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Abstract
We examine the conceptual development of kinship through the lens of program induction. We present a computational
model for the acquisition of kinship term concepts, resulting in the first computational model of kinship learning that is
closely tied to developmental phenomena. We demonstrate that our model can learn several kinship systems of varying
complexity using cross-linguistic data from English, Pukapuka, Turkish, and Yanomamö. More importantly, the behavioral
patterns observed in children learning kinship terms, under-extension and over-generalization, fall out naturally from
our learning model. We then conducted interviews to simulate realistic learning environments and demonstrate that the
characteristic-to-defining shift is a consequence of our learning model in naturalistic contexts containing abstract and
concrete features. We use model simulations to understand the influence of logical simplicity and children’s learning
environment on the order of acquisition of kinship terms, providing novel predictions for the learning trajectories of these
words. We conclude with a discussion of how this model framework generalizes beyond kinship terms, as well as a discussion
of its limitations.

Keywords Word-learning · Conceptual development · Bayesian modeling

In order to acquire a language, learners have to map words
to objects and situations in the world. From these mappings,
they must then learn the underlying concept of the word that
will generalize to new objects and situations. The mappings
between words and concepts, acquired over a lifetime, will
constitute the majority of information a language user stores
about linguistic representations (Mollica & Piantadosi,
2019). While there is vast literature on how children might
solve the problem of mapping words to the world (e.g.,
Carey & Bartlett, 1978; Smith & Yu, 2008; Frank, Good-
man, & Tenenbaum, 2009; Medina, Snedeker, Trueswell, &
Gleitman, 2011; Siskind, 1996), we know less about how
children use these mappings to inform their concepts in
order to generalize words to new contexts. Research on chil-
dren’s early word generalization has focused on uncovering
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biases in children’s generalizations (e.g., taxonomic con-
straints, Markman, 1991) and explaining the mechanism
and types of input children need to overcome these biases
(e.g., Gentner & Namy, 1999; Graham, Namy, Gentner, &
Meagher, 2010); however, research has yet to precisely pre-
dict children’s behavior across the developmental trajectory.
We propose a theoretical model from two first principles—
simplicity and strong sampling, to scale up our understand-
ing of how children’s word meanings should change as
they observe more data. In the process, we demonstrate
that several seemingly unrelated patterns in children’s early
word use can be explained by the process of induction in
naturalistic learning contexts.

Understanding how children’s conceptual knowledge
changes over development is a non-trivial task. It is no
secret that children’s early word usage does not reflect
their underlying knowledge. In general, young children’s
definitions and, more importantly, their behavior suggests
a partial knowledge of the underlying concept even though
they can produce the word and appear to fully understand
the word (Clark, 1973; Bloom, 2000). Interestingly, tasks
assessing this partial knowledge have revealed systematic
patterns of word use as children learn the true underlying
meanings of words. Around their first birthday, children
sometimes show a preference for words to label individual
referents and, thus, under-extend a term to other correct
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referents (Clark, 1973; Kay & Anglin, 1982). For example,
a young child may refer to their blanket as blanky and refuse
to use blanky to refer to other blankets. Before their second
birthday, children will often over-extend a term, using it
to describe inappropriate but often similar referents (Clark,
1973; Rescorla, 1980). For example, children frequently
over-extend dog to refer to any animal with four legs.
In some complicated semantic domains (e.g., kinship,
morality), young children continue to over-extend a term
for several years. In these cases, children’s over-extensions
gradually shift from relying on characteristic features (e.g.,
a yellow cab with checkered signage is a taxi) to more
defining relations (a cab that can be hired for transport is a
taxi; Keil & Batterman, 1984; Keil, 1989).

While these behavioral patterns are consistently observed
in children’s early word use, it is unclear whether they
reflect partial conceptual knowledge (Clark, 1973; Kay &
Anglin, 1982), performance limitations—such as retrieving
the correct word in the child’s small but rapidly increasing
vocabulary (Huttenlocher, 1974; Gershkoff-Stowe, 2001;
Fremgen & Fay, 1980), or pragmatic reasoning—such as
generalizing a known word when the child’s vocabulary
lacks a more appropriate word (Bloom, 1973; Hoek,
Ingram, & Gibson, 1986; Barrett, 1986). A major obstacle
to teasing apart these alternative hypotheses is the lack of
a formalized account of conceptual development predicting
children’s word use over time. Specifically, what patterns of
word use should we expect as children gather more data?
How should these patterns hold cross-linguistically? How
do these patterns change as children learn inter-connected
conceptual systems (Murphy & Medin, 1985)?

Kinship is an ideal domain to test potentially universal
learning mechanisms and to understand the role data plays
in acquisition. Kinship systems are present in almost every
culture in the world, influencing sociocultural arrangements
(e.g., marriage and residence) and social reasoning (e.g.,
expectations of aid, resource allocation; Mitchell & Jordan,
2021). Therefore, learning and understanding the kinship
system one is born into is a vital endeavor for almost
every culture in the world. While the importance of kin
relationships might vary across cultures, the prominent
structure in the world supporting kinship terms, genealogy,
is universal.1 That being said, kinship systems show
remarkable diversity across the languages and cultures of
the world both in terms of which relationships get expressed
by words (e.g., Murdock, 1949) and the social sanctions
for failing to use them correctly. However, despite over a

1Kinship as a construct potentially operates over multiple structures,
including systems of address, sociological systems and social
categories (Read, 2001, 2007). As a point of scope, we focus here on
genealogical notions of kinship terms—i.e., kinship terms defined over
a family tree.

century of data collection and theorizing by anthropologists
and linguists, a complete account of kinship systems eludes
us. Recent work on efficient communication has shown that
two first principles, the trade-off between communicative
efficiency and simplicity, can explain at a coarse level the
observed diversity in kinship systems (Kemp & Regier,
2012); however, there appears to be no universal principles
underlying the evolution of kinship systems as traditionally
categorized (Passmore & Jordan, 2020). Therefore, in
order to explain evolutionary trajectories, we need fine
grained theories and constraints on how kinship systems
are structured (Passmore et al., 2021), how different
components of kinship terms interact and how kinship terms
are acquired. Here, we take the first steps towards providing
a formal account of kinship term development that can be
used to motivate such theoretical constraints on evolutionary
trajectories and can handle the challenge of learning diverse
kinship systems.

The goals of this paper are i) to present a rational con-
structivist framework (Xu, 2007, 2016, 2019) of conceptual
development formalized as logical program induction, ii)
to evaluate this framework against the literature on chil-
dren’s patterns of generalization over time—specifically
under-extension, over-generalization and the characteristic-
to-defining shift, and their order of acquisition. A rational
constructivist theory of cognitive development posits that
children start with a set of proto-conceptual primitives,
which they use to actively construct representations of the
world via language and symbol learning, Bayesian inductive
learning and constructive thinking (Xu, 2019). We imple-
ment a model based on this framework to learn kinship
terms, providing the first formal developmental model for
kinship term acquisition. The paper is organized as follows:
First, we review the empirical literature on kinship term
acquisition and computational models of kinship. We then
flesh out our model framework and implementation. In pre-
senting the results, we first demonstrate that the model is
powerful enough to learn kinship systems of varied com-
plexity based on its input data. We then provide simulations
based on informant provided learning contexts to show that
the general patterns of children’s word use described above
fall out naturally from framing conceptual development as
program induction in naturalistic environments. In the pro-
cess, we present evidence suggesting that children’s early
word use might be informative about conceptual develop-
ment and derive a novel account of the characteristic-to-
defining shift. To demonstrate how this model can be used to
entertain important theoretical questions about how induc-
tive biases and children’s input drive children’s behavior, we
examine the roles of simplicity and environmental input in
determining the order of kinship term acquisition. Lastly,
we conclude with a discussion of novel predictions and
limitations of our account.
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Children’s acquisition of kinship terms

Despite its pervasive influence on our social and cultural
interactions, the study of kinship and kinship term
acquisition has been minimal (Mitchell & Jordan, 2021).
Here, we will focus our review on studies that speak to three
specific behaviors: over-/under- extension, characteristic-
to-defining shift and order of acquisition. For a thorough
review of kinship acquisition, we recommend Mitchell and
Jordan (2021), which synthesizes disciplinary approaches
and provides a useful developmental toolkit suitable for
cross-cultural data collection. To our knowledge, there are
no studies designed to directly test patterns of over-/under-
extension for kinship terms; however, there are a few lines
of work that provide evidence for the phenomena.

First, Piaget (1928)’s study of logical relationships and
subsequent replications (Elkind, 1962; Danziger, 1957;
Chambers & Tavuchis, 1976; Swartz & Hall, 1972) provide
evidence for under-extension. Piaget (1928) conducted
targeted interviews with 4 to 12-year-old children to
assess their knowledge of logical relations using the
sibling concept as a case study. Piaget’s task tested the
reciprocity of sibling relationships by soliciting definitions
and investigating if children could note the contradiction
between the claims that “There are three brothers/sisters
in your family” and “You have three brothers/sisters.”
Based on his interviews, Piaget proposed that children
learning logical relations (like kinship) progress through
three stages: egocentric, concrete relational (transitive),
abstract relational (reciprocal). An egocentric stage of
kinship term use implies a specific pattern of under-
extended kinship term use. However, the literature provides
sparse and conflicting evidence in support for Piaget’s
account. Consistent with Piaget, children (5 to 8 years old)
make less mistakes on egocentric concepts (grandmother)
than other-centric concepts (granddaughter) (Macaskill,
1981, 1982). Children (4 to 10 years old) also perform
better when questions are framed with respect to themselves
(What is the name of your sister?) as opposed to another
family member (As for your sister Mary, what is the name
of her aunt?; Greenfield & Childs, 1977). At the same time,
equally young children succeed at taking other people’s
perspective when providing kin terms (Carter, 1984) and
young adopted children (4 to 5-year-olds) have more kinship
knowledge than non-adopted children (Price-Williams,
Hammond, Edgerton, & Walker, 1977). Moreover, it
is unclear that children providing examples of family
members when giving a definition reflects an egocentric
understanding of kinship as opposed to the use of kinship
terms as terms of address (for discussion see Hirschfeld,
1989). Given the limited and conflicting data on egocentric
biases in kinship acquisition, we do not directly evaluate our
model against the specific egocentric claims in the literature

regarding perspective taking. Nonetheless, an initial period
of egocentric performance would predict under-extension.

A second line of kinship research lies at the merger
of componential analysis in anthropology (Goodenough,
1956) and the semantic feature hypothesis for word learning
proposed by Clark (1973). Componential analysis takes
up the task of identifying the minimal set of features
required to distinguish relevant distinctions in meaning.
For example, gender is a required feature of the English
kin system because gender is required to distinguish, for
instance, MOTHER from FATHER. The semantic feature
hypothesis posits that children acquire the semantics
of a concept “component-by-component” (Clark, 1973).
Thus, developmental studies of kinship acquisition could
inform theoretical anthropological studies of componential
analysis, especially when multiple sets of components
are equally as expressive. As Greenfield and Childs
(1977) points out, the pattern of children’s mistakes in an
elicitation task is informative about the actual features of
meaning children have acquired. These systematic errors
are evidence for over-/under-extension. For example, 4 to
5-year-old Zinacantan children’s mistakes never violate the
feature that siblings have common parentage; however,
half of their mistakes violate gender (i.e., over-extension
to incorrect genders), whereas 8 to 10-year-olds never
violate common parentage and gender, but violate relative
age (over-extension across ages). Therefore, componential
analyses that include features for common parentage and
gender are more likely than componential analyses that
do not. For our purposes, the systematic errors uncovered
by the developmental evaluation of componential analyses
provides evidence for systematic patterns of over-extension.

