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Recent evidence suggests that cognitive pressures associated with language acquisition and use could
affect the organization of the lexicon. On one hand, consistent with noisy channel models of language
(e.g., Levy, 2008), the phonological distance between wordforms should be maximized to avoid percep-
tual confusability (a pressure for dispersion). On the other hand, a lexicon with high phonological regu-
larity would be simpler to learn, remember and produce (e.g., Monaghan et al., 2011) (a pressure for
clumpiness). Here we investigate wordform similarity in the lexicon, using measures of word distance
(e.g., phonological neighborhood density) to ask whether there is evidence for dispersion or clumpiness
of wordforms in the lexicon. We develop a novel method to compare lexicons to phonotactically-
controlled baselines that provide a null hypothesis for how clumpy or sparse wordforms would be as
the result of only phonotactics. Results for four languages, Dutch, English, German and French, show that
the space of monomorphemic wordforms is clumpier than what would be expected by the best chance
model according to a wide variety of measures: minimal pairs, average Levenshtein distance and several
network properties. This suggests a fundamental drive for regularity in the lexicon that conflicts with the
pressure for words to be as phonologically distinct as possible.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

de Saussure (1916) famously posited that the links between
wordforms and their meanings are arbitrary. As Hockett (1960)
stated: ‘‘The word ‘salt’ is not salty, ‘dog’ is not canine, ‘whale’ is a
small word for a large object; ‘microorganism’ is the reverse.” Despite
evidence for non-arbitrary structure in the lexicon in terms of
semantic and syntactic categories (Bloomfield, 1933; Monaghan,
Shillcock, Christiansen, & Kirby, 2014), the fact remains that here
is no systematic reason why we call a dog a ‘dog’ and a cat a ‘cat’
instead of the other way around, or instead of ‘chien’ and ‘chat.’
In fact, our ability to manipulate such arbitrary symbolic represen-
tations is one of the hallmarks of human language and makes lan-
guage richly communicative, since it permits reference to arbitrary
entities, not just those that have iconic representations (Hockett,
1960).
Because of this arbitrariness, languages have many degrees of
freedom in what wordforms they choose and in how they carve
up semantic space to assign these forms to meanings. Although
the mapping between forms and meanings is arbitrary, the partic-
ular sets of form-meaning mappings chosen by any given language
may be constrained by a number of competing pressures and
biases associated with learnability and communicative efficiency.
For example, imagine a language that uses the word ‘feb’ to refer
to the concept HOT, and that the language now needs a word for
the concept warm. If the language used the word ‘fep’ for WARM,
it would be easy to confuse with ‘feb’ (HOT) since the two words dif-
fer only in the voicing of the final consonant and would often occur
in similar contexts (i.e. when talking about temperature). However,
the similarity of ‘feb‘ and ‘fep’ could make it easier for a language
learner to learn that those sound sequences are both associated
with temperature, and the learner would not have to spend much
time learning to articulate new sound sequences since ‘feb’ and
‘fep’ share most of their phonological structure. On the other hand,
if the language used the word ‘sooz’ for the concept WARM, it is unli-
kely to be phonetically confused with ‘feb’ (HOT), but the learner
might have to learn to articulate a new set of sounds and would
need to remember two quite different sound sequences that refer
to similar concepts.
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2 There are many existing models that attempt to capture these language-specific
rules. A simple model is an n-grammodel over phones, whereby each sound in a word
is conditioned on the previous n-1 sounds in that word. Such models can be extended
to capture longer distance dependencies that arise within words (Gafos, 2014) as well
as feature-based constraints such as a preference for sonorant consonants to come
after less sonorant consonants (Albright, 2009; Goldsmith & Riggle, 2012; Hayes,
2012; Hayes & Wilson, 2008).

3 Though as a anonymous reviewer pointed out, some have succeeded in doing so
(https://en.wikipedia.org/wiki/Mister_Mxyzptlk#Pronunciation).
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Here, we investigate how communicative efficiency and learn-
ability trade off in the large-scale structure of natural languages.
We have developed a set of statistical tools to characterize the
large-scale statistical properties of the lexicons. Our analysis
focuses on testing and distinguishing two pressures in natural lex-
icons: a pressure for dispersion (improved discriminability) versus a
pressure for clumpiness (re-use of sound sequences). Below, we dis-
cuss each in more detail.

1.1. A pressure for dispersion of wordforms

Under the noisy channel model of communication (Gibson,
Bergen, & Piantadosi, 2013; Levy, 2008; Shannon, 1948), there is
always some chance that the linguistic signal will be misperceived
as a result of errors in production, errors in comprehension, inher-
ent ambiguity, and other sources of uncertainty for the perceiver. A
lexicon is maximally robust to noise when the expected phonetic
distance among words is maximized (Flemming, 2004; Graff,
2012), an idea used in coding theory (Shannon, 1948). Such disper-
sion has been observed in phonological inventories (Flemming,
2002; Hockett & Voegelin, 1955; Liljencrants & Lindblom, 1972)
in a way that is sensitive to phonetic context (Steriade, 2001;
Steriade, 1997). The length and clarity of speakers’ pronunciations
are also sensitive to context predictability and frequency (e.g.,
Aylett & Turk, 2004; Bell et al., 2003; Cohen Priva, 2008;
Pluymaekers, Ernestus, & Baayen, 2005; Raymond, Dautricourt, &
Hume, 2006; Van Son & Van Santen, 2005), such that potentially
confusable words have been claimed to be pronounced more
slowly and more carefully. Applying this idea to the set of word-
forms in a lexicon, one would expect wordforms to be maximally
dissimilar from each other, within the bounds of conciseness and
the constraints on what can be easily and efficiently produced by
the articulatory system. Indeed, a large number of phonological
neighbors (i.e., words that are one edit apart like ‘cat’ and ‘bat’)
can impede spoken word recognition (Luce, 1986; Luce & Pisoni,
1998), and the presence of lexical competitors can affect reading
times (Magnuson, Dixon, Tanenhaus, & Aslin, 2007). Phonological
competition may also be a problem in early stages of word learn-
ing: Young toddlers fail to use a single-feature phonological dis-
tinction to assign a novel meaning to a wordform that sounds
similar to a very familiar one (e.g., learning a novel word such as
‘tog’ when having ‘dog’ in their lexicon, Dautriche, Swingley, &
Christophe, 2015; Swingley & Aslin, 2007).

1.2. A pressure for clumpiness of wordforms

Dispersion of wordforms in the lexicon may be functionally
advantageous. Yet, it is easy to see that a language with a hard con-
straint for dispersion of wordforms will have many long, therefore
complex, words (as words need to be distinctive). A well designed
lexicon must also be composed of simple signals that are easily
memorized, produced, processed and transmitted over generations
of learners. In the extreme case, one could imagine a language with
only one wordform. Learning the entire lexicon would be as simple
as learning to remember and pronounce one word. While this
example is absurd, there are several cognitive advantages for pro-
cessing words that are similar to other words in the mental lexicon.
Words that overlap phonologically with familiar words are consid-
ered to be easier to process because they receive support from
stored phonological representations. There is evidence that words
that have many similar sounding words in the lexicon are easier to
remember than words that are more phonologically distinct
(Vitevitch, Chan, & Roodenrys, 2012) and facilitate production as
evidenced by lower speech error rates (Stemberger, 2004;
Vitevitch & Sommers, 2003). They also may have shorter naming
latencies (Vitevitch & Sommers, 2003) (but see Sadat, Martin,
Costa, & Alario, 2014 for a review of the sometimes conflicting lit-
erature on the effect of neighborhood density on lexical produc-
tion). Additionally, words with many phonological neighbors
tend to be phonetically reduced (shortened in duration and pro-
duced with more centralized vowels) in conversational speech
(Gahl, 2015; Gahl, Yao, & Johnson, 2012).This result is expected if
faster lexical retrieval in production is associated with greater pho-
netic reduction in conversational speech as it is assumed for highly
predictable words and highly frequent words (Aylett & Turk, 2006;
Bell et al., 2003). In sum, while words that partially overlap with
other words in the lexicon may be difficult to recognize (Luce,
1986; Luce & Pisoni, 1998), they seem to have an advantage for
memory and lexical retrieval.

One source of wordform regularity in the lexicon comes from a
correspondence between phonology and semantics and/or syntac-
tic factors. Words of the same syntactic category tend to share
phonological features, such that nouns sound like nouns, verbs like
verbs, and so on (Kelly, 1992). Similarly, phonologically similar
words tend to be more semantically similar within a language,
across a wide variety of languages (Dautriche, Mahowald, Gibson,
& Piantadosi, 2016; Monaghan et al., 2014). The presence of these
natural clusters in semantic and syntactic space therefore results in
the presence of clusters in phonological space. Imagine, for
instance, that all words having to do with sight or seeing had to
rhyme with ‘look’. A cluster of ‘-ook’ words would develop, and
they would all be neighbors and share semantic meaning. One
byproduct of these semantic and syntactic clusters would be an
apparent lack of sparsity among wordforms in the large-scale
structure of the lexicon. There is evidence that children and adults
have a bias towards learning words for which the relationship
between their semantics and phonology is not arbitrary (Imai &
Kita, 2014; Imai, Kita, Nagumo, & Okada, 2008; Monaghan,
Christiansen, & Fitneva, 2011, 2014; Nielsen & Rendall, 2012;
Nygaard, Cook, & Namy, 2009). However such correspondences
between phonology and semantic may affect some aspects of the
production system: speech production errors that are semantically
and phonologically close to the target (e.g., substituting ‘cat’ by
‘rat’) are much more likely to occur than errors than are purely
semantic (e.g., substituting ‘cat’ by ‘dog’) or purely phonological
(e.g., substituting ‘cat’ by ‘mat’) in spontaneous speech (the mixed
error effect, e.g., Dell & Reich, 1981; Goldrick & Rapp, 2002;
Schwartz, Dell, Martin, Gahl, & Sobel, 2006).

