
DISCRETE AND CONTINUOUS Website: http://aimSciences.org
DYNAMICAL SYSTEMS
Volume 20, Number 3, March 2008 pp. 725–738

SYMBOLIC DYNAMICS ON FREE GROUPS

Steven T. Piantadosi

Department of Mathematics
University of North Carolina at Chapel Hill

CB #3250, Phillips Hall
Chapel Hill, NC 27599, USA

(Communicated by Mark Pollicott)

Abstract. We study nearest-neighbor shifts of finite type (NNSOFT) on a
free group G. We determine when a NNSOFT on G admits a periodic coloring
and give an example of a NNSOFT that does not allow a periodic coloring.
Then, we find an expression for the entropy of the golden mean shift on G. In
doing so, we study a new generalization of Fibonacci numbers and analyze their
asymptotics with a one-dimensional iterated map that is related to generalized
continued fractions.

1. Introduction. Let G be a free group that is freely generated by σ = {σ1, . . . , σq}
and fix a finite alphabet of colors A. A coloring of G is a function φ : G → A. We
will consider colorings to be points in the dynamical system (AG ,G), where the
action is given by

(wφ)(x) = φ(xw)
for w, x ∈ G. Thus, wφ is a coloring that corresponds to “shifting” the coloring φ
by the group element w. A coloring φ is periodic if the orbit {Tφ : T ∈ G} is finite.

A set F ⊂ A × σ × A is called a set of forbidden blocks. A coloring φ contains
(a, σi, b) ∈ F if there exists w ∈ G such that φ(w) = a and φ(wσi) = b. Thus F only
restricts what colors can be adjacent over each of the σi. Given a set F of forbidden
blocks, define XF to be the set of colorings which do not contain any blocks in F .
Since the cardinality of F is finite, we call XF a nearest-neighbor shift of finite type
(NNSOFT).

Example 1. Let A = {0, 1}, σ = {σ1, σ2}, and F = { (1, σi, 1) : σi ∈ σ }. Then
XF consists of all colorings of G such that no two 1s are adjacent. XF is called the
golden mean shift on G.

We denote the length of a group element w as a reduced word on the generators
of G by |w|.
Definition 1.1. The entropy h(XF ) of a NNSOFT XF is defined as

h(XF ) = lim sup
n→∞

log2 Bn

|Cn|
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where Cn = {w ∈ G : |w| ≤ n} and Bn is the number of allowed colorings of Cn in
XF .

Here, we first study NNSOFT on G and show that their behavior is consider-
ably simpler than Zd for d > 1. We show how to determine if a NNSOFT on G is
nonempty (Proposition 1). This is in contrast to, for example, Z×Z where nonemp-
tyness is not necessarily computable for NNSOFT [1]. We also determine when a
NNSOFT on G admits a periodic coloring (Theorem 3.4), which can be reduced to
finding a nontrivial nonnegative solution to a system of linear equations (Theorem
3.6). As in Zd for d > 1, there exist NNSOFT on G that do not admit periodic
colorings [1, 6], and an example is given in Section 4. In Z × Z, the existence of
NNSOFT that do not admit periodic coloring is closely related to the undecidabil-
ity of Z × Z nonemptyness. On G, we find no such relationship since there exist
NNSOFT that do not allow periodic points, but nonemptyness is relatively easy to
determine.

We also study the entropy of the golden mean shift on G. In one dimension
(q = 1), the entropy of the golden mean shift is easy to determine [8]. However, in
Z × Z even determining if the entropy of the golden mean shift is algebraic is still
an open problem. Much effort has been put towards achieving bounds on its value,
which is important for understanding several physical systems and for many coding
problems that arise in the study of two-dimensional run-length constrained channels
[7, 9, 11]. The golden mean shifts on Zd and G are instances of the hard core model
from statistical mechanics, which corresponds to colorings of an arbitrary graph
with the alphabet A = {0, 1} such that no two 1s are adjacent. Here we develop a
new generalization of Fibonacci numbers to study the golden mean shift on G and
find an expression for the entropy of the golden mean shift on G (Theorem 5.9). The
results also hold for any k-regular trees, and thus extends to the hard core model
on the Bethe lattice [2]. The unique simple invariant Gibbs measure on the Bethe
lattice has been studied previously [10, 3].

2. Coloring G. Fix a set of forbidden blocks F .

Definition 2.1. Let Γσi = {(a, b) ∈ A × A : (a, σi, b) /∈ F} be the directed graph
of allowed blocks of length 2 in the σi direction.