The semantic feature hypothesis has also been used to
predict the order of acquisition of kinship terms. Haviland
and Clark (1974) proposed and found evidence for sim-
plicity to be a driving force in the order of acquisition
of English kinship concepts. In their analysis, a relation-
ship between two individuals was considered one feature.
Relations that could be explained by appealing to one par-
ent/child relationship (e.g., mother) were learned earlier
than relations that required two parent/child relationships
(e.g., brother). Similarly terms that required three relation-
ships (e.g., aunt) were learned after those requiring two rela-
tionships. Surprisingly, terms that required both a parent and
child relationship (e.g., brother) were learned before terms
that required the same relationship twice (e.g., grandma).
Further support for the semantic feature hypothesis has been
found cross-linguistically in definition elicitation studies
with German 5-10-years-old children (Deutsch, 1979) and
Vietnamese 4 to 16-year-old children (Van Luong, 1986). A
similar pattern was reported by Benson and Anglin (1987);
however, they explained their data as different amounts of
experience with relatives and input frequency of kinship
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terms. While experience seems to explain differences in
adopted children, there was no effect of household size on
kinship acquisition (Price-Williams et al., 1977). In general,
the extent to which simplicity and experience contribute to
the order of acquisition of kinship terms is still an open
question, which we directly address in our analysis of order
of acquisition effects from model simulations.

To summarize, studies on kinship term acquisition
document a protracted developmental trajectory, providing
modest evidence for patterns of over- and under- extension
in children’s use of kinship terms; although the exact
patterns of extension vary across cultures. For example,
Bavin (1991) and Greenfield and Childs (1977) find
gender over-extensions in Walpiri and Zinacatan children’s
kin usage; whereas Price-Williams, Hammond, Edgerton,
and Walker (1977)’s study of Hawaiian and the studies
on English kin acquisition report no incorrect gender
extensions. Interestingly, the children in these studies are
well older than the age range where the typical patterns of
over- and under- extension described in the introduction are
observed. While not all of these studies solicit definitions,
the elicitation tasks used are still likely to be challenging
for children who have limited verbal ability. Therefore, we
should take these patterns with a grain of salt, as young
children might not understand the task and older children
might lack the verbal ability to articulate their knowledge.
Given these limitations, it is unclear that these patterns
should fall out of a model of conceptual development as
opposed to a model of how children verify semantics or
produce labels. This makes it all the more interesting if these
patterns do emerge naturally from the inductive learning
process, which would suggest that conceptual development
may still be contributing to these patterns despite the
limitations of the task.

To further ground the possibility of conceptual develop-
ment giving rise to patterns of over- and under- extension,
it is worth mentioning a related field of studies regarding
the characteristic-to-defining shift observed in children’s
knowledge (Keil & Batterman, 1984; Keil, 1989; Landau,
1982). In Frank Keil’s studies, children are presented with
scenarios of a concept—take for example the concept,
GRANDPA—that emphasize either characteristic features
but not defining features (e.g., a nice old man who isn’t
related to you) or defining features but not characteristic
features (e.g., your parent’s evil father). Young children
(mean 5;7) are more likely than older children (mean 9;9) to
accept a scenario with characteristic features as being true
than a scenario with defining features but not characteristic
features. Older children are more likely than younger chil-
dren to accept the scenarios with the defining features of the
concept. Remarkably, even some of the older children were
not at perfect performance, suggesting that there is signif-
icant conceptual development still taking place in kinship

beyond the ages in which one typically observes patterns of
over- and under- extension. Given this timescale, we argue
that children’s over-extensions and under-extensions might
actually be due to conceptual development—in particu-
lar, rational construction of a logical theory—as opposed
to performance-based or pragmatic-based alternative
explanations.

In this paper, we implement an ideal learning model
using the default assumptions from the rule-based con-
cept learning literature. The model framework is designed
to learn a kinship system consistent with the input; how-
ever, the model is not engineered to match the patterns of
behaviors children demonstrate when learning kinship. In
other words, the model is unaware of the behaviors children
exhibit and, thus, cannot be influenced by explicit knowl-
edge of the evaluation metrics.2 We evaluate the model
against these patterns of behavior to show that a system
for learning program-like structures provides an explana-
tion for the patterns of over- and under-extension behavior
we see in children even though it was not engineered to
do so. Further, we expand the model by adding assump-
tions about the learning context (via interviews) and the
environmental distribution of data to show that when this
model operates under naturalistic contexts and distributions
of data, it predicts both a characteristic-to-defining shift and
the order of kinship term acquisition that we observe in
children.

Computational models of kinship

From a formal modeling perspective, kinship is an ideal
domain for studying how children’s conceptual knowledge
develops into the rich rule-like concepts and conceptual
systems seen in adult definitions. Kinship easily lends
itself to logical representation (e.g., Greenberg, 1949,
Wallace & Atkins, 1960). Kinship systems are relational by
nature, which makes them interesting because they involve
structure, not just similarity. Further, kinship is a test-bed for
how inter-related conceptual systems are learned, as adult
kinship knowledge suggests inter-related, not independent,
concepts for kinship terms.3 That being said, most of the
previous computational models of kinship has focused on
understanding kinship as a mathematical object (e.g., Read,
1984) rather than a cognitive technology (Heyes, 2018;
Mitchell & Jordan, 2021).

2Of course, the modelers are aware of the behavioral patterns, which
is why we take care in laying out the model assumptions, where
predictions are mutable and where further grounding is needed.
3In the main text, we focus on learning independent kinship terms.
A thorough analysis of learning inter-related system is beyond our
current scope; however, we discuss our preliminary exploration of
inter-related learning schemes in Appendix C.
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The earliest computational models of kinship were pri-
marily concerned with automating componential analysis:
given a large set of features about each kinship term in a
language, what is the minimal set of features required to dis-
tinguish the terms (Goodenough, 1956; Lounsbury, 1956)?
As Burling (1964) was quick to point out, the componential
analysis of a kinship dataset has many possible solutions.
Pericliev and Valdés-Pérez (1998) implemented a model to
perform componential analysis that finds all possible solu-
tions possessing both the smallest number of unique features
and the shortest feature conjunctions required to define all
terms. Proving Burling’s point, Pericliev and Valdés-Pérez
(1998)’s automated analysis of Bulgarian kinship systems
found two equally complex feature inventories that use dif-
ferent features. To complement componential analyses, sev-
eral behavioral studies used multidimensional scaling tech-
niques to uncover the dimensionality of kinship components
and arbitrate between different componential analyses (e.g.,
Wexler & Romney, 1972, Nakao & Romney, 1984). Recent
work in the spirit of componential analysis has taken up the
search for kinship universals using optimality theory (Jones,
2010) and Bayesian methods (Kemp & Regier, 2012).

Early connectionist models have used learning kinship as
a test case for distributed models of abstract, relational con-
cepts. Hinton (1986)’s family tree task focused on learning
an encoding for the family members on a given tree and
the relationships between them. The connectionist model
received input vectors reflecting an individual on the tree
(e.g., Simba) and a kinship relationship (e.g., father) and
output the individuals on the tree who completed the kin
relation (e.g., Mufasa). The model learned interpretable
embeddings for people on the tree, such that semantic fea-
tures (e.g., gender) could be easily extracted. However, the
relationship embeddings were not interpretable and the gen-
eralization performance of the model was poor. Paccanaro
and Hinton (2001) improved upon the early connectionist
models by learning the implicit tree structure behind the
training data; however, their model did not fare as well when
incorporating held out relations to the model. The model
learns the family members and all of the relations on the
tree without learning the actual tree structure. Therefore,
it’s unclear how well the relations learned will generalize
to an entirely new family tree. Importantly, neither con-
nectionist model makes any claims about children’s behav-
ior while learning. Though, Paccanaro and Hinton (2001)
points out the most common generalization error was over-
extension of sibling terms to include the speaker—i.e., the
common failure of Piaget (1928)’s logic problem.

More recent computational models have approached
the acquisition of kinship knowledge through a Bayesian
relational-learning or theory-learning perspective. The Infi-
nite Relational Model (IRM; Kemp, Tenenbaum, Griffiths,
Yamada, & Ueda, 2006) uses the presence or absence of

relations between individuals and kinship term use to learn
groupings of these individuals and properties shared by the
groups, which are diagnostic of the relationship. For exam-
ple, applying the IRM to data from an Australian kinship
system results in groups of individuals that share “diagnos-
tic” kinship relevant feature dimensions such as age and
gender. Katz, Goodman, Kersting, Kemp, and Tenenbaum
(2008) proposed a generative model similar to the IRM but
with a richer representation system based in first order logic,
Horn Clause Theories. Their model learns each individual’s
kinship relevant properties and the abstract rule govern-
ing how those properties give rise to the kinship relation.
Katz et al. (2008)’s representation scheme has two advan-
tages over the IRM. First, Horn Clause Theories take into
account human reasoning in order to be expressed in the
simplest and fewest possible clauses (Kemp, Goodman, and
Tenenbaum, 2007). Second, Horn Clause theories are con-
text independent, which allows one’s knowledge of kinship
to easily generalize beyond the observed/training data. Sim-
ilar first order logic representation schemes have been used
to analyze the space of all possible kinship systems to iden-
tify the pressures that influence which kinship systems are
extant in the world (Kemp & Regier, 2012). Surprisingly,
extant kinship systems are found at the optimal trade-off
between simplicity and communicative efficiency.

Our model builds off the intuitions of the Bayesian
models. Following Katz et al. (2008), we adopt the use
of a context-independent representation scheme. Like this
model and others (Kemp, 2012; Haviland & Clark, 1974),
our model also incorporates a pressure for simplicity.
However, our approach will depart from past models in
two ways. First, our representation scheme is inspired
by set theory instead of e.g., Horn clauses,4 which
provide poor fits to adult induction and generalization
behaviors (Piantadosi, Tenenbaum, & Goodman, 2016).
Operating over extensional concepts like sets provides more
affordances as a representation scheme (e.g., generating
members of those sets or possible word referents) than
intensional representations like logic. Second, we aim to
provide not only a proof of learnability but an evaluation of
the full developmental trajectory of concepts, including the
common behavioral patterns of mistakes children display.

The approach: Concept induction
as program induction

The basic premise of our approach is that conceptual knowl-
edge can be likened to a computer program (e.g., Lake,
Salakhutdinov, & Tenenbaum, 2015; Piantadosi & Jacobs,

4Although see Mollica and Piantadosi (2015) for a first-order logic
implementation of our model.
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2016; Goodman, Tenenbaum, & Gerstenberg, 2015; Good-
man, Tenenbaum, Feldman, & Griffiths, 2008; Rule, Tenen-
baum, & Piantadosi, 2020; Piantadosi, Tenenbaum, &
Goodman, 2012), at least following a computational level
of analysis (Marr, 1982). This metaphor capitalizes on sev-
eral similarities between programs and concepts. First, both
programs and concepts are relational in nature. Concepts
are defined in terms of both their extension and their rela-
tions between other concepts (e.g., DOG and WOLF share
common origin). Whereas programs can be mathematically
defined in terms of input/output relations. Second, concep-
tual development and program induction both emphasize
the dynamic nature of knowledge. When a young child
originally pieces together a concept, it can be thought of
as chaining inferences about what underlying features or
relationships are good approximations to the concept’s true
meaning. Similarly in program induction, the model chains
inferences about what underlying base functions or relation-
ships between base functions are good approximations to
the program’s desired output. Lastly, concept and program
induction can both result in many intensionally distinct
representations that are extensionally equivalent. The prin-
ciples that a programmer might use to choose between two
equivalent representations (e.g., simplicity, minimal hidden
structure and ease of deployment; see (Rule et al., 2020)) are
the same principles we see in children’s explanations (e.g.,
Walker, Bonawitz, & Lombrozo, 2017; Johnston, Johnson,
Koven, & Keil, 2016).

TheModel

For our ideal learner model, we must specify three
components: a hypothesis space over concepts H, a
prior over hypothetical concepts P(h) for h ∈ H and
a likelihood function P(d|h) to score the hypothesis
according to the data d . The hypothesis space reflects the
cognitive architecture supporting learning. For example, our
hypothesis space consists of compositional functions over
family trees. The prior reflects the inductive biases that we
suspect children bring to a learning task.

For implementing our model, we must also specify how
we simulate data for our learning analyses. Here, a data
point d is a collection of four objects: a speaker, who uses
a word to refer to a referent in a context (detailed further
below). We model learning as the movement of probability
mass across a hypothesis space as a function of observing
data. Following Bayes rule, the posterior probability of a
hypothesis h after observing a set of data points D is:

P(h|D) ∝ P(h)
∏

d∈D

P (d|h). (1)

We will discuss each component in turn.