Another important source of phonological regularity in the lex-
icon is phonotactics, the complex set of constraints that govern the
set of sounds and sound combinations allowed in a language
(Hayes & Wilson, 2008; Vitevitch & Luce, 1998). For instance, the
word ‘blick’ is not a word in English but plausibly could be,
whereas the word ‘bnick’ is much less likely due to its implausible
onset bn- (Chomsky & Halle, 1965).2 These constraints interact with
the human articulatory system: easy-to-pronounce strings like ‘ma’
and ‘ba’ are words in many human languages, whereas some strings,
such as the last name of Superman’s nemesis Mister Mxyzptlk, seem
unpronounceable in any language.3 Nevertheless, the phonotactic
constraints of a language are often highly language-specific. While
English does not allow words to begin with mb, Swahili and Fijian
do. Phonotactic constraints provide an important source of regularity
that aids production, lexical access, memory and learning. For

https://en.wikipedia.org/wiki/Mister_Mxyzptlk#Pronunciation
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instance, words that are phonotactically probable in a given lan-
guage (i.e., that make use of frequent transitions between pho-
nemes) are recognized more quickly than less probable sequences
(Vitevitch, 1999). Furthermore, infants and young children seem to
learn phonotactically probable words before learning less probable
words (Coady & Aslin, 2004; Storkel, 2004, 2009; Storkel & Hoover,
2010) and infants prefer listening to high-probability sequences of
sounds compared to lower probability sequences (Jusczyk & Luce,
1994; Ngon et al., 2013).4

The upshot of this regularity for the large-scale structure of the
lexicon is to constrain the lexical space. For instance, imagine a lan-
guage called Clumpish in which the only allowed syllables were
those that consist of a nasal consonant (like m or n) followed by
the vowel a. Almost surely, that language would have the words
‘ma’, ‘na’, ‘mama’, ‘mana’, and so on since there are just not that
many possible words to choose from. The lexical space would be
highly constrained because most possible sound sequences are for-
bidden. From a communicative perspective, such a lexicon would
be disadvantageous since all the words would sound alike. The
result would be very different from the lexicon of a hypothetical
language called Sparsese in which there were no phonotactic or
articulatory constraints at all and in which any phoneme was
allowed. In a language like that, lexical neighbors would be few
and far between since the word ‘Mxyzptlk’ would be just as good
as ‘ma’.

1.3. Assessing lexical structure

In this work, we ask whether the lexicon tends toward clumpi-
ness or sparseness. But, because of phonotactics and constraints on
the human articulatory system, a naive approach would quickly
conclude that the lexicon is clumpy. Natural languages look more
like Clumpish than they do like Sparsese since any given language
uses only a small portion of the phonological space available to
human language users.5 We therefore focus on the question of
whether lexicons show evidence for clumpiness or dispersion above
and beyond phonotactics in the overall (aggregate) structure of the
lexicon.

The basic challenge with assessing whether a pressure for dis-
persion or clumpiness drives the organization of wordform similar-
ity in the lexicon is that it is difficult to know what statistical
properties a lexicon should have in their absence. If we believe,
for instance, that the wordforms chosen by English are clumpy,
we must be able to quantify clumpiness compared to some base-
line. Such a baseline would reflect the null hypothesis about how
language may be structured in the absence of cognitive forces.
Indeed, our methods follow the logic of standard statistical hypoth-
esis testing: we create a sample of null lexicons according to a sta-
tistical baseline with no pressure for either clumpiness nor
dispersion. We then compute a test measure (e.g., string edit dis-
tance) and assess whether real lexicons have test measures that
are far from what would be expected under the null lexicons. We
present a novel method to compare natural lexicons to
phonotactically-controlled baselines that provide a null hypothesis
for how clumpy or scattered wordforms would be as the result of
only phonotactics. Across a variety of measures, we find that natu-
ral lexicons have the tendency to be clumpier than expected by
chance (even when controlling for phonotactics). This reveals a
4 Note that wordform similarity seems to have a different influence on word
learning: phonological probability helps learning but neighborhood density makes it
difficult to attend to and encode novel words (Storkel, Armbruster, & Hogan, 2006).

5 As an illustration, English has 44 phonemes so the number of possible unique 2-
phone words is 442 ¼ 1936, yet there are only 225 unique 2-phone word forms in
English among all the word forms appearing in CELEX (Baayen, Piepenbrock, & van
Rijn, 1993), thus only 11% of the space of possible two-phone words is actually used
in English (in the absence of any phonotactic rules).
fundamental drive for regularity in the lexicon that conflicts with
the pressure for words to be as phonologically distinct as possible.

2. Method

Assessing the extent to which the lexicons of natural languages
are clumpy or sparse requires a model of what wordforms should
be expected in a lexicon in the absence of either force.

This idea of developing models to simulate the properties of
language has antecedents in the domain of phonology: Previous
research developed quantitative models of contrast selection in
vowel inventories that are based on maximization of distinctive-
ness and minimization of stored information (e.g., Liljencrants &
Lindblom, 1972). Prior studies looking at the statistics of the lexi-
con—in particular Zipf’s law (Mandelbrot, 1958; Miller, 1957)—
have made use of a random typing model in which sub-linguistic
units are generated at random, occasionally leading to a word
boundary when a ‘‘space” character is emitted (see e.g., Ferrer-i
Cancho & Moscoso del Prado Martín, 2011).

Another line of research (including the present one), goes
beyond prior studies in that it takes into account phonotactic con-
straints, which previous studies did not. By assuming that the
sounds composing words are not generated randomly but follow
complex constraints (Baayen, 1991; Hayes, 2012), these studies
aim at modeling the true generative processes of language
(Howes, 1968; Piantadosi, Tily, & Gibson, 2013). Baayen (1991,
2001) studied wordform similarity in relation to words’ frequen-
cies by simulating the lexicon of Dutch through ecologically valid
models of language. In particular, Baayen (1991) implemented a
model combining a Markov string generator (see Mandelbrot,
1958) with a re-use model (see Simon, 1955) to generate words.
Such a model qualitatively approximates the frequency distribu-
tion of words, and importantly for our purpose the neighborhood
density of words. However, model selection in Baayen (1991)
was performed by evaluating the model’s ability to reproduce the
properties of the lexicon (i.e., frequency, wordform similarity), thus
mixing the properties that may arise by chance – the Markov
model can be viewed as a phonotactic model – and the properties
that may exist for cognitive reasons – the Simon model can be
viewed as an implementation of factors related to language usage
(see Baayen, 1991; p5).

Here we propose a fundamentally different approach, as we do
not select our model based on its ability to reproduce the pattern of
wordform similarity in the lexicon as a whole, but rather on its
ability to generate candidate words that are scored as having high
probability. As such, because our model selection is done indepen-
dently from the property we are interested in, we can analyze
whether the properties of the set of words that we obtain through
simulation differ from what we observe in the real lexicon, and in
what direction.

To accurately capture the phonotactic processes at play in real
language, we built several generative models of lexicons: n-
grams over phones, n-grams over syllables, and a PCFG over sylla-
bles. After training, we evaluated each model on a held-out dataset
to determine which most accurately captured each language. The
best model was used as the statistical baseline with which real lex-
icons are compared. We studied monomorphemes of Dutch, Eng-
lish, German and French. Because our baseline models capture
effects of phonotactics, we are able to assess pressures for clumpi-
ness or dispersion over and above phonotactic and morphological
regularities.

2.1. Real lexicons

We used the lexicons of languages for which we could obtain
reliably marked morphological parses (i.e., whether a word is
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morphologically simple like ‘glad’ or complex like ‘dis-interest-ed-
ness’). For Dutch, English and German we used CELEX pronuncia-
tions (Baayen et al., 1993) and restricted the lexicon to all lemmas
which CELEX tags as monomorphemic. The monomorphemic
words in CELEX were compiled by linguistic students and include
all words that were judged to be nondecomposed.6 For French,
we used Lexique (New, Pallier, Brysbaert, & Ferrand, 2004), and I.
D. (a native French speaker) identified monomorphemic words by
hand. Note that, for Dutch, French and German, these monomor-
phemic lemmas include infinitival verb endings (-er in French, -en
or -n in German and Dutch).7 Because we wanted to remove
polysemous words (which are morphologically related), we included
a phonemic form only once when two words with different spellings
shared the same phonemic wordform (e.g., English ‘pair’ and ‘pear’
are both pronounced /per/). We did this to be conservative, because
it is not clear how to separate homophones (which might be
morphologically unrelated) from polysemy. This exclusion
accounted for 236 words in Dutch, 646 words in English and 193
words in German. Note that by discarding these words, we already
exclude a source of clumpiness in the lexicon.