Every finite set of forbidden blocks F defines q one-dimensional shifts of finite
type:

Definition 2.2. Let Xσi be the one-dimensional NNSOFT whose elements are
given by bi-infinite walks on Γσi .

Informally, Xσi describes the space of possible colorings in the σi direction at
each element of G. It should be clear that the set of q one-dimensional shifts of
finite type Xσ1 , Xσ2 , . . . , Xσq completely characterize XF .

Example 2. Let A = {0, 1}, σ = {σ1, σ2}, and F = { (1, σ1, 1) }. Then Xσ1 is the
golden mean shift and Xσ2 is the full shift on {0, 1}. Thus if φ ∈ XF and φ(w) = 1,
then φ(σ1w) = 0, but it is not forbidden to have φ(σ2w) = 1.

Definition 2.3. For any subset A′ ∈ A, a set of 2q functions,

{hx : A′ → A′ such that x ∈ σ or x−1 ∈ σ}
is called a set of coloring functions.
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Proposition 1. XF is nonempty if and only if for some A′ ⊆ A, a set of col-
oring functions exist that obey the forbidden blocks, meaning that we always have
(l, σi, hσi(l)) /∈ F and (hσ−1

i
(l), σi, l) /∈ F for every l ∈ A′.

Proof. It should be clear that if XF is nonempty, then there must exist a set of
coloring functions that obey the forbidden blocks since each element of A′ can be
adjacent to some other other element of A′ by each σi, where A′ is the set of colors
used in some φ ∈ XF .

For the converse direction, note that coloring functions can specify colorings in
the following way. We begin by defining φ(e) = a for some a ∈ A′. We then repeat
the following process: if φ(w) has been defined but φ(wx) has not yet been defined
for x ∈ σ or x−1 ∈ σ, define φ(wx) = hx(φ(w)). Therefore, once we have colored
one vertex, the hx inductively define the rest of the coloring.

Note that since the domain and range of coloring functions are finite, one can
trivially check if a NNSOFT is nonempty by simply enumerating all possible sets of
coloring functions and determining if any are consistent with the forbidden blocks.
It should be clear that if there exists an alphabet A′ ⊆ A such that for each c ∈ A′
every Xσi contains a point that uses c and only the colors in A′, then it is possible
to construct a set of coloring functions and the NNSOFT will be nonempty.

In the proof of Theorem 3.4, we require the following result which states that
the hx are invertible, then the coloring specified by them will be periodic:

Proposition 2. Let φ be a coloring produced by a set of coloring functions S. If
h−1

x = hx−1 for each hx ∈ S, then φ is periodic.

Proof. Note that a coloring φ specified by S is color-isotropic, meaning that if
φ(g1) = φ(g2) then φ(g1w) = φ(g2w) for all w ∈ G, as is evident from the fact that
each hx is a bijection. But every color-isotropic coloring is necessarily periodic,
since any shift Tφ of φ will color e one of a finite number of colors, and each color
of e will uniquely determine a coloring of G.

3. Periodic coloring of G. We now determine when a NNSOFT on G admits a
periodic coloring. This question turns out to be much more subtle than it may
initially seem. First, we represent a periodic point in a one-dimensional NNSOFT
with a cycle:

Definition 3.1. A cycle w is a closed path on the graph Γσi . We represent a cycle
through the vertices x1, x2, . . . xn, x1 with xi ∈ A by the expression x1x2 . . . xn.

A cycle w = x1x2 . . . xn has length |w| = n and we will sometimes write (w)i = xi.
We say that w represents a periodic point x ∈ Xσi if

x = . . . x1x2 . . . xnx1x2 . . . xn.x1x2 . . . xn . . . .

Definition 3.2. A simple cycle is cycle w = x1x2 . . . xn such that xi 6= xj for i 6= j.

Thus, a simple cycle is a closed path on Γσi that does not contain any shorter
closed paths.

Definition 3.3. For a cycle w and a ∈ A, define

ηa(w) = #{i : (w)i = a, 1 ≤ i ≤ |w|}.
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If S is a set of cycles, define

ηa(S) =
∑

w∈S

ηa(w).

Theorem 3.4. A NNSOFT on G on q generators contains a periodic coloring if
and only if there exist finite sets S1, S2, . . . , Sq such that elements of Si are cycles
that represent periodic points in Xσi

, and for all a ∈ A and 1 ≤ i < j ≤ q we have
ηa(Si) = ηa(Sj).

