performed
substantially better on “appear” trials than “disappear” trials
— a trend the model captures. The model would capture this
trend even if o were fixed to 0.5, and in fact higher values of o
exaggerate rather than reduce the gap between “appear” and
“disapear” trials. Finally, as shown in Figure [3c, the corre-
lation between model predictions and human accuracy across
trials grouped by numerosity and exposure duration was 0.93
(R? = 0.88), indicating a good fit to the data.

Experiment 2

The goal of Experiment 2 is to replicate previously reported
properties of number psychophysics and to test whether the
model is able to capture these effects as well. To do this,
we ran a number estimation task with a design matched to
Experiment 1. The procedure and display was identical to
experiment 1 up to the noise mask. After the noise mask,
however, participants were asked to estimate the number of
cells that were filled. 42 adult participants from Prolific again
completed 90 trials, with each number (1-15) paired with du-
ration (50ms, 150ms, 450ms) displayed twice.

Results

We fit the same parameters in the model with the estimation
data as with the change detection task. The overall log like-
lihood was -6,658 and the MLE parameters were a = 32.6,
k=0.21, pg = 0.01 and o = 0.32. The implied information
bounds are therefore 17.4, 21.9, and 27.6 bits at 50ms, 150ms,
and 450ms respectively. This is slightly lower than the esti-
mates derived from the change-localization task data, but the
differences at each exposure duration are small. The resulting
psychophysical curves from the model (lines), along with the
data from the experiment (points and error-bars), are shown in
Figure [d The model captures the key psychophysical trends
observed in the data: an underestimation bias that diminishes
with exposure time; a subitizing range that increases with ex-

posure time; scalar variability in estimation; and acuity in
estimation that increases with exposure time. One notable
difference between the inferred parameters between the two
tasks is the guessing rate, which is much lower than in the
change-localization task.

We compared the fit of the model to a standard psy-
chophysical model of numerical estimation as well as a mod-
ified one that accounts for the effects of time. In the first, we
assume that participants’ estimates are drawn from a Gaus-
sian centered around the number shown, n, with mean n and
standard deviation w - n, where w is a free parameter (called
a “Weber fraction”). We also fit a version of this where the
standard deviation could vary as a function of time, such that
w = "0’ where wo and wy are fit and ¢ is time in seconds.
The MLE w fit in the non time-varying version was 0.25, with
log likelihood -6,983. The MLE wq was -1.10 and w, was -
1.61, giving w’s of 0.31, 0.26, and 0.16 at 50ms, 150ms, and
450ms respectively, and had log likelihood -6,738. The We-
ber models thus did not fit as well as our model, with AIC
differences of over 10 (644 and 156).

Discussion

We have shown that number psychophysics emerge naturally
from a model only explicitly optimized to detect and remem-
ber the locations of objects. This has some surprising im-
plications. First, because the model accounts for subitizing
as well as large number estimation, it demonstrates how a
single mechanism might give rise to the observed discontinu-
ous psychophysics. Second, it implies that the psychophysics
of large number estimation — widely accepted to be a form
of “gist” perception without object-level representations —
may in fact arise from the process of individuating objects
and tracking their locations. Finally, though the large-number
system is commonly thought to represent analog magnitudes
on a continuous scale (Carey, 2009; Feigenson et al.,|[2004),
the model demonstrates how noisy beliefs over discrete repre-
sentations can give rise to what appears to be analog behavior.

There has been a long-running debate about whether per-
formance in the subitizing range actually just reflects the ap-
proximate number system, since even if Weber’s law applied
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Figure 4: Model predictions (lines) and data from the estimation experiment (points and 95% CI). Number is shown on the x-axis and each
line represents a different exposure duration. On the y-axis: (a) mean estimates; and (b) the standard deviation of estimates.

to the small-number range, very few errors would be expected
(Dehaene & Changeux, (1993 Gallistel & Gelman, [1991)).
The consensus view now is that the small-number range re-
ally is privileged, after carefully controlled studies found that
estimation in the 1-4 range is easier than estimation of the
deciles 10-40 (Revkin et al., 2008) — these have a matched
ratio, and thus should be equally difficult according to We-
ber’s law. Somewhat ironically, however, our theory posits
that approximate numerical estimation is really an extension
of subitizing, rather than the other way around. The differ-
ence between exact and inexact estimation, on our account,
is whether the amount of information needed to represent an
arrangement of objects falls above or below a capacity bound.

We previously showed that a single system optimized to
estimate numerosities can explain the discontinuity in esti-
mation ability at four as well as other aspects of number psy-
chophysics (Cheyette & Piantadosi,|2020). However, because
that model did not account for how scenes are actually en-
coded by vision, it made the rather unrealistic assumption that
small and large numerosities are equally easy to process and
that the difference in estimation precision arises purely from
the fact that people need to represent small numbers more
frequently (Dehaene & Mehler, |1992; Piantadosi & Cantlon,
2017). The current model, on the other hand, has the major
advantage of accounting for each stage of the process, from
perceptual encoding to numerical representation. So unlike
the previous model, the current model predicts that large nu-
merosities are fundamentally harder to encode with high fi-
delity because there are more ways to arrange many objects
in space.

It is worth noting that some studies have found a strong
relationship between object-tracking ability, visual memory
capacity, and estimation acuity outside the subitizing range,
as predicted by our model (Bugden & Ansari, [2016; Green
& Bavelier, 2003} 2006} Passolunghi et al., 2015). However,
other studies have found a stronger link between an individ-
ual’s visual working memory capacity and their subitizing
range than with their estimation acuity (Piazza et al., 2011}
Revkin et al., 2008), which might seem to contradict predic-
tions of our theory. Importantly, though, while the model

does link both subitizing range and estimation to visuospa-
tial information capacity, differences in information capacity
do not necessarily cause equally large changes to the subitiz-
ing range and estimation acuity. Specifically, modulating the
information bound tends to affect the subitizing range sub-
stantially more than the (implicit) Weber fraction.

Finally, we highlight two important limitations of our
model and experiments that leave room for future work. First,
the model and experiments were only designed to capture nu-
merical perception in the domain of vision. However, innate
numerical abilities have been documented in audition, touch,
and across modalities (Barth et al., 2003; Meck & Church,
1983} Plaisier et al., 2009). Though the model we presented
here was designed to deal with spatial rather than temporal
integration, we believe similar principles of information pro-
cessing apply and hence the methods used in this paper could
be adapted to capture (e.g.) the processing of auditory se-
quences. The other main limitation is our use of simplifying
assumptions to model spatial memory — specifically, in dis-
cretizing the space so coarsely and in assuming objects to be
identical. The model would thus likely need to be extended
to capture, for instance, the influences of continuous visual
features such as surface area, convex hull, and density on
numerosity perception (e.g. Gebuis et al., [2016; Gebuis &
Reynvoet, 2012} Lourenco, 2015} Lourenco & Longo, 2010,
2011; Sokolowski et al.,[2017). In fact, the methods we em-
ployed in this paper may be useful to understanding some
of these effects: since continuous features like surface area
are correlated with numerosity in the real world, principles of
efficient information compression dictate that their represen-
tations will not be independent.
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