In order to focus on the most used parts of the lexicon and
not on words that are not actually ever used by speakers, we
used only those words that were assigned non-zero frequency
in CELEX or Lexique. Including these words in the simulation,
however, does not change the observed results. All three
CELEX dictionaries were transformed to turn diphthongs into
2-character strings in order to capture internal similarity among
diphthongs and their component vowels. In each lexicon, we
removed a small set of words containing foreign characters
and removed stress marks. Note that since we removed all the
stress marks in the lexicons, noun-verb pairs that differ in the
position of stress were counted as a single wordform in our
lexicon (e.g., in English the wordform ‘desert’ is a noun when
the stress in on the first vowel ‘désert’ but is a verb when
the stress is on the last vowel ‘desért’ but we use only the
wordform /desert/ once). These exclusions resulted in a lexicon
of 5343 words for Dutch, 6196 words for English, 4121 words
for German and 6728 words for French.
2.2. Generative models of lexicons

In order to evaluate each real lexicon against a plausible base-
line, we defined a number of lexical models. These models are all
generative and commonly used in natural language processing
applications in computer science. The advantage of using genera-
tive models is that we can use the set of words of real lexicons
to construct a probability distribution over some predefined seg-
ments (phones, syllables, etc.) that can be then used to generate
words, thus capturing phonotactic regularities.8 These models are
all lexical models, that is, their probability distributions are calcu-
lated using word types as opposed to word tokens, so that the pho-
nemes or the syllables from a frequent word like the are not
weighted any more strongly than those from a less frequent word.9

We defined three categories of models:
6 Note, however, that although we use monomorphemic words, the lexicon may
include word pairs that once shared a common morpheme but are no longer analyzed
as such.

7 Removing these verb endings and running the same analysis on the roots did not
change the results observed for these 3 languages (but see Section 4.2 for an analysis
where verb endings matter).

8 Fine-grained models of phonotactics exist for English (e.g., Hayes, 2012) yet
adapting them to other languages is not straightforward and there is no common
measure that will allow us to compare their performances.

9 Using token-based probability estimates instead of type-based probability
estimates to capture phonotactic regularities does not change the pattern of results
for the 4 languages.
� n-phone models: For n from 1 to 6, we trained a language
model over n phones. Like an n-gram model over words, the
n-phone model lets us calculate the probability of generating
a given phoneme after having just seen the previous n-1 pho-
nemes: Pðxijxi�ðn�1Þ; . . . ; xi�1Þ. The word probability is thus
defined as the product of the transitional probabilities between
the phonemes composing the word, including symbols for the
beginning and end of a word. For example, the word ‘guitar’ is
represented as I ɡ ɪ t ɑː r J in the lexicon where I and J are
the start and the end symbols. The probability of guitar consid-
ering a bigram model is therefore:

P(ɡ|I) � P(ɪ|ɡ) � P(t|ɪ) � P(ɑː|t) � P(r|ɑː) � P(J|r)

These probabilities are estimated from the lexicon directly. For
example P(ɑː|t) is the frequency of tɑː divided by the frequency
of t.

� n-syll models: For n from 1 to 2, we trained a language model
over syllables. Taking the same example as above, ‘guitar’ is rep-
resented as I ɡɪ tɑːr J and its probability from a bigram novel
over syllables is:

P(ɡɪ|I) � P(tɑː|ɡɪ) � P(J|tɑː)

In order to account for out-of-vocabulary syllables in the final log
probabilities, we gave them the same probability as the syllables
appearing one time in the training set.

� Probabilistic Context Free Grammar (PCFG; Manning &
Schutze, 1999): Words are represented by a set of rules of the
form X ! a where X is a non-terminal symbol (e.g., Word, Syl-
lable, Coda) and a is a sequence of symbols (non-terminal and
phones). We defined a word as composed of syllables differen-
tiated by whether they are initial, medial, final or both initial
and final.
10

and
Word ! SyllableI ðSyllableÞþ SyllableF

Word ! SyllableIF

Syllable ! ðOnsetÞ Rhyme

Rhyme ! Nucleus ðCodaÞ
Onset ! Consonantþ

Nucleus ! Vowelþ

Coda ! Consonantþ

These rules define the possible structures for words in the real
lexicon.10 They are sufficiently general to be adapted to the four
languages we are studying, given the set of phonemes for each
language. Each rule has a probability that determines the likeli-
hood of a given word. The probabilities are constrained such that
for every non-terminal symbol X, the probabilities of all rules
with X on the left-hand side sum to 1:

P
PðX ! aÞ ¼ 1. The like-

lihood of a given word is thus the product of the probability of
each rule used in its derivation. For example, the likelihood of
‘guitar’ is calculated as the product of all probabilities used in
the derivation of the best parse (consonant and vowel structures
are not shown for simplification):
The probabilities for the rules are inferred from the real lexicon

using the Gibbs sampler used in Johnson, Griffiths, and
Because of space considerations, we do not present the rules for SyllableI, SyllableF
SyllableIF. They follow the same pattern as the non-terminal Syllable.
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Goldwater (2007) and the parse trees for each word of the held-
out set are recovered using the CYK algorithm (Younger, 1967).

2.3. Selection of the best model

To evaluate the ability of each model to capture the structure of
the real lexicon, we trained each model on 75% of the lexicon (the
training set) and evaluated the probability of generating the
remaining 25% of the lexicon (the validation set). This process
was repeated over 30 random splits of the dataset into training
and validation sets. For each model type, we smoothed the proba-
bility distribution by assigning non-zero probability to unseen n-
grams or rules in the case of the PCFG. This was to allow us to
derive a likelihood for unseen but possible sequences of phonemes
in the held-out set. Various smoothing techniques exist, but we
focus on Witten-Bell smoothing and Laplace smoothing which
are straightforward to implement in our case.11 All smoothing tech-
niques were combined with a backoff procedure (though not for the
PCFG), such that if the context AB of a unit U has never been
observed, i.e. pðUjABÞ ¼ 0, then we can use the distribution of the
lower context, i.e. pðUjBÞ. The smoothing parameter was set by doing
a sweep over possible parameters and choosing the one that maxi-
mized the probability of the held-out set. The optimal smoothing
was obtained with Laplace smoothing with parameter .01 and was
used in all models described.

In order to compare models, we summed the log probability
over all words in the held-out set. The model that gives the highest
log probability on the held-out data set is the best model, in that it
provides a ‘‘best guess” for generating random lexicons that
respect the phonotactics of the language.

As shown in Fig. 1, the 5-phone model gives the best result for
all lexicons. In all cases, the 6-phone was the next best model, and
the 4-phone was close behind, implying that n-phone models in
general provide an accurate model of words. The syllable-based
models performed particularly poorly. Thus, we focus our attention
on the 5-phone model in the remainder of the results, treating this
as our best guess about the null structure of the lexicon (see the
Supplemental material, for a robustness check of our results across
the 3 best models according to our evaluation).
12 Note that while doing so we assume that the different test statistics we are
measuring (different measures of wordform similarity), are distributed normally
(which is reasonably the case, see Figures below). The advantage of computing a z-
score over doing a permutation test is that we can work with a reasonable number of
2.4. Building a baseline with no pressure for clumpiness or dispersion

We use the 5-phone model to generate simulated null lexi-
cons—ones without any pressure for clumpiness or dispersion
other than the 5-phone generating process—and study the position
of the real lexicon with respect to the simulated ones. For each lan-
guage, we trained the 5-phone model on the entire real lexicon and
used the resulting language model to generate words for 30 simu-
lated lexicons. It is simplest to visualize how word generation
works for the 1-phone case. In such case, all the phones of a given
language cover the entire probability space from 0 to 1, each phone
covering an interval proportional to its frequency in the real lexi-
con. We pick a random number between 0 and 1 and select the
phone that corresponds to that value. Phones are generated until
the we randomly generate the end-symbol. For the 5-phone model,
the same technique is applied except that each phone generation is
constrained by the last 4-phones of the word: We first generate a
random 5-phone sequence starting with 4 start-symbols, then we
generate the next 5-phone sequence to follow given the last 4
phones of the word according to the sequence probability, and so
on until the end-symbol is encountered.
11 Other smoothing techniques such as Good Turing or Kneser-Ney cannot be
implemented easily as they rely on the number of units for which frequency is equal
to one, which is not available in every model we tested.
The number of words generated for each simulated lexicon was
matched to the number of words in the corresponding real lexicon.
We additionally constrained the generation to ensure that the dis-
tribution of word lengths in each simulated lexicon matches the
distribution of word lengths in the real lexicon and that, similarly
to real lexicons, the simulated lexicon contained no homophones.
Practically, it means that we discarded a word every time we gen-
erated a word did not match the distribution of word lengths of the
real lexicon (either because all words of that length have already
been generated, or because that length did not exist in the real lex-
icon) or a word that already existed in the simulated lexicon.