Proof. We first prove the ⇐ direction. Suppose such Si exist, and suppose Si =
{wi

1, w
i
2, . . . , w

i
pi
} for each 1 ≤ i ≤ q. Define the alphabet B by

B =
⋃

1≤i≤q

|Si|⋃

j=1

|wi
j |⋃

s=1

{xi
j,s},

so that B consists of symbols such as x1
1,1,, x1

1,2, x2
2,1, etc.. Each element xi

j,s in B
can be thought of as specifying a cycle wi

j in Si, and a position s in that cycle.
Next, we define χ : B → A by

χ(xi
j,s) = (wi

j)s

so that
wi

j = χ(xi
j,1)χ(xi

j,2) . . . χ(xi
j,|wi

j |
).

That is, χ maps the symbol xi
j,s to the color at the location (in a cycle) specified

by xi
j,s.

Since we assume ηa(Si) = ηa(Sj) for all i, j and for all a ∈ A, we define ηa to
be the common value of all ηa(Si). Define N =

∑
a∈A ηa and note we also have

N =
∑

w∈Si
|w| for every Si.

Lemma 3.5. Given S1, S2, . . . , Sq that satisfy the hypotheses of the theorem, there
exist sets E1, E2, . . . EN that partition B and meet the following conditions:

(i) If xi
j,s ∈ Er and xi′

j′,s′ ∈ Er then χ(xi
j,s) = χ(xi′

j′,s′).

(ii) For i = 1, 2, . . . , q, each Er contains exactly one element of the form

xi
j,s (where j and s may depend on i).

Proof. In this proof we temporarily change notation. Suppose A = {1, 2, 3, . . . , m}
and

B = {b1
1, b

1
2, . . . , b

1
p1

, b2
1, b

2
2, . . . , b

2
p2

, . . . bq
1, b

q
2, . . . , b

q
pq
}

for some values of the pr, where bi
x = xi

j,s for some j, s. For each fixed i ≤ q, we
can “sort” the bi

x by color so that

χ maps these to 1∈A︷ ︸︸ ︷
bi
yi
1
bi
yi
2
. . . bi

yi
η1

χ maps these to 2∈A︷ ︸︸ ︷
bi
yi
(η1+1)

bi
yi
(η1+2)

. . . bi
yi
(η1+η2)

. . . . . .

χ maps these to m∈A︷ ︸︸ ︷
bi
yi
(N−ηm+1)

bi
yi
(N−ηm+2)

. . . bi
yi
(N)

,

for appropriate choices of the yi
z. The conditions on the Si assure that

#{bi
x ∈ B : χ(bi

x) = a} = #{bj
x ∈ B : χ(bj

x) = a}
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for all a ∈ A and 1 ≤ i, j ≤ q. Thus, when we sort by color, each row of bi
x has the

same number of elements (ηa) that χ maps to a ∈ A. That is, we can write
χ maps these to 1∈A︷ ︸︸ ︷

b1
y1
1
b1
y1
2
. . . b1

y1
η1

χ maps these to 2∈A︷ ︸︸ ︷
b1
y1
(η1+1)

. . . b1
y1
(η1+η2)

. . .

χ maps these to m∈A︷ ︸︸ ︷
b1
y1
(N−ηm+1)

. . . b1
y1
(N)

b2
y2
1
b2
y2
2
. . . b2

y2
η1

b2
y2
(η1+1)

. . . b2
y2
(η1+η2)

. . . b2
y2
(N−ηm+1)

. . . b2
y2
(N)

...
...

...
...

...
...

...
...

bq
yq
1
bq
yq
2
. . . bq

yq
η1

bq
yq
(η1+1)

. . . bq
yq
(η1+η2)

. . . bq
yq
(N−ηm+1)

. . . bq
yq
(N)

for appropriate choices of yi
a. To get the Er, simply read down the column of this

array. That is, let

Er =
q⋃

i=1

{bi
yi

r
}.

Then the fact that the rows are sorted by color and each row contains the same
number of each color implies (i). The fact that each Ey contains exactly one element
from each row implies (ii).

Continuing the proof of the main theorem, we can apply Lemma 3.5 to choose
E1, E2, . . . EN that satisfy (i) and (ii). Note that (i) assures that elements of a
given Er all specify locations in cycles that are colored the same color, while (ii)
assures that colors from cycles in each Si are represented exactly once in each Er,
so that |Er| = |σ| = q for all r.