Hypothesis space

Constructing the hypothesis space over possible programs
involves specifying primitive5 base functions for kinship
that are available to the learner and the method by which
these functions compose to form hypotheses. The use of
semantic primitives has a rich tradition in linguistics and
anthropology6 (e.g., Goodenough, 1956, Lounsbury, 1956,
Wierzbicka, 2016). In our model, we specify several types
of base functions—tree-moving functions (parent, child,
lateral), set theoretic functions (union, intersection, differ-
ence, complement), observable kinship relevant properties
(generation, gender, co-residing adult), and variables—the
speaker (denoted X) and the individuals in the context.
Tree-moving functions take as argument a reference node
in a tree and return a set of nodes satisfying a specific
relationship on the tree. As justification for including tree
primitives, we note that affording these abilities to chil-
dren is in line with the proposal from comparative cognition
that these relations are innate biological predispositions7

(Chapais, 2014) and a common assumption in the litera-
ture (e.g., Haviland & Clark, 1974). Set functions allow for
first-order quantification, which has been shown to be rele-
vant for adults’ concept acquisition (Piantadosi et al., 2016;
Kemp, 2012). Infants can discriminate between gender (e.g.,
Quinn, Yahr, Kuhn, Slater, & Pascalis, 2002) and preschool-
ers can discriminate age (Edwards, 1984). We assume that
children can compute functions from a speaker’s perspec-
tive. We note that these are all non-trivial assumptions, but
we have made them based on our best guess about children’s
abilities. However, it is simply an empirical question—left
for future work—what resources children have before they
begin acquiring these terms.

We compose the base functions using a probabilistic
context free grammar (PCFG; see Table 1) following

5Our use of “primitive” reflects the atomic nature of the functions
within the kinship domain and is not a claim about innateness.
6Unlike linguistic or componential analyses, we do not intend for these
base functions to be a complete account of all of the functions required
for learning kinship systems or all of the functions children might
bring to the task. For example, children would require primitives to
compute relative age or patrilineage to learn some kinship systems
(e.g., Japanese and Korean). It is easy to see how one could decompose
certain primitives into one level less of abstraction (e.g., generation
might be represented in terms of primitives that check for perceptual
features) or how one could choose to augment a set at a greater level
of abstraction (e.g., adding a sibling primitive). For any model of
learning, the granularity and span of a hypothesis space depends on the
characterization of the learning problem (Perfors, 2012). Our general
findings will not strongly depend on any particular base function
inventory; however, inventories can make different predictions about
the precise pattern and timing of children’s behavior over learning.
7Specifically, Chapais (2014) argue that we are innately predisposed
to recognize maternal bonds and maternal siblings; however, paternal
recognition is a derived human adaptation.
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Table 1 The Probabilistic Context Free Grammar (PCFG) specifying the base functions and the rewrite rules that govern their composition. Each
hypothesis starts with a SET symbol and there are 37 concrete referents in our learning context

SET
1−→ union(SET,SET) SET

1−→ parent(SET) SET
1−→ generation0(SET) SET

1−→ male(SET)

SET
1−→ intersection(SET,SET) SET

1−→ child(SET) SET
1−→ generation1(SET) SET

1−→ female(SET)

SET
1−→ difference(SET,SET) SET

1−→ lateral(SET) SET
1−→ generation2(SET) SET

1−→ sameGender(SET)

SET
1−→ complement(SET) SET

1−→ coreside(SET) SET
1
37−→ concreteReferent SET

1−→ all SET
10−→ X

(Goodman et al., 2008; Piantadosi et al., 2012; Ullman,
Goodman, & Tenenbaum, 2012). Briefly, a PCFG is a set
of rewrite rules which describe how functions can compose
while defining a potentially infinite space of possible
compositions. For example, the composition leading to the
concept of GRANDPA would require applying the male rule,
parent rule, parent rule and speaker rule, resulting in the
program: male(parent (parent (X))). A program can then
be evaluated in a context to produce a set of possible
referents.8 The use of a PCFG is meant to formalize the
space of possible hypotheses, not necessarily to provide
an algorithmic model of how people search this space. In
addition to defining the hypothesis space, the PCFG also
provides the prior probability distribution over that space.
In this distribution, we weight each rule equally as likely
with two exceptions. First to prevent infinite recursion when
generating hypotheses, the speaker, X, is weighted ten times
as likely as the other rules. Second, we divide the weight
for concrete referents equally among the individuals in our
context (detailed below).

We note that here we do not include recursive calls in
our PCFG, meaning, for instance, that we cannot represent
GRANDPA as f ather(parent (X)). In Appendix C, we
provide a version of the model that uses recursion, but we
note that it is computationally more difficult to implement
and also makes identical predictions in many formulations.

Simplicity Prior

One advantage of using a PCFG is that it builds in a natural
prior towards simplicity. Hypotheses that compose more
rules are less probable than hypotheses that compose less
rules. We motivate this bias towards simplicity in several
ways. First, adults have been shown to learn logically
simpler concepts faster than complex concepts (Feldman,
2003, 2000; Goodman et al., 2008; Piantadosi et al.,
2016). Second, children prefer simpler explanations over
more complex explanations (Lombrozo, 2007; Bonawitz
& Lombrozo, 2012; though see Walker et al., 2017). In

8We make the assumption that programs do not return the speaker
as referent—i.e., a bias against computing a kinship term as self-
referential. For example, when a male speaker computes the set of his
brothers male(children(parent (X))) he excludes himself from the
output.

language learning, simplicity has been suggested as a
guiding principle (Chater & Vitányi, 2007) that solves
the logical problem of acquisition. In kinship specifically,
simplicity has previously been proposed as the driving
factor behind the order of acquisition of kinship terms
(Haviland & Clark, 1974). In a global analysis of all
possible kinship systems, simplicity is a good predictor
of which kinship systems are actually observed in the
languages of the world (Kemp & Regier, 2012). Therefore,
we believe simplicity is an important inductive bias for our
model. The model exhibits a simplicity bias because the
PCFG scores the probability of a hypothesis as a product
over rules (thus each additional rule lower’s a hypothesis’
prior):

P(h) =
∏

r∈h

P (r), (2)

where r reflects a single use of a rule from Table 1.
Our measure of simplicity has recently been empirically
validated for explaining adult acquisition of kinship terms
(Smith, Frank, Rolando, Kirby, & Loy, 2020).

Size principle likelihood

The last component of the model to be specified is the
method of scoring the probability of the data under each
hypothesis, P(d |h). Based on past research with adults
(Tenenbaum, 1999; Tenenbaum & Griffiths, 2001), children
(Xu & Tenenbaum, 2007a, b; Lewis & Frank, 2018) and
infants (Gweon, Tenenbaum, & Schulz, 2010), we use
a size-principle likelihood. This comes from the notion
that the data we observe is generated from a structure in
the world (i.e., strong sampling) as opposed to randomly
generated (i.e., weak sampling). Our implementation
marginalizes over two possible ways a learner might think
the data was generated. First, the data might be generated
according to the learner’s current hypothesis. For a given
context, there is a finite set of data points that a learner
expects to receive. Following a size principle likelihood,
data points are sampled randomly from these expected
data points: 1

|h| , where |h| is the number of unique data
points (i.e., speaker-word-referent combinations) that a
learner expects to see in a given context. Second, a learner
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Fig. 1 Family tree context for our simulations. Connections above
figures reflect parent–child relationships. Connections under fig-
ures reflect lateral/spousal relationships. Men are denoted with hats.

Numbers reflect the rank order of the amount of interaction a learner
(i.e., 1) has with the other individuals on the tree

might think that a data point was generated by noise—
i.e., randomly mapping a speaker, word and referent. In
this case, the probability of a data point is given by 1

|D| ,
where |D| reflects the number of all possible speaker-word-
referent pairs in a given context. Our likelihood mixes
these two generative processes together by adding a new
parameter α reflecting the reliability of the data. At high
values of α, the learner thinks that most of the data is
being generated by their conceptual hypothesis; whereas
at low values of α, the learner thinks the data they see is
randomly generated. Combining both of these processes,
our likelihood function is given by:

P(d|h) = δd∈h · α

|h| + 1 − α

|D| , (3)

where δd∈h is 1 when the speaker-word-referent d is
true under h, and 0 otherwise. This likelihood, strong
sampling, is a powerful likelihood function that can lead to
convergence on the true generative process of the data from
positive evidence alone (Tenenbaum, 1999) and even in the
presence of significant noise (Navarro, Dry, & Lee, 2012).

Having a noisy process directly accounts for an
attribution problem that every learner faces: was this data
point generated from some true structure in the environment
(i.e., is it reliable and valid?) or was this data point possibly
a mistake? Social learners are sensitive to the reliability of
their instruction (Birch, Vauthier, & Bloom, 2008; Jaswal &
Neely, 2006; Koenig & Harris, 2005; Pasquini, Corriveau,
Koenig, & Harris, 2007, cf.; Gweon & Asaba, 2018) and
language learners have been shown to filter their input to
focus on explaining a subset of their data (Perkins, Feldman,
& Lidz, 2017). This reliability filtering allows us to account
for any issues the learner has mapping words to referents,
including the significant challenges of resolving allo-centric
reference, the mapping for genitive (e.g., your daddy) or
alter-centric (e.g., a mother saying daddy is coming) uses

of kinship terms. If the learner cannot successfully map
words and referents, they should act as if their data is being
generated unreliably. In Appendix A, we check that our
results are robust to different implementations of a noisy
size principle likelihood—i.e., values of α.

Environmental assumptions for simulating data

Ideally, we should be using this model to predict empirical
measures of word understanding or use. Unfortunately,
there are no existing data sets that either quantitatively
measure children’s kinship term use or span the nine years
of a single child’s experience with kin and kinship terms
with the required detail to fully specify the input data for
the learning model. As a result, we adopt a simulation
approach to generate predictions about children’s word use
from basic assumptions about what data children see. We
then qualitatively compare our predictions to the trends in
children’s behavior reported in the literature.

For our model, a data point has four components, the
speaker, the word, the referent and the context. The context
is a family tree, which contains each member of the family,
their parent, child and lateral connections and their gender
(see Fig. 1). To simulate the data for learning, we first
generate all true possible data points given the target word
and the context. We then sample data points from the true
set with probability α or construct a random data point
with probability 1 − α. For all analyses reported in the
paper, α was set at 0.90.9 In simulating the data this way,
we make two simplifying assumptions. First for tractability,
we only sample the data from one family tree even though
children are exposed to multiple family trees. To ensure

9In Supplementary Fig. 10, we emulate the simulations conducted by
Navarro, Dry, and Lee (2012) to demonstrate that our main findings
are robust under realistic values of α.
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the learner received adequate data that might be obtained
by children across trees, our tree context spans more of
the possible familial relations than our informant provided
family trees. To ensure our learner does not over-fit to our
context, we vary the speaker across data points, resulting
in 29 different perspectives of the same tree. We describe
where this assumption influences our conclusions. Second,
for convenience, we assume that the referent is computed
with respect to the speaker. This is not an assumption
about children’s learning but a necessary assumption for
formalization in the absence of natural data with explicit
annotation of the kinship relation. Ideally, our model would
calculate the relation after the appropriate reference person
has been identified via perspective taking and/or linguistic
processing (e.g., genitives).

Model evaluation

While our model links data, inductive biases and conceptual
representations, there are many ways these could be related
to children’s behavior. For example, in a comprehension
task, a child might have a context containing several
individuals and their goal is to point to uncle. Our model
provides a posterior distribution over what this word might
refer to, but there are many ways a child might use that
posterior to respond. For example, they could just select
the maximum probability referent. They could sample from
the referents based on each individual’s probability. They
could perform pragmatic reasoning as in a rational speech
act model (Frank & Goodman, 2012) and condition on
other words in their vocabulary to adjust these probabilities.
Alternately, children might sample a single hypothesis (e.g.,
Bonawitz, Denison, Gopnik, & Griffiths, 2014; Medina
et al., 2011) either based on the posterior probability
or weighted by the value of computation as in a feed-
forward pragmatics (Ferreira, 2019; Lieder & Griffiths,
2017). Here, we present our results marginalizing over the
posterior, meaning we show posterior average responses,
which might correspond to subject average responses under
the assumption that subject behavior matches the probability
estimated by the model. We further discuss how mutual
exclusivity will emerge from a rational speech act linking
hypotheses in Appendix D.