On average our best lexicon model generated 52% real words
for Dutch, 53% for English, 47% for French, and 41% for German.
Note that it is not surprising that the best lexicon model generates
only about 50% of real words since the smoothing parameter
allowed the generation of non-words likely to be attested in the
language.

3. Results: Overall similarity in the lexicon

To compare real and simulated lexicons, it is necessary to define
a number of test statistics that can be computed on each lexicon to
assess how it uses its phonetic space. As in null hypothesis testing,
we compute a z-score using the mean and standard deviation esti-
mated from the 30 lexicons generated by our best lexicon model.
We then ask whether the real lexicon value falls outside the range
of values that could be expected by chance under the null model.
The p-value reflects the probability that the real lexicon value
could have arisen by chance under our chosen 5-phone null
model.12

We present results separately for a number of different mea-
sures of wordform similarity: minimal pairs, Levenshtein distance,
and several network measures.

3.1. Minimal pairs

We first considered the number of minimal pairs present in
each lexicon. A minimal pair is a pair of words of the same length
for which a single sound differs (e.g., ‘cat’ and ‘rat’). If real lexicons
are clumpier than expected by chance, then the real lexicons
should have more minimal pairs than their simulated counterparts.
If they are more dispersed, the real lexicons will have fewer mini-
mal pairs.

Fig. 2 summarizes this hypothesis test, showing how the vari-
ous simulated lexicons compare to the real lexicons in terms of
number of minimal pairs for each language. Each histogram repre-
sents a distribution of minimal pair counts broken up by language
across the 30 simulated lexicons. The red dot represents the real
lexicon value and the dotted lines represent the 95% confidence
interval. All histograms fall to the left of the red dot, which
suggests that the real lexicon has more minimal pairs than
any of the simulated ones in all four languages (all ps < :001;
see Table 1). This pattern suggests that lexicons are clumpier than
expected by chance.

To see whether this effect is driven by words of specific lengths,
we looked at the number of minimal pairs for each length. We con-
centrated on words of length 2–7 which represent more than 90%
random lexicons. Indeed, in a permutation test, the p-value is calculated as the
proportion of random lexicons where a given measure of wordform similarity would
be greater or less than the actual value we found in the real lexicon and require thus
substantially more random lexicons (typical permutations analyses use 1000 or
10,000 permutations).



Dutch English French German

-16000

-12000

-8000

-4000

1-
sy

ll
2-

sy
ll

1-
ph

on
e

2-
ph

on
e

3-
ph

on
e

pc
fg

4-
ph

on
e

5-
ph

on
e

6-
ph

on
e

1-
sy

ll
2-

sy
ll

1-
ph

on
e

2-
ph

on
e

3-
ph

on
e

pc
fg

4-
ph

on
e

5-
ph

on
e

6-
ph

on
e

1-
sy

ll
1-

ph
on

e
2-

sy
ll

2-
ph

on
e

3-
ph

on
e

pc
fg

4-
ph

on
e

5-
ph

on
e

6-
ph

on
e

1-
sy

ll
1-

ph
on

e
2-

sy
ll

2-
ph

on
e

3-
ph

on
e

pc
fg

4-
ph

on
e

5-
ph

on
e

6-
ph

on
e

ne
ga

tiv
e 

lo
gp

ro
b

Fig. 1. Each point represents the mean log probability of one model to predict the held-out data set. The n-phone models are represented in green, the n-syll models in pink
and the PCFG in blue. The 5-phone model has the highest log probability (indicated by a red segment) for all languages. The standard deviation of the mean is presented in
each, but is too small to be visible at this scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Comparison of the total number of minimal pairs for each language (red dot) to the distribution of minimal pairs counts across 30 simulated lexicons (histograms).
Vertical black lines represent 95% confidence intervals. For all four languages, the real lexicon has significantly more minimal pairs than predicted by our baseline. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
z-Statistics comparing the total number of minimal pairs in the real lexicon with the
chance distribution of mean l and standard deviation r corresponding to the
distribution of minimal pairs counts in the 30 simulated lexicon for each language.
Significant p-values are highlighted in bold.

Dutch English French German

Real 13,237 18,508 7,464 4,151
l (simulated) 11,653 16,276 6,830 3,594
r (simulated) 124 159 113 96
z 12.77 14.03 5.61 5.80
p <.001 <.001 <.001 <.001

13 Inspection of these 2-phoneme words reveals that most of these words are actual
wordforms present in the language (hence attested forms, e.g. ‘is’ in English) but are
not counted as distinct monomorphemic lemmas and thus are not included in our
real lexicons.
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of all words in each language. As shown in Fig. 3, the real lexicon
has more minimal pairs than the simulated ones consistently
across words of any length. For all languages, the effect is larger
for words of smaller length (length 3–4; 30–50% of all words in
each language) where most minimal pairs are observed. The smal-
ler effect for longer words (especially words of length 7 and above)
is likely due to a floor effect since longer words are far less likely to
have minimal pairs than short words. Note that, for words of
length 2, we see a somewhat degenerate case since there are
relatively few possible 2-phoneme words, yet for at least 3
languages it appears that there are more minimal pairs of length
2 than what would be expected by chance. This is explained by
the smoothing parameter of the model that allows the generation
of unseen sequences of sounds (recall that we smoothed the
probability distribution to account for rare sequences of sounds
that may be unseen in the lexicon of monomorphemes). As a
result, the model does not reproduce all the 2-phoneme words
of the languages.13

3.2. Levenshtein distance

We can evaluate clustering using more global measures by con-
sidering the average string edit distance (Levenshtein distance)
between words (Levenshtein, 1966). The Levenshtein distance
between two sound strings is simply the number of insertions,
deletions and replacements required to get from one string to
another. For instance, the Levenshtein distance between ‘cat’ and
‘cast’ is 1 (insert an ‘s’), and it is 2 between ‘cat’ and ‘bag’ (c! b,
t! g). To derive a measure of Levenshtein distance that summa-
rizes the whole lexicon, we compute the average Levenshtein dis-
tance between words in the lexicon by simply computing the
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distances between every pair of words in the lexicon and then
averaging these distances.14 If the lexicon is clumpier than expected
by chance, words will tend to be more similar to one another and we
expect to observe a smaller average Levenshtein distance. In
contrast, a larger average Levenshtein distance in the real lexicons
14 A possible objection to using Levenshtein distances is that there is little apparent
difference in phonological confusability between a pair like ‘cats’ and ‘bird’, which has
a Levenshtein distance of 4, and a pair like ‘cats’ and ‘pita,’ which has a Levenshtein
distance of only 3 but which is arguably even more different since it differs in syllable
structure. Ultimately, neither pair is especially confusable: the effects of phonological
confusability tail off after 1 or 2 edits.
relative to the simulated lexicons would suggest that the lexicon is
more dispersed than expected by chance.

As shown in Fig. 4, the average Levenshtein distance between
words is significantly smaller for the real lexicon than in the sim-
ulated lexicons for all four languages (see Table 2). The difference is
numerically small, but that is to be expected because minimal
pairs are statistically unlikely. That is, the edit distance between
two words is largely a product of their lengths. For example, on
average, the edit distance between two 5-letter words is close to
5. Nonetheless, the Levenshtein metric provides us with an addi-
tional piece of evidence that words in the real lexicons are more
similar to each other than what would be expected by chance.



Table 2
z-Statistics comparing the average Levenshtein distance in the real lexicon with the
chance distribution of mean l and standard deviation r corresponding to the
distribution of average Levenshtein distance in the 30 simulated lexicon for each
language. Significant p-values are highlighted in bold.

Dutch English French German

real 4.95 4.96 5.32 5.53
l (simulated) 4.97 4.97 5.34 5.57
r (simulated) 0.005 0.002 0.002 0.005
z �3.80 �6.0 �6.2 �6.9
p <.001 <.001 <.001 <.001
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Similarly, to see whether this effect is driven by words of speci-
fic lengths, we looked at the average Levenshtein distance for
words of length 2–7. As shown in Fig. 5, the real lexicon has a smal-
ler average Levenshtein distance than the simulated ones consis-
tently across words of most lengths in all languages.
3.3. Network measures

Simply calculating phonological neighbors, however, does not
tell us everything about how wordforms are distributed across a
lexicon. Perhaps some words have many neighbors while others
have few. Or it could be the case that neighbor pairs tend to be
more uniformly distributed across the lexicon. To answer these
questions, we constructed a phonological neighborhood network
as in Arbesman, Strogatz, and Vitevitch (2010), whereby we built
a graph in which each word is a node and all phonological neigh-
bors are connected by an edge, as in the toy example in Fig. 6,
which represents a lexicon of 14 words.

Fig. 7 shows examples of such networks for English 4-phone
words, where each word is a node, with an edge drawn between
any two words that are phonological neighbors (1 edit away).
Words with no or few neighbors tend to be clustered on the out-
side. (The ring of points around the perimeter of the circle repre-
sent the isolates–words with no neighbors.) Words with many
neighbors are, in general, plotted more centrally.