We will now use the Er to construct a coloring of G with the alphabet {1, 2, . . . N}.
Later, this will be projected down to a periodic coloring by A. Given an r ∈
{1, 2 . . . , N} and i with 1 ≤ i ≤ q, find the unique j, s ∈ Z such that xi

j,s ∈ Er.
Define hσi(r) = r′, where r′ is such that

xi
j,(s+1 mod |wi

j |) ∈ Er′ .

That is, given r, we find the element of the form xσi
j,s ∈ Er, and set hσi(x

σi
j,s) = r′

such that Er′ contains the symbol adjacent to xσi
j,s in the cycle wσi

j . Each hσi is
invertible, so we can define hσ−1

i
= h−1

σi
.

Note that each hσi is necessarily a bijection, and therefore the hσi define a
periodic coloring by Proposition 2. Suppose this periodic coloring is Φ : G →
{1, 2, . . . , N}. We can project Φ down to a coloring of G by using χ. Define φ : G →
A by φ(w) = χ(x), where x is any arbitrary element of EΦ(w). Note the specific
choice of x does not matter because of condition (i) above. The orbit {TΦ : T ∈ G}
is finite since Φ is periodic, and χ maps each of these colorings to at most one
distinct coloring, so the orbit

{Tφ : T ∈ G} = χ({TΦ : T ∈ G})
must be finite. This shows that φ is periodic.

To prove the ⇒ direction, we show that any periodic coloring defines a set of
cycles that meet the conditions of the theorem. Let φ be a periodic coloring that
satisfies the NNSOFT constraints. We can consider the stabilizer of φ, H = {T ∈
G : Tφ = φ}. H is a finite index subgroup since φ is periodic, and can be thought
of as a fundamental region of the periodic coloring.
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H is also a normal subgroup, so consider the group of right cosets G \H. Since
H is a stabilizer of φ, hφ(r) = φ(r) for all h ∈ H and r ∈ G. Thus, elements of the
coset (Ha) are all colored the color φ(a), but these colors may not be distinct for
different cosets.

Now fix σi ∈ σ, and consider any coset (Hs). We define the coset orbit

Oσi
(Hs) = {(Hσi)n(Hs) : n ∈ Z}.

Since G \H is finite, each coset orbit Oσi(Hs) must be finite. Note that two coset
orbits Oσi

(Hs1) and Oσi
(Hs2) are either equal or disjoint. Therefore, there are

some finite number of distinct coset orbits,

Oσi
(Hs1), Oσi

(Hs2), . . . , Oσi
(Hsmi

),

which for each σi ∈ σ form a disjoint partition of G \H. We can regard each coset
orbit Oσi

(Hsj) as specifying a cycle Cσi
(Hsj) given by

Cσi
(Hsj) = φ(sj)φ(sjσ1

i )φ(sjσ2
i ) . . . φ(sjσn

i ),

where n is the cardinality of Oσi(Hsj). Since H is the stabilizer of a coloring in
XF , each Cσi(Hsj) represents a point in Xσi .

We then define the set

Sσi = {Cσi(Hsj) : 1 ≤ j ≤ mi},
where mi is the number of distinct coset orbits. Note that

ηa(Sσi) =
mi∑

j=1

ηa(Cσi(Hsj))

=
mi∑

j=1

#{i : (Cσi(Hsj))i = a, 1 ≤ i ≤ |Cσi(Hsj)|}

=
mi∑

j=1

#{x : x ∈ Oσi(Hsj), χ(x) = a}

=#{(Hs) ∈ G \H : f(Hs) = a},
since the Oσi(Hsj) form a disjoint partition of G \H. The value

#{(Hs) ∈ G \H : f(Hs) = a}
is independent of σi, which shows that ηa(Si) = ηa(Sj) for all σi, σj ∈ σ. This
shows that the Si meet the hypotheses of the theorem.

Corollary 1. If there is a one-dimensional periodic point x which is an element of
Xσi for all σi ∈ σ, then XF contains a periodic coloring.

Proof. The hypotheses of the theorem are satisfied by choosing Si = {y} for all
i ≤ q, where y is some cycle representing x.

Theorem 3.6. The existence of sets S1, S2, . . . , Sq satisfying the conditions of The-
orem 3.4 is equivalent to the existence of a nontrivial nonnegative solution to a
system of linear equations.
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R G

B

R G

B

Figure 1. Shifts Xσ1 and Xσ2 .

