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Abstract
This thesis develops the hypothesis that key aspects of learning and development can be
understood as rational statistical inferences over a compositionally structured representa-
tion system, a language of thought (LOT) (Fodor, 1975). In this setup, learners have access
to a set of primitive functions and learning consists of composing these functions in order
to created structured representations of complex concepts. We present an inductive statisti-
cal model over these representations that formalizes an optimal Bayesian trade-off between
representational complexity and fit to the observed data. This approach is first applied to
the case of number-word acquisition, for which statistical learning with a LOT can explain
key developmental patterns and resolve philosophically troublesome aspects of previous
developmental theories. Second, we show how these same formal tools can be applied to
children’s acquisition of quantifiers. The model explains how children may achieve adult
competence with quantifiers’ literal meanings and presuppositions, and predicts several of
the most-studied errors children make while learning these words. Finally, we model adult
patterns of generalization in a massive concept-learning experiment. These results pro-
vide evidence for LOT models over other approaches and provide quantitative evaluation
of different particular LOTs.

Thesis Supervisor: Edward Gibson
Title: Professor of Cognitive Sciences
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Chapter 1

Foreword

Language learning involves integrating numerous cognitive capacities—our ability for struc-

tured representations, statistical learning, compositional thoughts, and abstract concepts.

However, our most basic ideas about language acquisition and development are fragmented

across subdisciplines. Many theories that work with detailed linguistic structures lack a

workable notion of learning (Wexler & Culicover, 1983; J. Dresher & Elan, 1990; Gib-

son & Wexler, 1994; Niyogi & Berwick, 1996; Fodor, 1998b; B. Dresher, 1999; Kohl,

1999; Sakas & Fodor, 2001; Yang, 2002), instead falling back on very simple parameter-

setting accounts, which are only capable of using simple environmental triggers to change

representations. In this way they do not capture the powerful inductive and statistical ca-

pacities of even infant learners (e.g., Xu & Garcia, 2008; Xu & Denison, 2009; Téglás et

al., 2011; Kidd, Piantadosi, & Aslin, under review). Many computational models that

have tackled language learning more directly—either connectionist (e.g., Rumelhart &

McClelland, 1987; Elman, 1990, 1993; Gasser & Smith, 1998) or otherwise (e.g Frank,

Goodman, & Tenenbaum, 2007a; Xu & Tenenbaum, 2007; Yu & Ballard, 2007)—lack

sufficiently structured representations for even elementary linguistic compositionality1. In-

deed, many of these models only associate words with events, actions, or properties, and

thus fail to address the complex compositional structures of language that make it distinc-

tive in animal cognition. Similarly, empirical studies of statistical learning (Saffran, Aslin,

1Exceptions might be Siskind (1996), and more recently Bod (2009),Zettlemoyer and Collins (2005),
Liang, Jordan, and Klein (2009), Liang, Jordan, and Klein (2011), Kwiatkowski, Goldwater, and Steedman
(2009), and Piantadosi, Goodman, Ellis, and Tenenbaum (2008).
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& Newport, 1996; Aslin, Saffran, & Newport, 1998; Gomez & Gerken, 1999; Marcus, Vi-

jayan, Bandi Rao, & Vishton, 1999; Saffran, Johnson, Aslin, & Newport, 1999; Kirkham,

Slemmer, & Johnson, 2002; Fiser & Aslin, 2002) have yet to tackle the complex types of

concepts and representations necessary for all of language learning. Finally, theories of

the innate conceptual core that human learners bring to development (Spelke, 2003, 2004;

Spelke & Kinzler, 2007; Carey, 2009) are not yet integrated with computational theories

of learning. If infants’ early knowledge is the foundation for adults’ later representations,

there is not yet a computational account of how early abilities might be elaborated into rich

cognitive systems.

The goal of this thesis is to show how all of these aspects of cognition can be com-

bined into a unified computational framework—in short, to show how learners can induce

the types of structures that are necessary for complex cognitive processes like those in lan-

guage, using only a simple set of formalized core abilities. This work elaborates a middle

ground between classically nativist and empiricist approaches, attempting to draw on the

strengths of each theoretical viewpoint. Whatever representational system children begin

with, it must be powerful enough to support the eventual creation of the rich types of struc-

tures and computational processes of adult cognition. At the same time, much of adult

knowledge is not known to young children; natural numbers are one case where children

appear to actively construct a novel representation system (Carey, 2009). Theories of cog-

nition must account for both of these types of facts—the initial state that allows for eventual

richness, and the learning that is clearly at work in many areas of development.