We divide the model evaluation into three sections:
Model Outcomes, the Characteristic-to-Defining Shift and
Order of Acquisition. In Model Outcomes, we first check
that the model successfully learns the conventionally agreed
upon extension for each kinship term in finite amounts of
data. We conduct this analysis using four different kinship
systems: Pukapukan, English, Turkish and Yanomamö. We
then take a closer look at how the model behaves locally at
the outset of learning to demonstrate how children’s early

preference for concrete reference—i.e., under-extension,
naturally follows from the process of induction with few
data points. Afterwards, we look at how the broad pattern
of over-generalization falls naturally out of the process of
induction when trading off simplicity and fit to the data.
Our primary finding is that an inductive learning model
with program-like representations and biases for simplicity
and strong sampling will accurately learn a kinship system
consistent with its input in finite amounts of data and predict
under-/over-extension as a consequence of insufficient data.

In Characteristic-to-Defining Shift, we augment the
model’s hypothesis space, allowing rules based on char-
acteristic features (e.g., UNCLE : union(big, strong)). We
first replicate our previous analyses using simulations based
on naturalistic learning contexts—i.e., informant provided
family trees. For each word learned by each informant, we
demonstrate the characteristic-to-defining shift. We discuss
how the characteristic-to-defining shift arises from proper-
ties of the learning context and under what circumstances
we would predict to see a characteristic-to-defining shift.
Our primary finding is that the characteristic-to-defining
shift emerges from an inductive learning mechanism in
naturalistic environments without appealing to a discon-
tinuity in representation space or learning process or the
development of abstraction.

In Order of Acquisition, we return to an open question in
the kinship acquisition literature: is the order of acquisition
driven by experience or the conceptual complexity of the
kinship relations? We evaluate the model predicted order of
English kinship acquisition against the empirically observed
order of concept acquisition in children. We illustrate that
while the simplicity of the minimal description length
correct kinship concepts aligns with the observed order
of acquisition in children, the model does not predict
acquisition in that order. Inspired by accounts of children’s
experience with kin relations (Benson & Anglin, 1987), we
simulate several plausible data distributions based on kin
experience and find that the order of acquisition is more
likely driven by both conceptual simplicity and naturalistic
data distributions rather than by conceptual simplicity alone.
Of course, fine-grained household data will be invaluable
for addressing the question of experience and collecting
such data will require a significant, concerted effort.

Model outcomes

The model learns typologically diverse systems
as input varies

We first simulated data for four kinship systems that vary
in descriptive complexity and are common in the languages
of the world: Pukapukan, English, Turkish and Yanomamö.
Extensions for the kinship terms of these languages are
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Fig. 2 Average lexicon posterior-weighted accuracy for each word as a function of data points of that word. Shaded region denotes 95%
bootstrapped confidence intervals. Insets show the color-coded extension of the terms

provided in the insets of Fig. 2 and Table 2. The Pukapukan
kinship system is six kinship terms that are fully described
by generation and gender. The English kinship has nine
terms that require representing parent/child relations. The
Turkish system has fourteen kinship terms with high
specificity in the first generation. In addition to requiring
tree moving functions, the Turkish requires separating
paternal and maternal brothers and sisters and their spousal
relationships. The Yanomaö system has eight kinship terms
with a notable distinction between cross-cousins—i.e., the
children of parents’ opposite-sex siblings, and parallel-
cousins—i.e., the children of parent’s same-sex siblings.
Capturing this distinction between cousins is possible with
the same set of primitives required for Turkish; however,
the hypothesized concepts would require many primitives to
be composed. The complexity required for this distinction,
however, may be mitigated by its importance to Yanomamö
society, which follows strict bilateral cross-cousin marriages
and maintains patrilocal residence. When we incorporate
this important sociocultural information into the hypothesis
space via the coresidence primitive, the complexity of
Yanomamö kinship concepts decreases.10

10For ease of computational search, we modified two primitives
used to capture the relations in Yanomamö compared to the other
kinship systems. Specifically, we exclude “in-laws” when calculating
generation for Yanomamö but include them for the other cultures.
Second, we added a primitive that takes an individual as input and
returns the set of adults who co-reside with the input individual
only for Yanomamö. Our co-residence primitive is motivated by the
patrilocal residence patterns and prescriptive cross-cousin marriage
in Yanomamö society. Following patrilocality, a father’s brothers live

Figure 2 shows the predicted learning curves for each
kinship term in Pukapuka, English, Turkish and Yanomamö.
The x-axis shows the number of data points for each
word observed by the child. Note the differences in scale
across languages. The y-axis is the probability that a learner
has acquired the conventionally-aligned upon meaning of
that term—i.e., extends the term appropriately. The shaded
region represents the 95% bootstrapped confidence interval.
The line for each word is color coded to match the word’s
extension in the inset. Table 2 provides the maximum-a-
posteriori hypotheses learned for each kinship term.

While different languages favor different base functions
and require differing levels of complexity, the same model
successfully learns a set of computations equivalent to the
conventional kinship systems for each of these languages
based solely on differences in data input. Further, the model
learns these kinship systems with fairly few data points, on
average between 30 and 50 data points per word learned. As
a back-of-the-envelope feasibility check, if we assumed that
an effective data point, following Mollica and Piantadosi
(2017) arrives on average once every two months, we would
expect the mean age of acquisition to be between 5 and

locally and following strict cross-cousin marriage, a mother’s sisters
are likely to live locally to her. Our modifications for Yanomamö was
motivated primarily by a desire to decrease computational search time.
That being said, related-generation and co-residing adults are plausibly
noticed by children and would serve as a strong cue for relevant
genealogical relationships in some kinship systems.
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Table 2 The maximum-a-posterior (MAP) hypotheses after learning

Word Extension MAP Hypothesis

Pukapuka kainga† Z, PGD, PED difference(generation0(X), sameGender(X))

matua-tane PB male(child(parent(parent(X))))

matua-wawine PZ female(child(parent(parent(X))))

taina† B, PGS, PES intersection(generation0(X), sameGender(X))

tupuna-tane PF male(child(parent(parent(parent(X)))))

tupuna-wawine PM female(child(parent(parent(parent(X))))

English aunt PZ, PGW female(difference(generation1(X), parent(X)))

brother B male(child(parent(X)))

cousin PGC, PGEC difference(generation0(X), child(parent(X)))

father F male(parent(X))

grandma PM female(parent(parent(X)))

grandpa PF male(parent(parent(X)))

mother M female(parent(X))

sister Z female(child(parent(X)))

uncle PB, PGH male(difference(generation1(X), parent(X)))

Turkish abi B male(child(parent(X)))

abla Z female(child(parent(X)))

amca†† FB intersection(sameGender(fabio), difference(child(parent(male(parent(X)))), parent(X)))

anne M female(parent(X))

anneanne MM female(parent(female(parent(X))))

baba F male(parent(X))

babaanne FM female(parent(male(parent(X))))

dayi MB male(child(parent(female(parent(X)))))

dede PF male(parent(parent(X)))

eniste PGW intersection(lateral(child(parent(parent(X)))), male(complement(parent(X))))

hala FZ female(child(parent(male(parent(X)))))

kuzen PGC, PGEC difference(generation0(X), child(parent(X)))

teyze MZ difference(difference(female(generation0(female(parent(X)))),X),parent(X))

yenge PGH difference(female(generation1(X)),union(child(parent(parent(X))),parent(X)))

Yanomamö amiwa Z, FBD, MZD female(child(coreside(X)))

eiwa B, FBS, MZS male(child(coreside(X)))

haya F, FB male(coreside(X))

naya M, MZ female(coreside(X))

soaya MB male(difference(generation1s(X), coreside(X)))

soriwa MBS, FZS difference(male(generation0(X)), child(coreside(X)))

suaboya MBD, FZD female(difference(generation0(X), child(coreside(X))))

yesiya FZ difference(female(generation1s(X)), coreside(X))

F:father, M:mother, P:parent, S:son, D:daughter, C:child, B:brother, Z:sister, G:sibling, H:husband, W:wife, E:spouse † The extension is provided
with regards to a male speaker. For a female speaker, swap the two words. The MAP hypothesis will compute the correct extension regardless of
speaker’s gender. †† The MAP hypothesis for amca makes use of Fabio, the individual ranked 29 in Fig. 1 in order to construct the set of all men
in the context

8.333 years after children start attending to kinship terms.
This is consistent with the observed protracted trajectory
discussed in our review of empirical acquisition phenomena.
We discuss the differences between this model’s predicted
acquisition order and children’s empirical order for English
in the Order of Acquisition section. Unfortunately, we could
not find empirical data for the order of acquisition of
Pukapukan, Turkish and Yanomamö kinship terms.

Themodel shows an early preference for concrete reference

Young children typically restrict their word usage to refer
to particular individuals, or concrete referents, rather than
draw abstractions over individuals (Clark, 1973; Kay &
Anglin, 1982). This pattern naturally falls out of our model’s
push to explain the data when there are few unique data
points, suggesting that the preference for using concrete
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reference is driven by the data observed rather than by
inductive biases of the model. To look at the model’s
preference for concrete reference, we highlight a single
concept, UNCLE, and focus on the first five unique data
points that the model observes (see Fig. 3). The x-axis
in Fig. 3 reflects the number of unique data points (i.e.,
distinct referents) for a word. The y-axis represents the
probability the model uses abstraction to move away from
concrete reference. With no inductive bias favoring concrete
reference (red circles), the model initially favors concrete
referents approximately 75% of the time. As more unique
data points are observed, the model quickly switches to
abstracting away from concretes referents.

This behavior is observed because at low data amounts,
the best hypothesis that explains the data is a concrete
referent. For example, if you only ever encounter the word
uncle to refer to Joey the best hypothesis is to think that
UNCLE just denotes Joey. As the model observes more
data, it becomes too complicated to store all the possible
referents and so the model adopts simpler rules that abstract
away from the data. This movement away from concrete
reference after seeing two unique referents might seem fast,
given that children are often willing to provide multiple
example referents before their definitions use abstraction.
One possibility is that children are using kinship terms as
a form of address. Therefore, their provision of referents is
not a reflection of their kinship concept but of their terms
of address for specific people, which extends beyond kin
(e.g., teacher). Another possibility is that children have
an inductive bias favoring concrete referents. In Fig. 3,

we plot the probability of abstraction when the model
has a 10:1 (green triangles) and 100:1 (blue squares) bias
for using concrete reference as opposed to abstraction.
As the bias for concrete referents increases, more unique
data points need to be observed before the model favors
using abstraction. Whereas, if children memorize terms of
address like proper names, the number of unique referents
should not influence their use of kinship terms. Given
the importance of unique referent amount to our model,
future work may directly tease apart the conceptual origin
(genealogical vs an address-system) for kin terms and when
children switch from learning one structure to the other
by investigating children’s sensitivity to unique referents in
artificial kinship learning tasks.

The model predicts over-extension

Older children embrace abstraction; however, the rules they
learn often over-extend a word to include incorrect referents
(Clark, 1973; Rescorla, 1980). For example, all women
might be recognized as aunts. Unlike under-extension,
which is driven by the local data distribution at the onset of
learning, over-extension is a global behavior of our model.
The model not only predicts over-extension but predicts
specific patterns of over-extension as a function of the
data it has observed and the base functions supporting the
hypothesis space. For example, Fig. 4 shows the model’s
predicted pattern of use for the term uncle conditioned on
a learner, represented in black, at different amounts of data.
At low amounts of data, everyone in the context is equally

Fig. 3 Probability of using abstraction as a function of unique data points at several different prior strengths for concrete reference. At higher
prior values of concrete reference, the rise in the probability of abstraction is shifted to require more unique data points
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Fig. 4 The posterior probability that each person on the tree is an uncle of the learner (in black) at various data amounts. Yellow (lighter color)
indicates high probability and blue (darker color) indicates low probability

unlikely to be denoted by UNCLE. Within the first 5 data
points, the model extends the term to all members of the
learner’s parent’s generation (which is a base function).
By 14 data points, the model has narrowed that down to
only the men of that generation (which is the composition
of two base functions). Near 33 data points, the model’s
extension looks very adult-like; however, it is important to
note that the model still needs to tease apart several different
hypotheses that might make unwarranted predictions if the
context was to vary. In fact, the model does not come to
learn the context-invariant concept of UNCLE until around
45 data points.