Proof. Note that there are a finite number of simple cycles in each Γσi
and let

ci,1, ci,2, . . . , ci,li be the set of simple cycles in Γσi
. The fact that the ci,r are simple

implies that ηa(ci,r) ∈ {0, 1} for every a ∈ A. Define xi,r to be the number of times
that ci,r appears in all of the cycles of Si. Then we have

ηa(Si) =
li∑

r=1

xi,rηa(ci,r).

Thus, the requirement of Theorem 3.4 that ηa(Si) = ηa(Sj) for 1 ≤ i < j ≤ q gives
q(q − 1)/2 homogeneous equations in the li unknowns, xi,r, for each a ∈ A. Since
we must solve the system for all a ∈ A, determining if a periodic coloring is allowed
corresponds to solving |A|q(q − 1)/2 equations in l1 + l2 + . . . + lq unknowns.

The entire system is given by a matrix with rational entries, so the existence of
a nonnegative solution implies the existence of a nonnegative integer solution.

4. An example that is not periodic. Now we present an example of a NNSOFT
on G where each one-dimensional NNSOFT is irreducible, but G still cannot be
colored periodically. This is perhaps a counterintuitive result because irreducibility
is a strong condition and implies the existence of many kinds of periodic points.

Example 3. Consider the shifts of finite type shown in Figure 1 on the alphabet
A = {R, G, B}. Cycles representing points in Xσ1 are always of the form

RGBRGB . . . RGB.

Cycles representing points in Xσ2 are always of the form

Ra1Ra2 . . . Ran−1Ran,

where each aj ∈ {G, B}. This shows that for any set S1 of cycles in Xσ1 , we must
have

ηR(S1) = ηG(S1) = ηB(S1). (1)

In addition, for any set S2 of cycles in Xσ2 we must have

ηR(S2) = ηG(S2) + ηB(S2). (2)

If ηa(Sσ1) = ηa(Sσ2) = ηa for all a ∈ A, then (1) and (2) become

ηR = ηG = ηB (3)
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α

β

Figure 2. The tree T3 for k = 3. Here group elements are repre-
sented as circles.

and
ηR = ηG + ηB . (4)

Clearly we cannot simultaneously solve (3) and (4) unless ηG = 0 or ηB = 0,
which would imply that S1 is empty, since every point in Xσ1 uses G and B.
Therefore, even though both Xσ1 and Xσ2 are irreducible, XF does not allow a
periodic coloring.

5. Entropy of the golden mean shift on G. Let XF denote the golden mean shift
on the free group G on q free generators, defined in Example 1 of the introduction.
For notational simplicity we define k = 2q − 1. However, the results of this section
are general enough to apply to any integer k > 1.

We first analyze finite blocks in XF by using a combinatorial argument. Fix any
σi ∈ σ and define the set Tn ⊂ G by

Tn = {e} ∪ {σiw : w ∈ G, |w| ≤ n− 1}
for n ≥ 1. Tn is called a tree and can be represented by a subset of the Cayley
graph of G. Such a graph is shown in Figure 2. In the graph of Tn, we label the
vertex corresponding to e by α and the vertex corresponding to σi by β. We call α
the “root” of Tn and we say that Tn has height n.

Definition 5.1. Let c0(n) and c1(n) be the numbers of possible colorings of Tn

when α is colored 0 and 1, respectively.

Theorem 5.2. c0(n) satisfies the following recursion relationship: c0(1) = 2,
c0(2) = 2k + 1, and c0(n) = [c0(n− 1)]k + [c0(n− 2)]k

2

for all n ≥ 2.

Proof. It is easy to see that c0(1) = 2 and c0(2) = 2k + 1.
When α is colored 1, then β must be colored 0. But we can regard β as the

“root” of k different trees each of height n− 1. The colorings of each of the k trees
for which β is the “root” can be chosen independently. Thus,

c1(n) = [c0(n− 1)]k . (5)
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Similarly, when α is colored 0, β can be colored either 0 or 1, so

c0(n) = [c0(n− 1)]k + [c1(n− 1)]k ,

from which the result follows.

Define Cn = {w ∈ G : |w| ≤ n} and denote the number of colorings of Cn allowed
in XF by Bn.

Theorem 5.3. Bn satisfies Bn = [c0(n)]k+1 + [c0(n− 1)]k(k+1).