The starting point for our approach is Fodor (1975)’s language of thought (LOT) hy-

pothesis. This theory posits that a structured, compositional representation system provides

a substrate for thinking (see also Boole, 1854), and has been argued to explain key proper-

ties of cognitive processes (Fodor & Pylyshyn, 1988). For our purposes, the LOT provides

a set of innately specified core concepts, and their means of combination. Following a

standard approach in semantics (Heim & Kratzer, 1998; Steedman, 2000), we treat core

primitives as functions which can be composed to form representations of more complex

concepts (see also Siskind, 1996). This setup formalizes the components of a learning the-

ory: learners are innately given a set of core primitive functions—typically ones that per-
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form simple logical or set-theoretic operations, such as conjunction, disjunction, set-union,

and object individuation. Learning consists of composing these functions in novel ways to

create representations that explain observed data. For instance, if the meaning of a function

word can be characterized using set-theoretic operations, then the task of the learner is to

work backwards from cross-situational usages of the word to infer what composition of

elementary set operations it must denote.

The key assumption of this framework is that learning consists of manipulating explicit

representations in a syntactically constrained language, much like that in mathematics and

logic (e.g., Boole, 1854), semantic theories (Heim & Kratzer, 1998; Steedman, 2000), or

functional programming languages like Scheme (Abelson & Sussman, 1996). This distin-

guishes the current approach from “triggering” approaches to language acquisition (e.g.,

Gibson & Wexler, 1994) in that for our models, the specific structures being learned need

not be innately specified and most potential hypotheses do not need to be actively rep-

resented by learners. Indeed, we show that strongly constraining the space of possible

meanings does not substantially aid learning. Our approach is also distinguished from clas-

sically empiricist models that address learning using arguably plausible representational

and implementational assumptions (e.g., Rumelhart & McClelland, 1986; Elman, 1997):

we focus on computational-level accounts (Marr, 1982) of inductive phenomena without

addressing issues of neural implementation. Connectionist approaches have, however, at-

tempted to understand how hierarchical structures like those in our LOT models might

be encoded with neurally plausible representations (Smolensky & Legendre, 2006). Our

work builds on previous computational work in language learning that has attempted to

learn rich linguistic structures by “building in” relatively minimal structural components

(Bod, 2009; O’Donnell, Tenenbaum, & Goodman, 2009; Perfors, Tenenbaum, & Regier,

2011). Our approach corresponds to empiricism about complex conceptual knowledge

and representations, combined with nativism about scaffolding that allows for structured

representations—the syntax and primitives of the language of thought.

The assumptions of this setup are simultaneously trivial and consequential. Trivially,

any theory that posits that development is driven by combining and reusing early abili-

ties must specify a means of combination. Here, this is chosen to be perhaps the simplest
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means of combination that is also powerful: function composition. Our formalism that cap-

tures this compositionality, lambda calculus (Church, 1936), builds in only a few simple—

almost vacuous—rules for composition (see Hindley & Seldin, 1986). But including func-

tional composition is tremendously consequential for a cognitive or developmental theory

since it allows any computable function to be expressed. This approach gives a powerful

tool for developmental theories, as it allows learners to consider hypotheses of arbitrary

computational complexity. The right learning theory in such a system has the potential to

be far-reaching, providing a computational framework for explaining people’s remarkably

productive cognitive capacities. The idea of learning in computationally powerful systems

builds off of recent work examining the learnability of language from the perspective of

algorithmic information theory (Chater & Vitányi, 2007). The present work takes their

theoretical idea—based on inferring bit strings that describe Turing machines—and im-

plements it in a real cognitive theory that expresses computation using developmentally

plausible primitives.

The first paper in this thesis studies the case of number-word acquisition in detail. Num-

ber words are interesting because their acquisition seems to involve a dramatic conceptual

shift (Carey, 2009), in which children’s number-word understanding changes qualitatively

and fundamentally (e.g., Wynn, 1992). In this conceptual change, children go from suc-

cessively understanding only the first few number words to being able to use counting to

determine cardinality. Carey (2009) proposed these developmental patterns result from

children inferring that “one more” on their counting list corresponds to “one more” cardi-

nality. However, Carey’s account has been argued to be philosophically incoherent, inca-

pable of explaining in what sense numerical representations may be created without actu-

ally presupposing them (Rips, Asmuth, & Bloomfield, 2006, 2008; Rips, Bloomfield, &

Asmuth, 2008). We provide an implemented LOT learning model that discovers number-

word meanings by composing set-theoretic primitives along the lines of Carey’s proposal.