Over-extension in the model falls out of the interaction
between the size-principle likelihood and the base functions
supporting the hypothesis space. The size principle likeli-
hood posits that it is better to predict both observed and
unseen data than to fail to predict observed data. Therefore,
once the model has exhausted simple concrete hypothe-
ses, it begins to abstract but it prefers to abstract using
base functions that cast wide nets over referents—i.e., pre-
dicting many referents. The model will shift from these
simple wide-reaching hypotheses to narrower hypotheses
as it observes more data that can be explained better by a
more complicated hypothesis. As a result, the patterns of
over-extension should be predicted by base functions and
compositions of base functions that increasingly approxi-
mate the true concept. We provide model predictions of the
over-extension pattern for each kin term in supplemental
material as an illustration.11

11The specific patterns of over-generalization will depend heavily on
the base functions and more empirical data is needed to distinguish
between base function inventories.

We can also compare the model’s posterior weighted
recall and precision. Recall is the probability of compre-
hending a word when it is used correctly. With a wide
enough hypothesis, a learner will accept all of the correct
uses of a word—although they will often accept incorrect
uses of a word as well. Precision is the probability of pro-
ducing a correct referent given the learner’s current hypoth-
esis. For example, if the learner had the correct definition
of uncle, they would produce only and all the correct uncles
and so precision would be 1.0. If the learner had a current
hypothesis that over-generalized, they would produce cor-
rect uncles only a fraction of the time, even if their current
hypothesis contained all of the real uncles. As a result, pre-
cision would be less than one. To visualize the presence
of over-generalization, we use an F1 score plot to compare
posterior weighted precision to posterior weighted recall.
Greater recall than precision is a hallmark of over-extension.
Fig. 5 illustrates this signature pattern of over-extension for
each word in English.12 The variation in precision is driven
by the specific patterns of over-extension predicted by the
model (see supplemental materials for model predictions).
We will discuss order effects in the Order of Acquisition
section.

The characteristic-to-defining shift

The characteristic-to-defining shift is a prevalent pattern of
children’s over-extension. Young children are more likely to
over-extend using characteristic features (e.g., robbers are
mean) as opposed to defining features (e.g., robbers take

12Appendix B contains F1 score plots for every language and context
simulated in this paper.
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Fig. 5 Average lexicon posterior-weighted accuracy, precision, and recall for each word as a function of data points. Recall greater than precision
is a hallmark of overgeneralization. Shaded regions represent 95% bootstrapped confidence intervals

things). While the characteristic-to-defining shift is com-
monly observed, the process which leads to it is unclear.
One possibility is that the characteristic-to-defining shift is
a stage-like transition that occurs in the representational sys-
tem (Werner, 1948; Bruner, Olver, & Greenfield, 1966). For
example, the shift could be explained by a transition from
representing concepts holistically—i.e., using all the fea-
tures of objects, to representing concepts analytically—i.e.,
narrowing in specific relevant features of objects (Kemler,
1983). Neural network models of conceptual classifica-
tion inherently capitalize on this idea when demonstrating
a shift (e.g., Shultz, Thivierge, & Laurin, 2008). Another
possibility is that there is a change in the mechanism by
which one learns concepts. For example, concept learn-
ing might change from storing exemplars to constructing
prototype or rule-based representations. These hypothetical
changes in representation or processing might be matura-
tional in nature, such as the development of abstraction
(Piaget & Inhelder, 1969). Alternately, they may be driven
by inductive inference mechanisms operating over observed
data, à la rational constructivism.

From the outset, we can narrow down this space of
theoretical hypotheses. The characteristic-to-defining shift
is most likely a function of data, not maturation (Keil,
1983). One prediction of a maturational-shift is that at a
single time-point, children should represent all words using

characteristic features or defining features, whereas a data-
driven shift predicts that both adults and children should
have more exemplar-based representations in unfamiliar
domains, and more rule-based representations in familiar
domains. The former does not explain children’s behavior:
children seem to possess characteristic representations and
defining representations of different words at a single time
point. The prediction of the latter—that individuals have
more exemplar-based representations in unfamiliar domains
and more rule-based representations in familiar domains—
is observed in children (Chi, 1985) and in adults (Chi,
Feltovich, & Glaser, 1981).

All of the aforementioned explanations for the
characteristic-to-defining shift require a discrete shift in
representation or process. However, no model has tested
whether a characteristic-to-defining shift could be a natural
by-product of the continuous data-driven construction of
concepts, as found in our model, and similar to conceptual
garden-pathing (Thaker, Tenenbaum, & Gershman, 2017)
or learning traps (Rich & Gureckis, 2018). We expect our
model to demonstrate a characteristic-to-defining shift only
if the characteristic features of the people in the context
are informative but imperfect in their ability to capture
the underlying concept (by denoting the proper referents).
If the characteristic features accurately capture a concept,
the model should never shift from favoring characteristic
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Fig. 6 Distance-ranked family trees from informants. Circles represent women; squares men. Bold lateral lines denote spousal relationships.
Informant 1 (top left) provided 107 unique features; Informant 2 (top right) 88; Informant 3 (bottom left) 92; and Informant 4, 59

hypotheses to defining hypotheses. On the contrary, if the
characteristic features are uninformative, and thus poor
at capturing a concept, our model should favor defining
hypotheses, predicting either no shift or an implausibly
rapid shift from characteristic-to-defining hypotheses.

Because these model predictions depend critically on the
types of characteristic features present in real data, it is
not straightforward to use simulation to create these fea-
tures because the outcome will depend on the nature of
the simulated data. Instead, we collect data about the char-
acteristic and logical relationships of real people to test if
natural data will contain features within the range of infor-
mativity that will show a characteristic-to-defining shift.

Data collection

We asked informants to provide us with information about
their family trees. Four informants, who were unaware of
our purpose, drew their family tree, ranked each family
member in terms of how frequently they interacted with
them as a child (see Fig. 6), and provided ten one-word
adjectives for each family member. For each informant, the
unique adjectives were used to construct a binary adjective
by family member feature matrix. Each informant was
presented with the feature matrix and asked to indicate if
each feature applied to each family member. Informants
made a response to every cell of the matrix: zero if the
feature did not apply; one if the feature did apply. The
informants provided between 59—107 (M = 86.5) unique
features including both experiential features (e.g., strict) and
perceptually observable features (e.g., blonde).13

13All family trees, feature matrices and code can be found at https://
github.com/MollicaF/LogicalWordLearning.

Implementation details

To model the characteristic-to-defining shift, we used
the informant provided tree contexts to simulate data
for learning. For each informant, we used their solicited
features to augment the hypothesis space (Table 1) with
the rules in Table 3. As a result, the hypothesis space
now includes characteristic hypotheses that return the set
of individuals the informant labeled as having that feature.
For example, outgoing(Yes) generates the set of individuals
in the context marked as outgoing and union(small(Yes),
outgoing(Yes)) returns the set of individuals in the context
marked both small and outgoing. This augmented grammar
allows us to model learners as comparing characteristic
(elicited) features vs. defining (logical, as above) features
and compute the probability of each type of hypothesis.

Results and discussion

It should be noted that the informant provided contexts
are smaller/sparser than the context used in our previous
analyses (Fig. 1). As a result, the model might not see types
of data that are required for learning the context-invariant
kinship concept.14 Nevertheless, it does not influence
our ability to observe a characteristic-to-defining shift.
While the MAP hypotheses are not context-invariant, the
model always learns a program that selects the individuals
consistent with the observed data. In Appendix B, we
provide F1 plots for all informants and English kinship
terms, and discuss the situations in which the model does

14The model could accommodate for this limitation by sampling
across multiple contexts; however, this is computationally expensive to
do for each of our informants. For computational efficiency, we only
sample data for each informant within their context.

https://github.com/MollicaF/LogicalWordLearning
https://github.com/MollicaF/LogicalWordLearning
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Table 3 Additional rules for the PCFG in Table 1. Now, each hypothesis starts with a START symbol

START
1−→ SET FSET

1−→ union(FSET,FSET) FSET
1−→ intersection(FSET,FSET) FSET

1−→ feature(VALUE)

START
1−→ FSET FSET

1−→ complement(FSET) FSET
1−→ difference(FSET,FSET) VALUE

1−→ {Yes—No}

not learn the “correct” concept for a kin term. Our failure
to learn all terms from these simulations suggest that
egocentric kinship data is not always sufficient for learning
kinship terms.

Figure 7 plots the posterior probability of entertaining
either a characteristic or defining hypothesis (y-axis) as a
function of the amount of data observed (x-axis). For all
of the words,15 we observe the characteristic-to-defining
shift—i.e., the probability of entertaining a characteristic
hypothesis is initially greater than the probability of
entertaining a defining hypothesis. This means that a
simple conceptual learning model shows a characteristic-
to-defining shift purely due to the learning context—i.e.,
realistic data about logical relations and characteristic
features. As these graphs average over the exact data
points a learner observes, they hide the early preference for
concrete referents; however, when plotted in terms of unique
data points the early preference for concrete referents holds.

To further illustrate why the model exhibits this the
characteristic-to-defining shift, we have replicated the table
from Mollica, Wade, and Piantadosi (2017) as Table 4,
which contains the three most likely hypotheses at different
data amounts for Informant One’s simulated learning of
GRANDMA. Recall from the Model Outcomes that before
seeing data, the model prefers simpler hypotheses that tend
to over-extend. As the model sees more data points, the
broad over-extensions narrows to better approximate the
data. This is present in Table 4 as after seeing 3 data
points, the extensions narrow from, for example, all women
in the context to the outgoing individuals in the context,
which include both of our informant’s grandmas as well
as an aunt and a cousin. Importantly, the hypotheses that
are favored after three data points are characteristic in
nature yet imperfect in representing the concept. At one
data point after the shift (i.e., the 13th data point), the
most likely hypothesis still over-extends (in Table 4 by
including grandpas) and is defining in nature; however,
there still is mass on characteristic hypotheses. As the model
observes more data, the expected extensions will continue to
narrow until the correct concept for GRANDMA is the most
probable.16

15Informant 2 has no grandfather relations in their family tree context.
16While we focus here on learning a single rule for kinship terms, it
is more likely that adults retain several rules which they can flexibly
deploy to determine kin relationships. For example, characteristic
features of kin relations still influence human reasoning well after
rule-like definitions have been learned (Lupyan, 2013).

It is important to note that our model does not have
a discrete change in processing or representation as
appealed to by previous research (e.g., Kemler, 1983).
Additionally, our model had access to abstraction from
the outset of learning. Recall from Model Outcomes that
without a bias promoting concrete referents, the model
without characteristic features had a 25% chance of using
abstraction after only observing a single data point (Fig. 3).
Therefore, Piaget and Inhelder (1969)’s explanation, that the
characteristic-to-defining shift reflects the development of
abstraction, is not required. Our model shows that a rational
learner would still undergo a characteristic-to-defining shift
even if they had perfect access to the data and the ability
to abstract from the outset of learning simply because
characteristic features are simple and explain children’s
initial data well. As children observe more data, children
can justify more complex defining hypotheses if and
when characteristic features fail to explain the data. If the
characteristic features perfectly explain the data, children
should never switch to defining hypotheses. Perhaps this is
why the characteristic-to-defining shift is only observed in
some conceptual domains and absent in others.