Proof. Note that Cn consists of k +1 trees of height n that all share e as their root.
When e is colored 0, there are c0(n) possible colorings of each of the k + 1 trees of
height n, each of which can be chosen independently, giving a total of [c0(n)]k+1

possible colorings.
When e is colored 1, each of the k + 1 trees has a root colored 1, and each tree

can be colored independently. Therefore, there are [c1(n)]k+1 = [c0(n− 1)]k(k+1)

possible colorings of Cn when e is colored 1.

For notational simplicity, define an = c0(n) so that we have the recursion formula

an+1 = ak
n + ak2

n−1 (6)

with a1 = 2 and a2 = 2k +1.When k = 1, so that the free group under consideration
is Z, the an are Fibonacci numbers with the standard recursion formula. When
k 6= 1, the nonlinear recursion sequence an will be central for understanding the
golden mean shift on the free group.

We begin by studying the general growth properties of (an). Define qn =
an/ak

n−1. We first determine when

lim
n→∞

an

ak
n−1

= lim
n→∞

qn

exists. We will show that the limit exists for sufficiently small k and equals the
solution of xk+1 = xk + 1 in the interval I = [1, 2]. When k is sufficiently large, the
limit may not exist but the values of qn oscillate between two limits. In this case,
the odd terms and even terms respectively converge to different limits.

Proposition 3. For each k = 2, 3, . . . we have that q2 < q3 and q2 < q4.

Proof. For the first part, q2 < q3 only if ak+1
2 < ak

1a3. Now,

ak+1
2 = (2k + 1)k+1 = (2k + 1)k(2k + 1) = 2k(2k + 1)k + (2k + 1)k,

and
ak
1a3 = ak

1(ak
2 + ak2

1 ) = 2k(2k + 1)k + 2k2+k.

This shows ak+1
2 < ak

1a3 only if (2k +1)k < 2k2+k. But (2k +1)k < (2k+1)k = 2k2+k,
so we must have q2 < q3.

Note q2 < q4 only if
a2a

k
3 < a4a

k
1 .

We have that
a2a

k
3 = (2k + 1)ak

3 = 2kak
3 + ak

3

and
a4a

k
1 = (ak

3 + ak2

2 )2k = 2kak
3 + 2kak2

2 ,

so q2 < q4 only if ak
3 < 2kak2

2 . This is the same as requiring that

a3 < 2ak
2 ,
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which is the same as
ak
2 + ak2

1 < 2ak
2 .

This simplifies to ak2

1 < ak
2 , or equivalently 2k2

< (2k + 1)k, which is obviously
true.

Proposition 4. For each n = 2, 3, . . . we have

(i) qn+1 < qn−1 implies qn < qn+2

(ii) qn+1 > qn−1 implies qn > qn+2.

Proof. We will prove only (i), as the proof for (ii) is analogous. Note that qn+1 <
qn−1 if and only if

ak2

n−2a
k
n+1 < ak

n−1a
k2

n .

Adding ak
n−1a

k
n+1 to both sides and factoring gives

(ak
n−1 + ak2

n−2)a
k
n+1 < ak

n−1(a
k
n+1 + ak2

n ),

which is equivalent to
anak

n+1 < ak
n−1an+2.

This is the same as qn+2 > qn.

Let En = q2n and On = q2n+1 for n = 1, 2, . . . denote the subsequences of (qn)
which consist of the even- and odd-numbered terms of (qn) respectively. Equation
(6) implies qn+1 = 1 + 1/qk

k . Therefore, we can understand the sequence (qn) by
studying the iterated map f : [1, 2] → [1, 2] given by f(x) = 1 + 1/xk. Define α to
be the unique fixed point of f in [1, 2] and note that α satisfies αk+1 = αk + 1.

Proposition 5. (En) converges monotonically to a limit LE ∈ [1, α] and (On)
converges monotonically to a limit LO ∈ [α, 2].

Proof. This follows from Proposition 3, Proposition 4, and the fact that the qn are
bounded.

To simplify notation, we also define a function g : [1, 2] → [1, 2] by g(x) = f2(x).
Note that g(qn) = qn+2, so that g(On) = On+1 and g(En) = En+1. This implies
that the (possibly non-distinct) fixed points of g are LE , LO, and α. It is not difficult
to show that x = k

√
k − 1 is a maximum for g′(x) on [1, 2] and that g′( k

√
k − 1) < 1

only when
(k − 1)k+1 < kk.