We compared the shape of lexicons generated by different
models to the real lexicon. As can be seen in Fig. 7, the
5-phone model most closely resembles the real lexicon.
Substantially more clustering is observed in the more restrictive
generative models: the 5-phone, 2-syll and PCFG models have
many more connected neighbors than a 1-phone model. This
corresponds to the fact that many more words are possible in
the 1-phone model (e.g. ‘cktw’ is a possible word), than in a more
constrained model that respects phonotactics. Therefore the space
is largest in the 1-phone model, and the probability of generating
a word that is a neighbor of a previously generated word is
correspondingly lower. Crucially, however, the real lexicon seems
even clumpier overall than the lexicons produced by any of the
generative models.

Using techniques from network analysis that have been fruit-
fully applied to describe social networks and other complex sys-
tems (Barabási & Albert, 1999; Wasserman & Faust, 1994; Watts
& Strogatz, 1998), we can quantitatively characterize the clustering
behavior of the lexicon. We computed the transitivity, average clus-
tering coefficient, and the proportion of nodes in the giant compo-
nent. All three of these measures can be used to evaluate how
tightly clustered the words in the lexicon are. A graph’s transitivity
is the ratio of the number of triangles (a set of 3 nodes in which
each node in the set is connected to both other nodes in the set)
to the number of triads (a set of 3 nodes in which at least two of
the nodes are connected). Transitivity therefore quantifies how
likely it is that A is connected to C, given that A is connected to B
and B is connected to C. The clustering coefficient of a node is a
closely related measure is defined as the fraction of possible
triangles that could go through a node that actually do go through
that node. We can then compare the average clustering coefficient
across networks. Both transitivity and average clustering
coefficient measure the extent to which nodes cluster together.
The largest cluster in a network is known as the giant component.
A network with many isolated nodes will have a relatively
small giant component, whereas one in which nodes are tightly
clustered will have a large giant component. These measures give
us some insight into the internal structure of the lexicon, over
and above those obtained by looking at more global measures such
as the number of minimal pairs and the average Levenshtein
distance.

Previous studies (Arbesman et al., 2010; Vitevitch, 2008)
showed that phonological networks across many languages (i.e.,
English, Spanish, Mandarin, Hawaiian, and Basque) exhibit several
interesting properties, notably that these networks display a
higher average clustering coefficient and higher transitivity than
random networks. Random networks in these studies are networks
having the same number of nodes and the same average number of
connection per nodes but whose connections between the nodes
have been randomly placed. However, such random networks do
not reflect what the lexical graph would be like if there were no
cognitive pressures on the lexicon as they do not take into account
the processes by which languages are generated (e.g.,
phonotactics).

Here, we provide an answer to this concern by comparing the
lexicon of natural languages to a statistical model (our 5-phone
model), our chance baseline, that reflects the phonotactic pro-
cesses of the language. If the real lexicon is clumpier than expected
by chance, we predict that, relative to the simulated lexicons, the
real lexicons will show higher transitivity, higher average cluster-
ing coefficients, and a larger proportion of words in the giant
component.

As observed in Fig. 8, there is no systematic difference between
the real lexicon and the simulated ones regarding the average clus-
tering coefficient measures and the proportion of nodes in the
giant component. Yet there is a significant effect of transitivity
(see Table 3). The reason that average clustering coefficient shows
less of an effect than transitivity is likely due to the fact that the
average clustering coefficient is more dependent on low-degree
nodes, like the many isolates that exist for longer words in lexical
networks. The transitivity measure avoids this problem and can be
viewed as a normalized clustering coefficient (Newman, 2003). The
lack of effect for the giant component measure may simply be
because the proportion of words in the giant component is not a
particularly robust measure since it can be dramatically shifted
by the addition or deletion of one or two key neighbors. The higher
transitivity, however, suggests that in addition to having more
overall neighbors in the real lexicons, the neighborhoods them-
selves are more well-connected than the neighborhoods in simu-
lated lexicons are. That is, if two words A and B are both
neighbors of word C, A and B are themselves more likely to be
neighbors in the real lexicon than they are in the simulated
lexicons.

4. Results: Finer-grained patterns of similarity in the lexicon

Across a variety of measures, we found that wordforms tend to
be more similar than expected by chance across all languages
under study. Yet, while wordform similarity might be explained
by a variety of cognitive advantages (see Introduction), it does
not necessarily follow that the lexicon is not subject to commu-
nicative pressure favoring wordform distinctiveness. A possibility
is that the similarity among wordforms may not be uniformly dis-
tributed across the real lexicon but may be constrained by other



Fig. 5. Average Levenshtein distance by word length (2–7) for each language (red dots) compared to the distribution of average Levenshtein distance obtained across 30
simulated lexicons (histograms). Vertical black lines represent 95% confidence intervals. ⁄ p < .05, ⁄⁄ p < .01, ⁄⁄⁄ p < .001. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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dimensions that maximize their distinctiveness in the course of
lexical processing, such as:

1. phonological distinctiveness: Not every pair of phonemes is
equally confusable. For instance, a minimal pair like ‘cap’ and
‘map’ are unlikely to be confused since /k/ and /m/ are quite dis-
tinct. But ‘cap’ and ‘gap’ differ by only the voicing of the first
consonant and are thus much more confusable (see e.g., Gahl
& Strand, 2016, for evidence that perceptual phonological
neighborhood density produces an effect on spoken word
recognition over and above phonological neighborhood density
based on segment difference). This more subtle contrast is
potentially much more troublesome for communication and is
therefore more likely to be avoided. So even though the number



Fig. 6. Example phonological network. Each word is a node, and any words that are
1 edit apart are connected by an edge.
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of minimal pairs is higher than expected by chance in natural
lexicons, this might not be problematic for communication as
long as they are not based on confusable contrasts.

2. grammatical categories: Not every pair of words is equally
confusable. For instance, nouns (e.g. ‘berry’) are more likely to
be confused with other nouns (e.g., ‘cherry’) than words from
another grammatical category (e.g., the intensifier ‘very’)
because they appear in a noun syntactic context which con-
strains listeners to expect a noun in this position (see e.g.,
Strand, Simenstad, Cooperman, & Rowe, 2014; Viebahn,
Ernestus, & McQueen, 2015) for evidence of phonological com-
petition among words of the same grammatical category.
Therefore, from a communicative point of view, there should
be more minimal pairs distributed across syntactic categories
than within the same syntactic category to minimize the risk
of miscommunication.

In the following we test how the simulated lexicons compare to
the real lexicons along these two dimensions.
15 For French we added nasalization as a vowel feature. The measure for French
vowel contrasts therefore ranged from 1 to 4.
4.1. Wordform distinctiveness in minimal pairs

The accurate recognition of a word depends on the distinctive-
ness of the phonological contrasts distinguishing words. For
instance, it is easier to confuse ‘cap’ (/kap/) with ‘gap’ (/gap/) than
with ‘map’ (/map/) simply because /k/ is more similar to /g/ than to
/m/. If lexicons aim to minimize confusability, they should prefer
distinctive contrast minimal pairs (e.g., ‘cap’/‘map’) as opposed to
confusable ones (e.g., ‘cap’/‘gap’). Thus, it is possible that lexicons
can have the learning benefit of having many minimal pairs, as
long as they are not based on confusable contrasts.

To evaluate this hypothesis, we looked at the 5% most frequent
minimal pair contrasts and derived a measure of confusability for
these contrasts. Phonemes can be characterized by their phonolog-
ical features: For consonants, place of articulation (e.g., labial, den-
tal, palatal), manner of articulation (e.g., stop, fricative, glides) and
voice (voiced, unvoiced); For vowels, height (low, mid, high), back-
ness (front to back) and roundness. For each of the 5% most fre-
quent pairs of contrasts, we calculated the difference in
phonological features between each member of the pair. For exam-
ple the pair /k/ and /m/ has 3 features that differ: place, manner
and voicing. Bailey and Hahn (2005) found that the number of
non-matching major articulatory features between two sounds is
a good measure of phonemic similarity between those sounds.
Thus, the test statistic that we use here is the average number of
features that differ in a minimal pair. This measure ranges from
1 (highly confusable) to 3 (highly distinguishable).15

Fig. 9 shows the average number of features that differ in the 5%
most frequent minimal pair contrasts in the real lexicon and across
all simulated lexicons for each language. The minimal pairs con-
trasts in the real lexicon are no more distinguishable in phonetic
space than are the minimal pairs in the chance lexicon. This indi-
cates that minimal pairs do not rely on more perceptible contrasts
for distinctiveness than what is expected by phonotactics alone.