Order of acquisition: Simplicity and data
distributions

The extent to which simplicity, as opposed to experience,
drives the order of acquisition of kinship terms is an
open question. Previous research has found that American
children tend to acquire kinship terms in a specific order:
mother/father, brother/sister, grandpa/grandma, aunt/uncle
and cousin. Haviland and Clark (1974) first explained this
in terms of simplicity, measured as the number of predicates
in first order logic required to define the kinship term.
They later revised their account to additionally penalize
reusing the same relational predicate (e.g., [X PARENT A][A
PARENT Y] is more complicated than [X PARENT A][A
CHILD Y]). Other researchers have argued that data and
the environment drive the order of kinship term acquisition.
Benson and Anglin (1987) had parents rank order how
frequently children spend time with, hear about or talk about
twelve different kinship terms. They found that children’s
experience with different kinship relations correlated with
their observed order of acquisition. In our model, we
can directly pit experience against simplicity and evaluate
these theoretical hypotheses to determine if simplicity or
experience drive the order of acquisition.
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Fig. 7 Average posterior probability of using a characteristic or a defining hypothesis (y-axis) as a function of the amount of data observed
(x-axis) for words (rows) and informants (columns). Shaded regions reflect 95% bootstrapped confidence intervals. For all words, there is a
characteristic-to-defining shift
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Table 4 Best hypotheses for Informant One learning GRANDMA at three different time points

Hypothesis Posterior Probability

Before seeing data X (i.e., the speaker) 0.354

male(X) 0.006

complement(X) 0.006

After seeing 3 data points outgoing(Yes) 0.283

nosy(Yes) 0.283

small(Yes) 0.084

One data point after shift parents(parents(X)) 0.289

female(parents(parents(X))) 0.268

outgoing(Yes) 0.219

Implementation details

Here, we use the model to evaluate the predicted order of
acquisition under several sets of assumptions. Starting with
simplicity, our initial prior distribution over hypotheses (i.e.,
the PCFG in Table 1) mostly aligns with Haviland and
Clark (1974)’s original formulation of simplicity, as seen in
Table 5. If the likelihood of a data point across words was
equal and data comes at a uniform rate for each word, we
would expect to recover this order of acquisition. However,
under the size-principle, the likelihood of a data point
is not equal across words in this context, and CHILDES
frequencies suggest that the frequency distribution for
kinship terms is not uniform either17 (MacWhinney,
2000). Further, CHILDES frequency estimates differ from
the surveys of Benson and Anglin (1987) and a larger
corpus analysis of kinship term use across Indo-European
languages (Rácz, Passmore, Sheard, & Jordan, 2019), which
finds that frequency decreases as genealogical distance
increases.18

Following Benson and Anglin (1987)’s surveys, we
assume that children are more likely to be spoken to by
people closer to them, and children are more likely to
hear about people who are closer to them. We add these
assumptions by sampling data from two Zifpian distribu-
tions over referents based on their distance to the speaker
(see methods for details). In this, the relative grouping of
different kinship relations will influence acquisition. For

17As a larger point, it is not clear that children make use of every
instance of a word in their environment as input for learning. While
frequency is a good predictor of mean age of acquisition (Braginsky,
Yurovsky, Marchman, & Frank, 2019), Mollica and Piantadosi (2017)
inferred the rate of input and amount of input children require for
learning and found that frequency was not strongly correlated with how
many effective learning instances children required to learn a word.
However, frequency was moderately correlated to the rate of effective
learning instances children received.
18Although, Rácz, Passmore, Sheard, and Jordan (2019) did not
include grandparents in their analysis.

example, grandparents tend to be closer than cousins in our
dataset, which would bias the learner to acquire GRAND-
PARENT before COUSIN. Second, the distance ranking of
individuals that have the same kinship relationship will
influence acquisition. For example, consider a learner with
two uncles, one married-in and ranked more distant and
one by-blood ranked closer. Due to distance on the tree,
the learner will get data about the married-in uncle less
frequently, which can delay their ability to acquire UNCLE

because the learner must wait longer for data that teases
apart the adult-like hypothesis from candidate hypotheses
like male(child(parents(parents(X)))) that don’t cap-
ture uncles by marriage.

For our analysis, we factorially manipulated the model’s
prior (Uniform/Simplicity) and the data distribution (Uni-
form/CHILDES/Zipfian). For each set of assumptions, we
simulated 1000 data sets of 1000 data points from the tree
in Fig. 1 and ran the learning model with only the base
primitives to measure the probability that kinship terms are
acquired in a specific order.19

Figure 8 illustrates four possible patterns that we might
see with these simulations: an accurate and reliable order
of acquisition (top left panel), an inaccurate, reliable order
(top right), an accurate, unreliable order (bottom left) and
an inaccurate, unreliable order (bottom right). In each panel,
the x-axis reflects the ordinal position in which words were
learned. The fill reflects the probability that a word was
acquired at that time. If the order of acquisition is reliable,
there should be only one probable word acquired at each
ordinal position (top panels of Fig. 8). Whereas, if the
order of acquisition is unreliable, there should be several
probable words at each ordinal position (bottom panels of
Fig. 8). We will quantitatively describe consistency using
entropy (low entropy means more consistent) and describe

19We returned to the simulated tree for practical convenience and
because the sparseness of the solicited trees lead to incomplete learning
of kinship terms (see Appendix B).
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Table 5 Complexity in terms of Haviland and Clark (1974) aligns with the prior probability of our model

Empirical Order Word Original H&C Order & Formalization Log Prior CHILDES Freq.

1 mother Level I: [X PARENT Y][FEMALE] -9.457 6812

1 father Level I: [X PARENT Y][MALE] -9.457 3605

2 brother Level III: [X CHILD A][A PARENT Y][MALE] -13.146 41

2 sister Level III: [X CHILD A][A PARENT Y][FEMALE] -13.146 89

3 grandma Level II: [X PARENT A][A PARENT Y][FEMALE] -13.146 526

3 grandpa Level II: [X PARENT A][A PARENT Y][MALE] -13.146 199

4 aunt Level IV: [X SIB A][A PARENT Y][FEMALE] -19.320 97

4 uncle Level IV: [X SIB A][A PARENT Y][MALE] -19.320 68

4 cousin Level IV: [X CHILD A][A SIB B][B PARENT Y] -18.627 14

Contrary to Benson and Anglin (1987)’s survey, CHILDES frequencies do not align with order of acquisition

Fig. 8 Possible patterns of order of acquisition. The x-axis reflects the ordinal position of acquisition. The y-axis represents each word. The tiles
are filled according to the probability of acquisition. Words that have zero probability at a given ordinal position are omitted
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Fig. 9 Simulations of the order of acquisition of kinship terms as a function of changes in environmental data distributions (columns) and the
inductive biases of the learner (rows). A tiny amount of random noise was added to probabilities in each simulation to settle ties

the relationship between simulated orders and the attested
order using Kendall’s tau correlation.20

Results and discussions

Our simulations are plotted in Fig. 9 and quantitative
descriptors are provided in Table 6. As a sanity check,
we can see if the model would predict the empirical
order of acquisition without simplicity or experience (top
left corner). With a uniform prior and random input, the
model does not closely match the attested order. Instead the
likelihood imposes a relatively unreliable ordering favoring
aunts and uncles. Comparison across the top row shows
the influence of the assumed data distribution: matching
frequencies to CHILDES results in little qualitative change,
suggesting that the bias in word frequency distribution
is not skewed enough to reliably alter the order of
acquisition. Looking at the top right panel, using a Zipfian
distribution increases the consistency of the predicted order
of acquisition; however, the consistent trajectory does not
closely follow attested order of acquisition (e.g., predicting

20Statistics presented resolve the ties in the attested order alpha-
betically, which is consistent with how we handle ties in model
predictions.

uncle before sister). Taken together, experience alone does
not seem sufficient to predict the empirical order.

Comparing the top and bottom left column, we can
analyze the influence of the prior (Uniform vs. Simplicity).
Using a simplicity prior pushes against the likelihood’s
influence resulting in a less consistent pattern. Importantly,
the less consistent pattern pushes off the incorrect ordering
imposed by the likelihood. We can see the interaction
between the simplicity prior and different data distributions
in the bottom center and right panels. Looking at the center
panel, the model predictions do not qualitatively change
when adding a CHILDES frequency distribution. However,
adding a Zipfian bias to a simplicity prior increases the
consistency of the predictions (similar to the uniform prior
case). Importantly, the predicted trajectory significantly
correlates with attested trajectory, although imperfectly.
This analysis suggests that the simplicity-based prior we
have used throughout the paper has potential to explain
detailed patterns of the timing of acquisition, although the
predictions are dependent on the specific data distributions
assumed. Both simplicity and experience drive the order of
acquisition of kinship terms.

The discrepancies between empirical order of acquisition
and our model predictions might be explained by how we
assigned distances in the tree. For example, if aunt/uncles
were further from the learner than grandparents, we might
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Table 6 Quantitative description of consistency and correlation to attested order of acquisition

Prior Environment Joint Entropy Rank Correlation

Simplicity CHILDES 3.43 0.475 [0.197, 0.704]

Simplicity Uniform 3.42 0.469 [0.254, 0.704]

Simplicity Zipf 2.83 0.687 [0.592, 0.761]

Uniform CHILDES 3.28 0.365 [0.197, 0.535]

Uniform Uniform 3.25 0.365 [0.197, 0.535]

Uniform Zipf 2.96 0.611 [0.479, 0.761]

Intervals reflect 95% posterior weighted interval. For reference, τ = 0.535 would be considered a significant correlation

expect grandparents to be acquired earlier. Ideally, these
distances would be informed by cultural/environmental
factors that further constrain the learning problem. For
example, we would expect matrilinear/patrilineal residence
patterns to influence the order of acquisition through these
distances. In our simulations, differences between concepts
of the same complexity (e.g., GRANDMA and GRANDPA) are
slightly influenced by ties such that the alphabetical order
appears dominant in Fig. 9 where there is likely no bias.
Importantly, under this Zipfian environmental distribution
the model still shows under-extension, over-generalization
and the characteristic-to-defining shift (Mollica, Wade, &
Piantadosi, 2017).

General discussion

By framing kinship concept induction as logical program
induction, we have demonstrated how simplicity and the
size principle predict several of the empirical phenomena
seen in children’s acquisition. Specifically, an ideal learner
model incorporating these principles learns the kinship
system consistent with its input, offering a cross-linguistic
proof of learnability that works for typologically diverse
kinship systems. The trade-off between simplicity and
the size principle drives the model to predict both an
early preference for concrete reference and patterns of
over-generalization broadly consistent with the patterns in
children’s behavior, including the characteristic-to-defining

shift. Additionally, our model provides a novel explanation
for the characteristic-to-defining shift seen in children’s
early understanding of words, highlighting the role of
the learning context instead of proposing discrete changes
in representation and processing. Lastly, the model has
addressed open theoretical questions about the forces
driving the order of acquisition of kinship terms in English.

Beyond kinship, our model derives strong predictions
for how conceptual development should unfold over time
from first principles—i.e., simplicity and strong sampling.
Previous research has highlighted the limitations of using
children’s early word use as evidence for their comprehen-
sion, arguing that performance limitations and pragmatic
reasoning heavily influences early productions (Fremgen &
Fay, 1980; Bloom, 1973). Having independent predictions
for how conceptual knowledge unfolds over time provides
leverage to further investigate how conceptual knowledge
interacts with developmental models of retrieval and prag-
matic reasoning. For example, can out-of-vocabulary over-
extensions be explained better by under-developed concepts
or pragmatic reasoning with adult-like semantics for a
limited number of words (Xu & Pinto, in press)?

Table 7 outlines each behavioral phenomena this model
explains and the components of the model that do so. There
are two ways in which the behavioral predictions of our
computational model can be used. First, experiments can
be designed to directly assess components of the model,
and the learning environment. For example, we can evaluate
the model predictions under different primitive functions

Table 7 Summary of the empirical behavior, how the model explains this behavior and the behavioral predictions to be generated by the model

Empirical behavior Model explanation Behavioral predictions

Cross-linguistic learnability Inductive learning The number of data points before acquisition

Under-extension Local data distribution The number of data points before abstraction.