Definition 5.4. Let Ω = inf { k : (k − 1)k+1 < kk} ≈ 4.14104.

Note that for for k > Ω we have (k − 1)k+1 > kk and for k < Ω we have
(k− 1)k+1 < kk. Thus, for k < Ω we know that sup { g′(x) : x ∈ [1, 2]} = C < 1 for
all x. Therefore, for k < Ω the Contraction Mapping Theorem implies that g has
a unique fixed point in [1, 2]. This implies that the sequences (En) and (On) both
converge to LE = LO = α. Thus, for k < Ω, we know that the limit

lim
n→∞

qn = lim
n→∞

an

ak
n−1

= α,

where α is the root of
αk+1 − αk − 1 = 0 (7)

in I = [1, 2].
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Next, we show that for k > Ω there are two distinct fixed points besides α, one
strictly less than α and one strictly greater than α. Therefore, LE 6= LO, and
neither equals α.

Lemma 5.5. k > Ω implies g′(α) > 1.

Proof. g′(α) = f ′(f(α))f ′(α) = [f ′(α)]2 = k2(α2)−k−1 > 1 if and only if k2 >
(α2)k+1, or, equivalently, k > αk+1. But αk+1 = αk + 1, so k > αk+1 only if
k
√

k − 1 > α. When k > Ω we have that

f( k
√

k − 1) = 1 +
1

k − 1
=

k

k − 1
<

k
√

k − 1,

which implies k
√

k − 1 > α, since f is decreasing and α is the unique fixed point of
f .

Theorem 5.6. For k > Ω, we have that α, LE, and LO are distinct and the only
three values in I = [1, 2] for which g(x) = x.

Proof. We have shown that g must have fixed points LO and LE such that En ↑ LE

and On ↓ LO. For k > Ω, Lemma 5.5 shows that α is a repelling fixed point, which
implies that we cannot have LE = α or LO = α, because LE and LO are the limit
points of gn(q2) and gn(q3) respectively. In addition, LE 6= LO since LE ∈ [1, α]
and LO ∈ [α, 2].

To see that there cannot be more than three fixed points, note that g′(1) < 1
and g′(2) < 1. Since g′′ has only one zero in I, this implies that g′(x) = 1 for at
most two values in I. Therefore, g can cross the line y = x at most three times.

We now determine the asymptotics of (an), in which the limits LE and LO will
arise naturally. We denote exponentiation with base 2 by exp2(x). By the definition
of (qn) we have,

an = 2kn−1
n∏

j=2

qkn−j

j = exp2


kn−1


1 + k

n∑

j=2

log2 qj

kj





 .

Define the sum

An = 1 + k

n∑

j=2

log2 qj

kj
, (8)

so that an = exp2(kn−1An). Since the qj are bounded, (An) must converge to some
limit, A, given by

A = 1 + k

∞∑

j=2

log2 qj

kj
. (9)

Note that An, A, and qj all depend on k. It is reasonable to guess that an is
asymptotic to λ exp2(kn−1A) for some λ, and this is indeed true.

Theorem 5.7. For k = 2, 3, . . . and n even, we have an ∼ λ exp2(kn−1A) with

λ = exp2

(
− log2 LE + k log2 LO

k2 − 1

)

where A is as above and LO and LE are the limits of (On) and (En) respectively.
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Proof. We will prove this by showing that

lim
n→∞

exp2(kn−1A)
an

= lim
n→∞

exp2

(
kn−1(A−An)

)
= exp2

(
log2 LE + k log2 LO

k2 − 1

)
.

We define

Wn = kn−1(A−An) =
∞∑

j=1

k−j log2 qj+n. (10)

For all r ≥ 3, we have 1 < qr < 2, so log2 qr > 0. Then we can rearrange the sum
in (10), splitting it into even and odd terms to give

Wn =



∞∑

j=1

k−2j log2 q2j+n +
∞∑

j=1

k−2j+1 log2 q(2j−1)+n


 . (11)

Fix ε > 0. We have already shown that (On) → LO and (En) → LE , so choose N
such that for all n > N we have

| log2 On − log2 LO| < ε and | log2 En − log2 LE | < ε.