The previous measure showed that frequent minimal pair con-
trasts are not more perceptible than expected by chance alone.
However, although the average number of different phonological
features between two minimally different words is a good predic-
tor of their acoustic similarity (Bailey & Hahn, 2005), there is evi-
dence that the nature of phonological features differing between
two words, a finer grained measure, is also an important factor
for words confusion (e.g., Cole, Jakimik, & Cooper, 1978; Martin &
Peperkamp, 2015; Miller & Nicely, 1955). In addition, we looked
only at the most used contrasts and not at the whole range of con-
trasts available. Thus, it could still be the case that a more percep-
tual and language-specific measure of phoneme confusability–
looking at a broader range of possible contrasts–would be a better
predictor of clumpiness. If the lexicons prefer minimal pairs to be
distinctive then we should observe more minimal pairs with easily
perceptible contrasts than with confusable contrasts. In order to
investigate this possibility, we looked at minimal pairs in English,
for which confusability data between phonemes are readily avail-
able (Miller & Nicely, 1955). We computed the distance between
the mean number of minimal pairs in our simulated lexicons and
the number of minimal pairs in the real lexicon for each of the
120 contrasts present in the Miller and Nicely dataset. The distance
is simply the difference between (a) the mean number of minimal
pairs in the simulated lexicons and (b) the number of minimal
pairs in the real lexicon, divided by the standard deviation of the
value across the 30 simulated lexicons. In effect, this acts as a z-
score that tells us how far the real lexicon value falls from what
we expect under a null model.

Fig. 10 shows the z-score obtained for each phonemic contrast
as a function of its confusability (the higher the more confusable).
As can be observed, the z-score is uniformly above 0 which is in
line with previous results showing that there are more minimal
pairs in lexicons than expected by chance. Yet, crucially there is
no effect of confusability on the z-score (p > 0:5). That is, there is
no evidence that the English lexicon is more clumpy around highly
distinctive contrasts than around highly confusable contrasts.

One obvious limitation of this analysis is that we have only
looked at a single language. In addition, the original study of
Miller and Nicely (1955) examined the confusion between conso-
nants in pre-lexical perception by playing a noisy version of the
VCV (Vowel-Consonant-Vowel) materials to participants. Thus
there are two reasons why the matrix of confusability they
obtained may be not appropriate for our case. First, the spectral
noise used in this study may interfere with the recognition process,
so that this confusion matrix may reflect the recognition of sounds
in noise, rather than the general perception of sounds. Second, it
may be the case that it is not pre-lexical confusion between pho-
nemes that matters but rather lexical confusion, as shown by
e.g., Ernestus and Mak (2004) and Miller and Nicely (1955).

Despite the limitations of these two analyses taken separately,
it appears that the clumpiness effect is driven not just by highly
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Fig. 7. Sampling of phonological neighbor network from the different generative models applied on all 4-phone wordforms of the English lexicon. Each point is a word, and
any two connected words are phonological neighbors. The simulated lexicons from less constrained generative models are less clustered and have more isolates (words with
no neighbors, plotted on the outside ring).
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distinct sound sequences but is present even when considering
highly confusable sounds. This points to a pressure for lexical
clumpiness which may work against robust communication.

4.2. Wordform similarities within and across grammatical categories

Words do not usually appear in isolation but are embedded in
richer linguistic contexts. A wealth of studies show that adults
and children use the context of a sentence to constrain lexical
access (e.g., Altmann & Kamide, 1999; Borovsky, Elman, &
Fernald, 2012). Hence even if the lexicon is clumpy as a whole,
the context might be sufficient to disambiguate between two sim-
ilar wordforms. Several studies have shown that the grammatical
context of a word may constrain lexical access to grammatically
appropriate competitors of the word (Strand et al., 2014;
Viebahn et al., 2015). Thus, one obvious contextual disambiguation
is the syntactic category of words. For example, consider the sen-
tence ‘‘did you see my sock?” The chance that a native English
speaker might confuse the word ‘sock’ with ‘wok’ in the context
of following ‘my’ might be greater than confusing ‘sock’ with
‘mock’, because ‘wok’ is a noun–which is consistent with the
syntactic context–whereas ‘mock’ is a verb, which is inconsistent
with the syntactic context. Moreover, because children as young
as 18-months have been shown to use function words to recognize
verbs and nouns on-line (Cauvet et al., 2014; Dautriche, Fibla, &
Christophe, 2015; de Carvalho, He, Lidz, & Christophe, 2015),
these sorts of categorizing effects may be crucial to language
acquisition.



Table 3
z-Statistics comparing various network measures (Average clustering coefficient, proportion of words in the giant component, transitivity) in the real lexicon with the chance
distribution of mean l and standard deviation r corresponding to the distribution of these measures in the 30 simulated lexicon for each language. Significant p-values are
highlighted in bold.

Dutch English French German

Average Clustering coefficient Real 0.2 0.22 0.12 0.16
l (simulated) 0.19 0.21 0.13 0.14
r (simulated) 0.005 0.003 0.002 0.005
z 0.1 2 -2 2.7
p 0.9 .05 .05 <.01

Giant component Real 0.72 0.66 0.46 0.52
l (simulated) 0.72 0.68 0.46 0.53
r (simulated) 0.008 0.006 0.006 0.01
z -0.1 -2.4 -0.4 -0.9
p 0.9 <.05 0.7 0.4

Transitivity Real 0.3 0.35 0.31 0.36
l (simulated) 0.3 0.33 0.3 0.32
r (simulated) 0.003 0.003 0.004 0.007
z 1.8 5.4 2.6 5.5
p 0.07 <.001 <.05 <.001
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Fig. 9. Distributions of the average number of feature difference for the 5% most frequent minimal pair contrasts in the simulated lexicon compared to the real lexicon (the
red dot). The dotted lines represent 95% confidence intervals derived from the distribution of simulated lexicons. There is no evidence that these frequent contrasts are more
perceptible than expected by chance (all ps > :30). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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As with the lexicon more broadly, there are two possible out-
comes that could arise from comparing word forms within as
opposed to across syntactic categories. On the one hand, because
context is usually enough to distinguish among different parts of
speech, confusability of words should be less of a problem across
syntactic categories. That is, even though ‘bee’ and ‘see’ are mini-
mal pairs, one is unlikely to misperceive ‘‘I was just stung by a bee”
as ‘‘I was just stung by a see.” This account predicts more similarity
across syntactic categories than within syntactic categories. On the
other hand, increased similarity between words of the same part of
speech, i.e., having nouns that sound like other nouns and verbs
that sound like other verbs, could convey a processing and a learn-
ing advantage (Monaghan et al., 2011). Under this account, we
would expect more similarity within as opposed to between syn-
tactic category.

For this evaluation, we used the Part Of Speech (POS) tags in
CELEX for Dutch, English and German and in Lexique for French
to count the number of minimal pairs within the same syntactic
categories (e.g., ‘wok’/‘sock’) and across different syntactic
categories (e.g., ‘mock’/‘sock’). For each simulated lexicon, we
randomly assigned the syntactic categories of real words of length
n to generated words of length n and similarly counted the number
of minimal pairs appearing within and across the same syntactic
categories.16 Note that for wordforms having several syntactic
16 This was to ensure that certain categories, such as pronouns, which are reserved
for smaller words will not be assigned to longer words.
categories in the real lexicon (homophones, e.g., ‘seam’/‘seem’ which
are counted as a single wordform in our lexicons, /sim/), we chose
the syntactic category of the most frequent item (e.g., because the
most frequent meaning of /sim/ is ‘seem’ it will be categorized as a
verb). Because there are more across-category word pairs than
within-category word pairs across languages, we compared the
probability of finding a minimal pair, across-categories or within
category. These probabilities were obtained by dividing the number
of minimal pairs appearing across and within categories by the
number of across- and within-category word pairs respectively.
The final measure is thus the probability of getting a minimal pair,
across categories or within a category.

As before, we compare the real lexicon to the simulated lexicons
but break the measures down by similarity within syntactic
category (only looking at the similarity of nouns to other nouns,
verbs to other verbs, and so on) and between syntactic category
(only looking at the similarity of nouns to non-nouns, verbs to
non-verbs, etc.). As shown in Fig. 11, we found that there are more
minimal pairs within the same syntactic category in the real
lexicons than would be expected by chance for all 4 languages.
That is, for within syntactic category analyses, all four languages
are clumpier than expected under the null models. For the
across-category analysis, the result is less clear. For French,
German, Dutch, there are fewer minimal pairs across different
syntactic categories than would be expected by chance. For
English, there are more across-category minimal pairs than
expected by chance (see Table 4).
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Fig. 11. Distributions of the probability of getting a minimal pair within and across syntactic categories compared to the real lexicon (the red dot). The dotted lines represent
95% confidence intervals derived from the distribution of simulated lexicons. All 4 languages are significantly more likely to have minimal pairs within categories than would
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A subsequent post hoc analysis found that the unclear results
for the across-category analysis can in part be explained by the
infinitival affixes that appear on French, Dutch, and German verbs.
When we remove these verb endings, the across-category differ-
ences look roughly like what one expects by chance (see Fig. 12).
This result is unsurprising since the presence of verb stems like -
er means that any given verb is less likely to be a neighbor of a
noun since most nouns do not end in -er. The within-category anal-
ysis is qualitatively unchanged by focusing on roots (in all cases the
real lexicon is clumpier than expected by chance).
Note that the probability of getting a minimal pair within the
same syntactic category is greater than the probability of getting
a minimal pair across different syntactic categories for Dutch,
French and German but not for English (compare the position of
the red dots in the graphs from the upper and the lower row, lan-
guage by language). A possible explanation for this difference is
that there is still some verbal morphology present in the lemmas
for Dutch, French and German that we could not capture, and this
morphology artificially inflates the number of within-category
minimal pairs compared to the number of across-category minimal



Table 4
z-Statistics comparing the probability of getting a minimal pair within and across syntactic categories in the real lexicon with the chance distribution of mean l and standard
deviation r corresponding to the distribution of the probability of having a minimal pair in the 30 simulated lexicon for each language. The red p-values shows a significant effect
of clumpiness and the blue ones a significant effect in the opposite direction.