Over-generalization Trade-off between prior and likelihood The pattern of generalization at each data amount

Characteristic-to-defining shift Learning context The presence of and the number of data points before the shift

Order of Acquisition Environmental experience The order of acquisition and number of data points before each term

is acquired
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against children’s patterns of generalization as in the
tradition of componential analysis. Similarly, assumptions
about how children use data (i.e., the likelihood function)
and the inductive biases they bring to the learning task
make different predictions for patterns of generalization
and the timing of those behaviors. The model also makes
predictions for if and when a learning context should result
in a characteristic-to-defining shift. Second, this model can
be used as a baseline or normative model for comparison
against other theories of conceptual learning and for the
development of theories of related processes. Take for
example a foundational debate in anthropology that kinship
is uniquely disposed to address (Kroeber, 1909; Rivers,
1914): do we learn the structures in the world or do
we learn the conventions of lexical production through
linguistic structure? Our model shows how a learner should
behave if their goal was learning the structure in the world.
Comparing the predictions of our model with those of
formal models built to learn from linguistic structure would
give us leverage to tell when and to what extent children are
learning fromworld structure or through linguistic structure.
Additionally, the model makes predictions of how children’s
competence should change as a function of data, which has
the potential to aid the construction of theoretical models of
word use and early learning.

With regards to kinship specifically, the model con-
tributes to the long-standing challenge of identifying con-
straints on possible kinship systems. For over a century,
anthropologists and linguists have attempted to explain why
there is such rich but constrained diversity in kinship sys-
tems and how this diversity and structure has arisen. Tradi-
tionally studies have approached this problem viewing kin-
ship systems as a mathematical object (e.g., Goodenough,
1956; Read, 2007), with little concern for the psychologi-
cal reality. In the last decade, formal modelling has started
incorporating functional pressures to explain kinship (Jones,
2010; Kemp & Regier, 2012). While these endeavors have
some success explaining why there is diversity in kinship
systems, they fail to explain the rich structure within kinship
diversity (Passmore et al., 2021) and how kinship systems
have evolved (Passmore & Jordan, 2020). In order to under-
stand evolutionary trajectories, we will need to combine
constraints inspired by mathematical descriptions of kinship
structure (e.g., Jones, 2010) with constraints inspired by
viewing kinship as a cognitive technology, including acqui-
sition. The model can serve as an additional constraint to
explain why there is repeated structure across attested kin-
ship systems despite the lack of support for universal models
of evolutionary change (Passmore & Jordan, 2020).

An important direction for future models is to learn
all of the parallel structures supporting kinship—i.e., how
kinship terms (sometimes simultaneously) map to address,
sociological and attitudinal structures. For example, it’s easy

to imagine a child construing uncle inUncle Ben as a term of
address like doctor in Doctor Octavius. Similarly, kin terms
can be used to express an attitude toward an individual.
For example, calling an individual a grandpa because
they go to sleep and wake up early. Furthermore, future
work should seek to evaluate these systems against social
reasoning behavior in addition to establishing reference.
Future implementations of models in our framework could
map kinship terms to different structure or simultaneously
learning multiple mappings. Of course, these endeavors will
also require a substantial investment in both experimental
and observational data collection for kinship across cultures.

Conclusion

Programs are a powerful representational scheme to
formalize concepts because they have the ability to
capture logical structure, features, and potentially graded
or stochastic aspects of conceptual structure. A critical
component of our program representation scheme is that our
programs are functions of contexts. Concept deployment
and language use are heavily context-sensitive and to
generalize across contexts, thinkers need something like a
program, which can operate over a given context. When
combined with data-driven inductive approaches, programs
not only capture the end state representation of concepts
but provide rich behavioral predictions across the entire
developmental trajectory, including phenomena like the
characteristic-to-defining shift in a single model.

Methods

Generating the hypothesis space

To construct a finite lexicon space appropriate for our
analyses, we utilized a variety of Markov Chain Monte-
Carlo methods to draw samples from the posterior
distribution over lexicons at different data amounts. Our
model is implemented using LOTLib, a Language of
Thought library for python (Piantadosi, 2014a). Here a
lexicon is a collection of hypotheses, one per kinship
term. First, we searched the space of all possible lexicons
using MCMC, resulting in many partially correct lexicons.
Across all of these lexicons, every word was learned and
therefore, the learning trajectory for each word was present
in the space. Nonetheless, few if any lexicons contained the
correct hypothesis for all of the words, which is important
to ensure that the finite approximation of the space that
we use contains as many lexicons that are developmentally
plausible as possible. In our second phase, we mixed the
hypotheses generated in the first phase to construct lexicons
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that contained the developmental trajectories of multiple
words. A small percentage of these lexicons contained
correct hypotheses for all of the words. Phase one and two
combined generated too many lexicons to tractably analyze
further. Therefore, we truncated the space by normalizing
the lexicons and selecting the top 1000 hypotheses at
various data amounts. For our main analyses, we collapse
across lexicons and analyze developmental trajectories for
each word independently to avoid any complications with
not having a complete lexicon space.

To generate an initial set of hypotheses, we used
the Metropolis-Hastings algorithm using tree-regeneration
proposals following (Goodman et al., 2008; Piantadosi
et al., 2012). For each language, we ran 16 chains at each
of 25 equally spaced data amounts between 10 and 250.
Due to memory limitations, we only saved the top 100
best lexicons from each chain. For English, Pukapukan,
and Yanomaman lexicons, each chain was run for 1 million
steps. For Turkish, we first ran five chains for 3 million
steps on a smaller lexicon—i.e., the search did not include
the three words for grandparents or the word for cousin. We
then ran five chains for 3 million steps on the full lexicon.
Few if any lexicons resulting from this search contained
the correct hypothesis for all words; however, across all
lexicons the correct hypothesis for every word was learned.

In our second phase, we used Gibbs sampling to mix
the hypotheses generated in the first phase, constructing
lexicons that contained the developmental trajectories of
multiple words. A small percentage of these lexicons
contained correct hypotheses for all of the words. Phase
one and two combined generated too many lexicons
to tractably analyze further (around 200,000 nine-word
lexicons for English). Therefore, we truncated the space
by normalizing the likelihoods and selecting the top 1000
lexicons at various data amounts favoring lower amounts
(eight equally spaced intervals between 1 and 25, and six
equal intervals between 25 and 250 data points). For the
analyses presented in the main text, we marginalize over
lexicons to analyze hypotheses for different kinship terms
independently. As hypotheses are included in the space
based on their performance at varying data amounts, we
normalize the likelihood by simulating 1000 data points,
computing the likelihood of each hypothesis and taking the
average likelihood for each hypothesis.

Learnability, F1 and over-extension analyses

To evaluate if a hypothesis ĥ was correct, we compared
the hypothesis’s extension to the hand-constructed, ground
truth hypothesis h for each kinship term system. We obtain
the trajectories for posterior weighted accuracy, precision

and recall by marginalizing over hypotheses at each data
amount. For example, the posterior weighted accuracy is
given by:

P(ĥ = h|d) =
H∑

δ
ĥh

P (h|d). (4)

We adopt this same approach to estimate the extension
probability for each referent x in a context as a function of
data:

P(x|d) =
H∑

P(x ∈ |h|)P (h|d), (5)

where P(x ∈ |h|) is given by:

P(x ∈ |h|) =
{
1 if x ∈ |h|
0 else.

(6)

Concrete reference analysis

As concrete reference is heavily influenced by local data
distributions, we constructed a fixed data set of five unique
data points for UNCLE and ran one MCMC chain 100,000
steps for each amount of data. We collected the top
100 hypotheses from each chain to use for analysis. We
operationalize abstraction as the probability the hypothesis
is a function of the speaker:

P(rSET →p ∈ h) =
{
1 if rSET →p ∈ h

0 else
. (7)

The posterior probability of using abstraction at a given data
amount is therefore:

P(rSET →p|d) =
H∑

P(rSET →p ∈ h)P (h|d). (8)

We manipulate the prior bias for concrete reference by
changing the PCFG production probabilities given in
Table 1, which influences the prior probability following
Equation 2.

Characteristic-to-defining shift

We build the hypothesis space for characteristic and
defining features separately for each informant. To gather
defining hypotheses, we ran seven chains at each of 25
equally spaced data amounts between 10 and 250 using the
PCFG in Table 1 for 500,000 steps. To gather characteristic
hypotheses, we ran seven chains at each of 25 equally
spaced data amounts between 10 and 250 using the PCFG
in Table 3 for 500,000 steps. Due to memory limitations, we
only saved the top 100 best lexicons from each chain. For
each informant, the defining and characteristic hypotheses
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were concatenated to form a single finite hypothesis space.
As our analyses collapsed over lexicons, we did not perform
Gibbs sampling as above.

We replicate the learnability and F1 analyses (described
in Appendix B) using the same methods described above.
Our analysis of the characteristic-to-defining shift is
similar to our analysis of concrete referents. The posterior
probability of using a characteristic hypothesis at a given
data amount is

P(rFSET →feature|d) =
H∑

P(rFSET →feature ∈ h)P (h|d),

(9)

where P(rFSET →feature ∈ h) is:

P(rFSET →feature ∈ h) =
{
1 if rFSET →feature ∈ h

0 else.
(10)

Order of acquisition analysis

For the uniform data distribution, we sampled 1000 different
datasets each containing 1000 data points from a uniform
distribution over all possible true data points. For the
CHILDES data distribution, we sampled 1000 different
datasets each containing 1000 data points as follows. A
kinship term w is sampled from a multinomial distribution
with θ values reflecting CHILDES frequencies. Given that
term, a speaker-referent pair (x, p) is sampled uniformly
from all possible speaker-referent pairs.

w ∼ Multinomial(θ) (11)

(x, p) ∼ Uniform({(x, p)}) (12)

To simulate experience according to Benson and Anglin
(1987), we modified the data generating process. For each
data point, speakers ranked closer in distance to the learner
are more likely to be sampled than data from speakers
ranked distant to the learner. Conditioned on a speaker and
a word, valid referents ranked closer to the learner are more
likely to be sampled than referents ranked distant to the
learner. We implement both of these models with the same
noise model used in Equation 3. First, a kinship term is
sampled following (11). Conditioned on a word, a speaker
is sampled from a Zipfian distribution over the set of all
possible speakers of that word Xw:

P(x|w) ∼ αd−s
x∑

x∈Xw
d−s
x

+ (1 − α)

|X| , (13)

where dx is the ranking of the speaker x, s is the Zipfian
exponent and X is the set of all individuals in the tree

context. Conditioned on the word and speaker, a referent
is sampled from a Zipfian distribution over the set of all
possible referents for that word and speaker Pwx :

P(p|x, w) ∼ αd−s
p∑

p∈Pwx
d−s
p

+ (1 − α)

|X| . (14)

For our analyses, s = 1, reflecting the typical bias
observed in texts (Piantadosi, 2014b). We assigned dis-
tances to the tree context in Fig. 1 by fixing the learner
as the central female in the youngest generation that
had both a brother and a sister, and assigning relatives
closer in Euclidean distance smaller distance values. The
assignment of distance in our informant provided data
suggests this relationship has great individual variability,
so we refrain from making strong predictions about the
order of acquisition for individual terms. For the Zip-
fian distribution, we sampled 1000 different datasets each
containing 1000 data points as outlined in Equations 13
and 14.

For all simulations schemes, we calculate the posterior
accuracy of each hypothesis as a function of data following
Equation 4 after each data point is sampled. If the posterior
weighted accuracy is greater than or equal to 0.99, we mark
the word as learned and record its ordinal position. Ties
were resolved alphabetically. As a result, we do not make
strong predictions about order of acquisition for equally
complex concepts (e.g., the relative ordering of MOTHER

and FATHER), which often pattern alphabetically in our
simulations.