Then we know that for n even,∣∣∣∣∣∣
Wn −


(log2 LE)

∞∑

j=1

k−2j + (log2 LO)
∞∑

j=1

k−2j+1




∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

j=1

k−2j(log2 q2j+n − log2 LE) +
∞∑

j=1

k−2j+1(log2 q2j−1 − log2 LO)

∣∣∣∣∣∣

<ε

∞∑

j=1

k−j ≤ ε.

(12)

Therefore for n even,

Wn → (log2 LE)
∞∑

j=1

k−2j + (log2 LO)
∞∑

j=1

k−2j+1 =
log2 LE + k log2 LO

k2 − 1
.

Theorem 5.8. For k = 2, 3, . . . and n odd, we have an ∼ λ exp2(kn−1A) with

λ = exp2

(
− log2 LO + k log2 LE

k2 − 1

)

where A is as above and LE and LO are the limits of (On) and (En) respectively.

Proof. The proof is identical to the proof of the previous theorem, except that for
odd n, LE and LO are switched in (12) and every step after.

Note that for n even we have,

λ = exp2

(
− log2 LE + k log2 LO

k2 − 1

)

and for n odd we have,

λ = exp2

(
− log2 LO + k log2 LE

k2 − 1

)
.
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When k < Ω, we know that LE = LO = α, so these expressions both simplify to

λ = exp2

(
− (k + 1) log2 α

k2 − 1

)
= exp2

(
− log2 α

k − 1

)
= α

1
1−k .

Theorem 5.9. The entropy of the golden mean shift on the free group G is given
by h(XF ) = A(k − 1)/k.

Proof. To prove the theorem we show that if an ∼ λ exp2(Akn−1), then

lim
n→∞

log2 Bn

|Cn| = A
k − 1

k
.

In the free group,

|Cn| = 1 +
n∑

j=1

(k + 1)kj−1 = 1 + (k + 1)
kn − 1
k − 1

.

Next by Theorem 5.3,

lim
n→∞

log2 Bn

|Cn| = lim
n→∞

log2

[
ak+1

n + a
k(k+1)
n−1

]

|Cn| .

Substituting for an and simplifying gives,

lim
n→∞

log2

[
λk+1 exp2((k + 1)Akn−1)un + λk(k+1) exp2((k + 1)Akn−1)un−1

]

|Cn| ,

where un → 1. Factoring and simplifying gives,

lim
n→∞

log2 Bn

|Cn| = lim
n→∞

(k + 1)Akn−1 + log2

[
λk+1un + λk(k+1)un−1

]

|Cn|

= lim
n→∞

(k + 1)kn−1A

1 + (k + 1)kn−1
k−1

= A
k − 1

k
.

Remark 1. Since λ does not appear in the expression for h(XF ), it is irrelevant to
the entropy calculation that λ may depend on whether we look at the even or the
odd terms of an.

Remark 2. Iterations of the map f(x) = 1 + x−k produce an expression similar
to the continued fraction for the golden mean, φ, but with k’th powers on each
denominator. The above results show that for k < Ω, the limit fn(x) as n →∞ is
independent of x. Such continued fractions with exponents on the denominator are
called generalized continued fractions and can be defined using a nonlinear version
of the Gauss map given by φk(x) = x−1/k mod 1. It is easy to show that for k > Ω
generalized continued fractions are not well-defined. Note that φk acts as the shift
on generalized continued fraction expansions and is conjugate to the usual Gauss
map where k = 1. Generalized continued fractions and their invariant measures
have been investigated in [4, 5].
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Theorem 5.9 shows that the entropy of the golden mean shift on G is therefore
given by

h(XF ) = A
k − 1

k
=

k − 1
k

(1 + k

∞∑

j=2

k−j log2 qj). (13)

The form of (13) is useful for numerical approximation because the qj are bounded,
so an upper bound can easily be found. The below table shows upper and lower
bounds on the entropy. Lower bounds were found by taking n terms of Equation
(13) for each k. Upper bounds were found by taking n terms of the sum and then
taking the qj = 2 for j = n + 1 to ∞.

k n lower bound upper bound
2 20 0.7341852591 +9.5 · 10−7

3 15 0.7748799619 +7.0 · 10−8

4 10 0.8096380469 +9.5 · 10−7

5 10 0.8372473361 +1.0 · 10−7

6 10 0.8587923404 +1.7 · 10−8

Finding a closed form for h(XF ) is still an open problem. We did find a closed form
for λ when k < Ω, which implies that perhaps it will be easier in other problems,
such as the hard core model on Z×Z, to find the constant in front of the exponential,
rather than the actual entropy.
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