Dutch English French German

Across syntactic categories Real 0.002 0.0048 0.0016 0.0017
l (simulated) 0.0033 0.0044 0.0019 0.0021
r (simulated) 1e�04 1e�04 1e�05 1e�04
z �21.5 9 �6 �6.6
p

Within syntactic categories Real 0.0069 0.0045 0.0018 0.0037
l (simulated) 0.0046 0.0038 0.0015 0.0026
r (simulated) 1e�04 1e�04 1e�05 1e�04
z 31.2 9.6 6.5 11.7
p
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Fig. 12. As in Fig. 11, these histograms show the distribution of the probability of getting a minimal pair within and across syntactic categories compared to the real lexicon,
but without infinitive endings on verbs in Dutch, French and German.
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pairs. For instance, in Dutch, verbs of motion systematically display
phonaesthemes (typically a schwa followed by a sonorant) that are
not analyzed as suffixes. Another possibility for this difference is
that the probability of getting a minimal pair across and within
syntactic categories may not be directly comparable because the
length distributions for within-category words and across-
categories words are different and may thus drive part of the dif-
ference found here. As a result we prefer to concentrate on the
comparison of the real lexicon with the simulated lexicons, since
in this comparison these potential confounds are controlled for.

4.3. Interim summary

To sum up, we did not find evidence that clumpiness is more
likely among perceptible than confusable phonological contrasts.
That is, it seems that confusable phoneme pairs like ‘m’ and ‘p’
are just as likely to be the basis of minimal pairs as less confusable
pairs. One possible explanation for this null result is that even
highly confusable phoneme pairs like ‘b’ and ‘p’ are only confusable
in certain specific contexts, such as after vowels at the end of
words as in ‘cab’ and ‘cap’ (Steriade, 1997). Even then, though, con-
text might be enough to disambiguate the words such that the con-
fusability is not an issue.
We found evidence for more clumpiness within syntactic cate-
gory than across syntactic categories. Again, this cannot be driven
bymorphology here as we focused on monomorphemic words. Yet,
this may potentially be the consequence of a more general pattern:
Words of the same syntactic category may share more phonologi-
cal properties than words of different classes (Fitneva,
Christiansen, & Monaghan, 2009; Kelly, 1992). For English words,
it is also the case that we see more clustering across categories
than expected by chance. But that is not the case for French, Ger-
man, or Dutch when we control for the presence of infinitival
markers. Therefore, at least for these languages, it may even be
the case that this syntactic category effect drives the larger clumpi-
ness effect observed across the lexicon. This would be consistent
with the findings of Monaghan et al. (2014), Tamariz (2008) and
Dautriche et al. (2016), who show a relationship between semantic
and phonological similarity across many languages. This is also
consistent with the Functional Load Hypothesis (e.g., Hockett,
1967; Martinet, 1952): The Functional Load Hypothesis states that
the likelihood of diachronic merger between two sounds depends
on the amount of ‘work’ that the pair does in distinguishing words
in the lexicon, i.e., the more minimal pairs distinguished by a pho-
neme contrast, the less likely that contrast is to merge (Wedel,
Kaplan, & Jackson, 2013). Interestingly, the more within-syntactic
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category minimal pairs distinguished by a phoneme contrast, the
less likely that contrast is to merge (Wedel, Jackson, & Kaplan,
2013). This may explain why we found more minimal pairs within
syntactic categories than across.
5. General discussion

We have shown that lexicons use their degrees of freedom in a
systematic and interesting way. While we can still characterize the
relationship between wordforms and meanings as arbitrary, struc-
ture emerges when one considers the relationships within the
space of possible wordforms. Across a wide variety of measures
of phonological similarity, the real lexicons of natural languages
show significantly more clustering than lexicons produced by the
best generative model selected by our model comparison proce-
dure (see point Section 2.3).

Because we focused on monomorphemic words, this effect can-
not be a result of words sharing prefixes and suffixes. It is also not a
product of any structure captured by sound-to-sound transition
probabilities such as phonotactic regularities, since our models
capture these patterns.

We started this paper by asking whether lexicons of natural lan-
guages show evidence for clumpiness or sparsity above and
beyond phonotactics. Yet, phonotactics may be viewed as being
itself a source of clumpiness—as a way of constraining the space
of words. Because of the phonotactic structure that exists in every
language, we thus expect a baseline level of clumpiness. And our
models surely capture this clumpiness baseline as a 5-phone
model is more constraining than a 4-phone model and thus allows
for fewer possible words. An important question that follows is
whether the effect of clumpiness we report here is a by-product
of the reduction of the space of possible words caused by phono-
tactics (but that our null lexicon model is not constrained enough
to capture) or whether this reflects phonological regularity beyond
the baseline imposed by phonotactics. While separating out the
contribution of phonological regularity from the reduction of the
space of possible words caused by phonotactics is beyond the
scope of this article, it is important to note that it is not the case
that a model with increased constraints on the space of possible
words mechanically predicts that words are more clustered
together. Indeed, the 4-phone model is closer to the real lexicon on
most wordform similarity measures (see Supplemental material)
and thus is more clumpy than the 5-phone model yet allows for
more possible words. Our focus in this paper, using this method,
has been thus to show that phonological clustering exists above
and beyond the clumpiness effects already inherent to a model
that captures sound-to-sound transition probabilities.

One explanation for the clumpiness in the lexicon is shared
phonetic properties of semantically related words. Like ‘skirt’ and
‘shirt’, many words in the language share deep etymological roots.
Moreover, the presence of sound symbolism in the lexicon is
another source of structure in the lexicon not captured by our
models. For instance, there is a tendency in English for gl- words
to be associated with light reflectance as in ‘glimmer’, ‘gleam’
and ‘glisten’ (Bergen, 2004; Bloomfield, 1933). There are addition-
ally cross-linguistic correspondences between form and meaning,
such as a tendency for words referring to smallness to contain high
vowels (Hinton, Nichols, & Ohala, 2006; Sapir, 1929). Interestingly,
recent studies show that phonologically similar words tend to be
more semantically similar across measures of wordform similarity
over many typologically different languages (Dautriche et al.,
2016; Monaghan et al., 2014; Tamariz, 2008). This suggests that
clumpiness in the lexicon cannot be attributed to small islands of
sound symbolism (see in particular Monaghan et al., 2014). Rather,
it reveals a fundamental drive for regularity in the lexicon, a drive
that conflicts with the pressure for words to be as phonologically
distinct as possible.

One other possible source of the lexicon’s clumpiness is that
speakers may preferentially re-use common articulatory
sequences. That is, beyond just phonotactics and physical con-
straints, speakers may find it easier to articulate sounds that they
already know. Recall our example of the language in which there
is only one word for a speaker to learn. She would quickly become
an expert. Along those lines, the presence of any given sound
sequence in the language makes it more likely that the sequence
will be re-used in a new word or a new pronunciation of an exist-
ing word. In that sense, the lexicon ‘overfits’: any new word is dee-
ply dependent on the existing words in the lexicon. Note that
because our baseline used a lexical generation model, any pressure
for re-use must occur over and above the observed statistical
trends (e.g., 5-phone sequences) in the language.

Relatedly, lexical clumpiness may be advantageous for some
aspects of word production. While words having many neighbors
are challenging for word recognition (Luce, 1986; Luce & Pisoni,
1998), they may be easy words to produce (Gahl et al., 2012;
Vitevitch, 2002; Vitevitch & Sommers, 2003). Previous studies sug-
gest that listener-oriented models of speech production– where
speakers adjust their speech to ensure intelligibility of words that
might otherwise be difficult to understand (as could be words with
many neighbors)– are limited by attentional demands and working
memory in conversational speech (Arnold, 2008; Lane, Groisman, &
Ferreira, 2006). However, speakers may produce words with many
neighbors faster, because they are easier to access and retrieve
(Dell & Gordon, 2003; Gahl et al., 2012). Hence a clumpy lexicon
would be beneficial for a speaker-oriented model of speech pro-
duction associated with rapid lexical access and retrieval.

A clumpy lexicon also may allow for easier compression of lex-
ical knowledge. By having words that share many parts, it may be
possible to store words more easily. Though we concentrate here
on monomorphemic lemmas, these account only for one third of
all the lemmas in the lexicon. The fact that languages re-use words
or parts of words in the remaining two thirds of the lemmas shows
that re-use of existing phonological material must be important
(though in those cases languages are re-using part of the semantic
material as well). It may even be the case that, much as morphol-
ogy allows the productive combination of word parts into novel
words, there exist sound sequences below the level of the mor-
pheme that also act as productive units of sound.