Appendix A: Alpha analysis

Navarro et al. (2012) investigated how the reliability
parameter α, which mixes between strong and weak
sampling influences an inductive generalization task. They
simulated environments where the data was generated
to be reliable 30 – 60% of the time, and checked how
distinguishable a noisy size-principle likelihood with
varying reliability parameter α would be from pure strong
sampling (α = 1). They found that in the limit of data,
models with reliability parameters as low as 0.1 converge to
the predictions of strong sampling. We parametrically vary
the reliability of the environment by simulating data with
30−60% reliability and set our model’s reliability parameter
to either 0.1, 0.5, and 0.9 to gauge whether learning in
our simulations will be robust to unreliable environments
and different reliability assumptions. As can be seen in
Fig. 10, we find no qualitative differences in learning across
reliability assumptions and environments.
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Fig. 10 Posterior weighted accuracy (y-axis) as a function of data (x-axis) for models with different sampling assumptions (linetype and color) for
different words (columns) and environmental reliability values (rows). The virtually invisible shaded regions reflect 3 standard errors of the mean

Appendix B: F1 score plots

As described in the main text, F1 score plots are a
visualization of learnability and over-generalization. Each
figure in this appendix plots the posterior weighted
accuracy, precision and recall (y-axis) as a function of data
(x-axis). Accuracy reflects the probability that the model
has acquired the adult-like concept for that kinship term.
Recall corresponds to the probability that the model will
recognize a correct referent, and is given by:

∑
x∈ĥ

[x ∈ h]
|h| , (15)

where x is a referent, ĥ is the proposed hypothesis, h is
the ground truth hypothesis. Precision corresponds to the
probability that the model will propose a correct referent,
and is given by:

∑
x∈ĥ

[x ∈ h]
|ĥ| . (16)

When recall is greater than precision, the model is over-
extending the term.

Figure 11 displays the F1 plots for Pukapuka, Turkish
and Yanomamö. As shown in the main text, the model learns
the correct extension for every word. As expected, the pos-
terior weighted recall is greater than the posterior weighted
precision for every word, suggesting that the model over-
extends the meaning of kinship terms. Predictions for the
pattern of over-extension for each word is provided in
supplemental material.

B.1 The characteristic-to-defining shift

Figure 12 displays the F1 plots for each of our informants.
For all words, posterior weighted recall is greater than pos-
terior weighted precision, consistent with over-extension of
kinship words. As discussed in the main text, the model
fails to learn the correct hypothesis for some words due to
the impoverished input/context. That being said, the model
always learns a hypothesis that is consistent with its input.
If we had provided evidence from multiple family tree con-
texts, we expect the model to learn the adult-like extension
for all of the concepts. This suggests that having evidence
from multiple families is likely an important property of the
kinship data that children use to learn their kinship terms.

In the majority of cases where the model does not
acquire the correct extension, the conventional hypothesis
was blocked by a hypothesis that overfit the context. For
example, Informant 3 overfits for GRANDMA and Informant
4 overfits for GRANDPA because there is only one of those
relations in their family tree. Hence, it is sufficient to just
point to that person. Informant 2 does not learn AUNT,
Informant 3 does not learn SISTER and Informant 4 does
not learn COUSIN for similar reasons. In these cases, the
conventional hypotheses do have some posterior probability
(as evidenced in Fig. 12 by non-zero Accuracy) but do
not come to dominate the posterior distribution of possible
hypotheses. The conventional hypotheses are blocked by
hypotheses that are less complex, explain the observed data,
but would not generalize properly across contexts.

Instead of overfitting, Informant 1 and 4 do not learn
the conventional hypotheses for AUNT and UNCLE because
there are children out of wedlock, which complicates how
we have defined the conventional hypotheses. Importantly,



Psychon Bull Rev

taina tupuna−tane tupuna−wawine

kainga matua−tane matua−wawine

0 5 10 15 20 25 0 10 20 30 0 10 20 30

0 10 20 30 0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Number of Data Points

Pr
op

or
tio

n

Accuracy

Precision

Recall

teyze yenge

dede eniste hala kuzen

anneanne baba babaanne dayi

abi abla amca anne

0 10 20 30 40 50 0 100 200 300

0 25 50 75 100 0 100200300400500 0 10 20 30 0 25 50 75 100

0 10 20 30 0 5 10 15 20 0 10 20 30 0 10 20 30

0 20 40 60 0 25 50 75 100 0 10 20 30 40 0 5 10 15 20
0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Number of Data Points

Pr
op

or
tio

n

Accuracy

Precision

Recall
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the maximum-a-posteriori, or best, hypothesis recovered by
the model actually generalizes correctly over trees without
out of wedlock children. Informant 2 does not have any
grandfathers in their family tree context and, therefore, the
model never receives data to learn GRANDPA.

Appendix C: Learning an inter-related
system

Throughout the paper, we have described a model that
learns kinship terms independently of each other. One
trivial way to implement learning an inter-related system
would be to change the likelihood function to operate
over the lexicon instead of individual words (e.g., Mollica,
2019). However, the more natural way to think of learning
an inter-related system like kinship would be to allow
for recursive calls.21 For example, a learner might use
their current concept for BROTHER in their concept for
UNCLE. We have implemented recursive calls in the model;
however, despite multiple attempts, we were unable to
construct an acceptable lexicon space to evaluate the model
against developmental behavior. Without a proper finite
approximation to the space of probable lexicons, there are
no guarantees that any “conclusions” drawn will be robust.

One common issue with the search was finding lexicons
that only learned a subset of the words after a lengthy search
process. In the main text, we could easily mix lexicons using
Gibbs sampling to help ensure the relevant lexicons—i.e.,
lexicons that contain all high probability combinations of
hypotheses across the developmental trajectory, were in our
finite approximation of the space. Unfortunately, recursive
calls introduces dependencies between words in a lexicon,
which prohibits techniques like Gibbs sampling that rely on
independence.

Another common issue was the presence of local maxima
in search (illustrated in 8. Often the model would construct
a useful primitive (e.g., sibling) instead of the definition
of a word (e.g., brother), which blocks that word from
being acquired. In the example lexicon in Table 8, SISTER,
UNCLE, AUNT and COUSIN are all defined in terms of the
learner’s hypothesis for BROTHER. The learner’s hypothesis

21While the computations that we ultimately find for our kinship terms
may differ from our intuitive definitions, it is not clear that definitions
are simply read off from our conceptual representations (Miller &
Johnson-Laird, 1976). In formal semantics, the definition, for example,
of the quantifier most is distinct from the conceptual process by which
the meaning is verified (Pietroski, Lidz, Hunter, & Halberda, 2009).
In this paper, we demonstrated that recursive calls are not necessary
to illustrate the behavioral phenomena we are interested in. Separating
recursive computations from finite computations is a challenging task
behaviorally because a recursive computation can be flattened out to a
computation that performs identically.

Table 8 An example local max lexicon when permitting recursive calls
in the lexicon space

FATHER male(parent(X))

MOTHER female(parent(X))

BROTHER child(parent(X))

SISTER female(BROTHER(X))

UNCLE male(BROTHER(parent(X)))

AUNT female(BROTHER(parent(X)))

COUSIN difference(generation0(X), BROTHER(X))

for BROTHER is incorrect and would be better glossed
as sibling. The problem with this local maxima is that
any change to BROTHER to fix it would result in errors
for SISTER, UNCLE, AUNT and COUSIN. Therefore, the
sampling chain cannot propose a better lexicon and is
essentially stuck.

Due to the search issues, we adopted a different tac-
tic to explore the effect of recursion on kinship learn-
ing. Hypotheses with recursive calls have extensionally-
equivalent hypotheses defined in terms of the base primi-
tives. For example from Table 8, SISTER could be expressed
as female(child(parent(X))). Being extensionally equiva-
lent, the two hypotheses have the same likelihood. The only
difference on the posterior probability is in the prior. Recur-
sive hypotheses should be simpler and thus more probable.
Therefore, we can change the prior distribution over our
existing hypothesis space to behave equivalently as if it was
recursive. We capture the same intuitions as recursion using
the Lempel-Ziv compression of the lexicon in terms of the
grammar as a prior over lexicons. This prior distribution

Fig. 13 The English lexicons are plotted as a function of the recursive
(compression) and lexicon prior. The color of each point represents
the point log likelihood (PLL) of the lexicon. If the learner searched
the space starting from the simplest to the most complex lexicon
and terminated at the first correct lexicon, they would have to
search a smaller space under a compression prior (red shade) than
under a lexicon prior (green shade). Importantly, the developmental
trajectory is not predicted under the recursive prior without additional
assumptions about the complexity/development of recursion
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favors the reuse of specific combinations of primitives in the
lexicon similar to the recursive calls in Table 8.

We found that when using a compression prior, the model
predicts an inductive leap from most of the kinship terms
not being properly acquired to all of the kinship terms being
learned. We see this leap because the correct lexicon under
the compression prior is significantly less complex than the
lexicons required in search space to get you there (Fig. 13).
To remove this inductive leap, we could add a parameter
that penalizes recursion (Piantadosi et al., 2012); however,
we think that the better explanation would be through the
development and integration of a more cognitively grounded
notion of hypothesis generation—i.e., an algorithmic level
explanation.

Appendix D: Mutual exclusivity
through pragmatics

At first glance, our model fails to capture mutual
exclusivity, or the bias for a referent to map to a single
word (Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992;
Markman & Wachtel, 1988). Our model often predicts
patterns of over-extension where a term like aunt would
include a referent that overlaps with another term like the
speaker’s mother. This is counter-intuitive and anecdotally
it’s rare that children would actually use the word aunt
to refer to their mother. There are several ways we
could add mutual exclusivity directly to the model. For
example, (Markman & Wachtel, 1988; Markman, Wasow,
& Hansen, 2003) suggested that children have an inductive
bias specifically for mutual exclusivity. Instead, we suggest
that mutual exclusivity should be handled by the natural
pragmatic reasoning of a communication task. Let’s take
for example, the pragmatic reasoning model proposed by
(Frank & Goodman, 2012). We will consider a learner
sitting in a room with their aunt and mother with the kinship
concepts in Table 9.

First, let’s look at production. If our learner is a pragmatic
speaker and needs to refer to a target referent r in the context
C, they should select the word w in their vocabulary that is

Table 9 Example leaner

Concept Hypothesis Relative Frequency

AUNT female(generation1(X)) 0.3

MOTHER female(parent(X)) 0.7

most likely to extend to the target referent P(w|r, C). This
can be formalized using Bayes rule as:

P(w|r, C) = P(r|w, C)P (w)∑
w P (r|w, C)P (w)

, (17)

where P(r|w, C) is our noisy size-principle likelihood
Equation 3. Using this equation, if the learner needs to refer
to their mother, they should use mother because there is
an 82% chance that mother would be used to refer to their
target referent and only 12% chance that aunt would. If they
need to refer to their aunt, they should use aunt because
there is an 81% chance that aunt would be used to refer to
their target and a 19% chance that mother does.

Now looking at comprehension. If our learner is a
pragmatic listener, they will infer reference based on what a
pragmatic speaker should do. Formally, the probability of a
referent given a word is:

P(r|w, C) ∝ P(w|r, C)P (r|C). (18)

Thus, the pragmatic listener propagates the mutual exclu-
sivity bias of the pragmatic speaker. Assuming an equal
prior on referents in the context, a pragmatic listener should
understand mom to refer to their mother, as there is an 81%
chance that mom refers to their mother, and aunt to refer to
their aunt, as there is an 82% chance that aunt refers to their
aunt.

Allowing this kind of pragmatic generalization is
potentially beneficial for communicating out-of-vocabulary
referents (Xu & Pinto, in press) and establishing reference
with an ambiguous linguistic signal. To be clear though,
we offer this explanation at the computation level. We are
not claiming that children solve this pragmatic reasoning
problem explicitly; however, they must implicitly solve
this problem for successful and efficient communication
regardless of their semantics. Our conclusion is just that we
might be able to get mutual exclusivity from pragmatics
without requiring an inductive bias. For further evidence
against the inclusion of a specific inductive bias for mutual
exclusivity, see Frank, Goodman, and Tenenbaum (2009),
which discusses how a simplicity bias is sufficient to
predict mutual exclusivity in the word-referent mapping
problem. Similar observations can be drawn from several
implemented models of cross-situational word learning
(Fazly, Alishahi, & Stevenson, 2010; Kachergis, Yu, &
Shiffrin, 2012; McMurray, Horst, & Samuelson, 2012). For
a recent review and meta-analysis of mutual exclusivity, see
Lewis, Cristiano, Lake, Kwan, and Frank (2020).
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