Phonological proximity may also display some functional
advantages in the context of word learning. To form a novel lexical
entry in their lexicon, children must be able to extract a word form
and associate it to a meaning. In theory, a clumpy lexicon may be
advantageous for learning as it reduces the amount of new infor-
mation that must be represented in the lexicon. For instance, to
learn a novel word such as ‘blick’, children need to create a novel
phonological representation /blIk/ that needs to be associated to
a novel semantic representation. Re-using parts of existing phono-
logical forms may be more efficient because it allows children to
minimize the amount of phonological information that must be
learnt and remembered (see also Storkel & Maekawa, 2005;
Storkel, Maekawa, & Aschenbrenner, 2012).

Despite the fact that one might expect the lexicon to be maxi-
mally dispersed for communicative efficiency, these results
strongly suggest that the lexicon is not nearly as sparse as it could
be–even given various phonetic constraints. Thus, why does com-
municative efficiency not conflict with clumpiness in the lexicon?

One possibility is that clumpiness does not appear randomly in
the lexicon but is organized along dimensions that maximize
wordform recoverability. We hypothesized that recoverability
could be enhanced if similar wordforms such as minimal pairs
were disambiguated by minimally confusable sounds. Our results
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provide no evidence that the lexicon is less clumpy for confusable
sounds than for non-confusable sounds. Relatedly, lexical access
might be faster in a lexicon where confusable wordforms span dif-
ferent syntactic categories. Yet we find that, if anything, wordforms
are more similar within the same syntactic category than what
would be expected by chance for all four languages despite the
absence of morphology.

Another possibility that would explain why communicative
efficiency does not conflict with clumpiness in the lexicon is that
contextual information is usually enough to disambiguate words,
even when their phonological forms are similar. Therefore, it sim-
ply does not matter whether certain words are closer together in
phonological space than they might otherwise be. Piantadosi,
Tily, and Gibson (2012) showed that lexical ambiguity, such as
dozens of meanings for short words like ‘run’, does not impede
communication and in fact promotes it by allowing the re-use of
short words. In a similar way, there may be a communicative
advantage from having not just identical words re-used, but from
re-using words that are merely similar. In all cases, context may
be enough to disambiguate the intended meaning and avoid confu-
sion–whether it be confusion between two competing meanings
for the same word or confusion between two similar-sounding
words.

Likewise, our analysis here concentrated on the phonemic rep-
resentation of words, ignoring the fact that speech contains a lot of
fine phonetic details that listeners could use to disambiguate
between words. For instance, pairs of homophones such as ‘thym
e’/‘time’ in English can be differentiated based on their duration
(Gahl, 2008). Kemps, Wurm, Ernestus, Schreuder, and Baayen
(2005) show that English and Dutch listeners are sensitive to
fine-grained durational differences between a base word (‘run’)
and the base word as it occurs in an inflected or derived word
(‘runner’). Being sensitive to these cues may also be useful to dis-
ambiguate between words that sound similar such as minimal
pairs.

Clumpy lexicons seem to be advantageous for word production,
word learning, and memory, but detrimental for word perception.
Yet the interaction of these cognitive and articulatory constraints
with a pressure for clumpiness or a pressure for dispersion is com-
plex. Clearly there are many functional pressures at play for the lis-
tener, the speaker, and the learner, and they do not individually
point towards either clumpiness or distinctiveness of wordforms.
In the context of word learning, wordform similarity may be both
advantageous and disadvantageous: Similar-sounding words (1)
minimize the amount of information that needs to be stored
(e.g., Storkel & Maekawa, 2005); (2) help for word segmentation
(Altvater-Mackensen & Mani, 2013); (3) are easier to recognize
because they are composed of highly-probable sequences of
sounds (e.g., Jusczyk & Luce, 1994); and (4) help children group
words into categories (i.e., nouns, verbs) when phonological prox-
imity is aligned with semantic or syntactic classes (Monaghan
et al., 2011). Yet when it comes to individual word learning, learn-
ers have a hard time learning a novel meaning for a sound string
similar to a word they know (e.g., ‘tog’ a phonological neighbor
of the familiar word ‘dog’; e.g., Swingley & Aslin, 2007) and this
disadvantage is even greater when phonological similarity is
aligned with syntactic or semantic similarity (Dautriche et al.,
2015). The situation is similar in the context of word production:
while clumpy lexicons may be easier to produce, they may also
give rise to a greater number of speech errors when the relation-
ship between phonological proximity and semantic proximity is
high (e.g., Dell & Reich, 1981). Importantly, our results suggest that
the functional challenges associated with wordform similarity
weigh less than its functional advantages. In other words, the
sum of all these functional pressures (for the listener, the speaker,
the learner) pushes towards a clumpy lexicon.
Certainly, while we can probably get an idea of the weight of
different functional pressures from observing the structure of the
lexicon (and of languages more generally), we cannot tell whether
they actually explain why lexicons look the way they do. Research
looking at language evolution offers a promising venue to under-
stand how functional pressures from both language usage and lan-
guage learning combine to produce the particular pattern of
clumpiness observed in human languages. By observing how lan-
guage is transmitted culturally from one generation to the next,
using either computational models or experiments with human
participants in the lab, it is possible to isolate how languages are
shaped by the processes of both cross-generation transmission
(language learning) and within-generation communication (lan-
guage use) (Kirby, Cornish, & Smith, 2008; Kirby & Hurford,
2002; Kirby, Tamariz, Cornish, & Smith, 2015; Smith, Kirby, &
Brighton, 2003). The methodology used here, whereby the real lex-
icon is compared to a distribution of statistically plausible ‘null’
lexicons, could be used to generate hypotheses about the lexicon
and human language more generally, that could be tested experi-
mentally using such language evolution techniques. While much
previous work has focused on simply measuring statistical proper-
ties of natural language, modern computing power makes it possi-
ble to simulate thousands of different languages with different
constraints, structures, and biases. By comparing real natural lan-
guage to a range of simulated possibilities, it is possible to assess
which aspects of natural language occur by chance and which exist
for a reason.

Of course, we must keep in mind that the present work exam-
ines only a small number of European languages. Estimating to
what extent this effect generalizes would require a larger number
of languages, and we undertake exactly such a project in other
studies (Dautriche et al., 2016; Mahowald, Dautriche, Gibson, &
Piantadosi, in revision). Specifically, we used a corpus of 100 lan-
guages from Wikipedia to show large-scale evidence that (a) more
frequent words are more orthographically probable and have more
minimal pairs than less frequent words; and (b) semantically
related words are more phonetically similar than less related
words. While the Wikipedia corpus does not focus on monomor-
phemes and is therefore less controlled than the results presented
here, it suggests that the clumpiness we observe in the lexicons of
Dutch, English, German, and French likely generalizes to other lan-
guages as well.

In future work, it may be possible to test increasingly sophisti-
cated models of phonotactics using this methodology. One possi-
bility is that our models of phonotactics are simply not good
enough yet to capture the rich structure of natural language. But
the results here suggest that any ‘‘null” model that can approxi-
mate natural languages will need to account not just for the pre-
ferred sounds of a language but for the entire space of existing
words. That is, the goodness of ‘dax’ as an English word depends
not only on an underlying model of English sound structure but
also on the fact that ‘lax’ and ‘wax’ are words, that ‘bax’ is not,
and on countless other properties of the existing lexicon. Another
possibility is that our models of phonotactics capture more than
the phonotactic constraints of languages (see above for others pos-
sible sources of clumpiness). It would be thus informative for
future work to separate clearly phonotactic constraints from other
sources of regularity to have a more thorough picture on how
clumpiness patterns can be interpreted.

Finally, the present work has focused on quantifying wordform
similarity in natural language synchronically, but it is likely that we
may have a lot to learn from diachronic data to observe how
clumpiness evolve in the lexicon as new words appear in the lan-
guage. While we discussed the possibility that there are pressures
for clumpiness exerting on the lexicon, another possibility is that
there are only pressures for dispersion and not clumpiness, but
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that word coining leads to clumpy initial states.17 For example, ‘fl
our’/‘flower’ were originally two senses of a single word, and so pro-
nounced identically. Now that English speakers perceive them as
entirely different words, it is plausible that processes of dispersion
could act to bring their pronunciations apart, as happened with ‘on
e’/‘a(n)’ and may be happening in ‘thyme’/‘time’. This would lead
to a lexicon that prefers minimal pairs to avoid lexical ambiguities.
Diachronic data may thus shed light onto the mechanism by which
clumpiness arises in the lexicon.

Overall, we have shown that lexicons are more richly structured
than previously thought. The space of wordforms for Dutch, Eng-
lish, German and French is clumpier than what would be expected
by the best chance model, across a wide variety of measures: min-
imal pairs, average Levenshtein distance and several network
properties. The strongest evidence comes from minimal pairs, for
which the effect size was quite large. From this, we propose that
the clustered nature of the lexicon holds over and above the pat-
terns that are captured by a phonotactic model, suggesting that
the pressure for dispersion in lexical systems is a deep drive for
regularity and re-use, beyond standard levels of lexical and mor-
phological analysis.
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