This model shows developmental patterns much like those that children exhibit, eventually

arriving at a recursive system of numerical meaning. The model is also capable of learning

other types of systems, such as those required for learning singular/plural distinctions, or

more interestingly structured modular systems, like those discussed by Rips et al. (2006).
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This work shows how a LOT learning model can explain developmental patterns, and also

how Carey’s general approach can be made philosophically and computationally sound.

The second paper in this thesis addresses natural language semantics more directly by

presenting a learning model for quantifiers. Quantifiers are often taken to denote relations

between sets (see also Montague, 1973; Barwise & Cooper, 1981; Keenan & Stavi, 1986;

Keenan & Westerståhl, 1997; Heim & Kratzer, 1998), and their meaning is expressed by

semanticists in a logical representation language. Quantifiers are especially interesting for

statistical learning theories because their meanings are abstract, and often involve subtle

presuppositional and pragmatic content. We implement a learning model that is capable

of learning these types of representations—including presuppositions—from positive evi-

dence alone. We present a simple proof that the model is theoretically always capable of

recovering the correct meanings, and also show that the implemented model does so with

a developmentally plausible amount of data. This implementation allows us to test various

restrictions on the space of quantifier meanings, including “maximally nativist” theories in

which only the correct set of quantifier meanings is innately specified, to learning in a space

of only conservative quantifiers (Keenan & Stavi, 1986; Barwise & Cooper, 1981), and fi-

nally to a full, unrestricted hypothesis space. We show that learning in the full, unrestricted

space is not substantially harder than the maximally nativist space, nor is it substantially

harder than learning in the space of conservative quantifiers. We compare errors made by

the model to patterns observed developmentally in the learning of “the” (Wexler, 2011),

and “every” (Roeper, Strauss, & Pearson, 2004; Philip, 1995), and show that the learn-

ing model makes similar patterns of mistakes. This provides a domain-general account of

these errors based on idealized statistical learnability. We also contrast our learning model

to previous theories of quantifier learning based on finite-state automata (e.g., Clark, 1996),

which require either positive and negative evidence, or cannot provably learn all quantifier

meanings (Tiede, 1999).

One advantage of studying development as inductive learning in a LOT is that doing so

allows for some flexibility in theorizing. One can write down any hypothetical LOT and

see its consequences for learning. This has recently allowed LOT-learning theories to be

applied to explain a wide range of developmental phenomena, including those outside of
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natural language, such as learning family-tree relations and theories like magnetism (Katz,

Goodman, Kersting, Kemp, & Tenenbaum, 2008; Kemp, Goodman, & Tenenbaum, 2008a;

Goodman, Ullman, & Tenenbaum, 2009; Ullman, Goodman, & Tenenbaum, 2010). Most

of this work shows how learning could proceed when assuming a particular set of prim-

itive components. In the third paper, we extend this approach to quantitatively compare

different LOTs in the same domain. In a massive concept-learning experiment, we taught

subjects rule-based concepts on sets of objects, ranging from simple Boolean predicates

(circle or red) to predicates involving quantification (at least one other object in a set is the

same color). This work extends previous research on Boolean concept learning (Shepard,

Hovland, & Jenkins, 1961; Feldman, 2000; Goodman, Tenenbaum, Feldman, & Griffiths,

2008) to the types of concepts that are likely necessary for natural language semantics—in

particular function words which manipulate and quantify over sets. Any concept can be

computed or represented in a huge number of ways; for instance, all Boolean concepts can

be written using standard logical connectives (and, or, not), or using only a single universal

logical connective (nand, or not-and). Or, one might imagine a system full of a rich set of

logical connectives including, perhaps, logical implication (implies) or biconditional (iff ).

Similarly, expressions with quantifiers may employ variously rich or simplified systems,

ranging from a single existential or universal quantifier, to rich types of first- or higher-

order quantification. In each case, a set of logical operations represents a specific represen-

tational theory that the study of rule-based concept representation and learning should aim

to discover. By implementing a learning model and a Bayesian data analysis model, we are

able to take the learning experiment and produce a “score” for any hypothesized language,

corresponding to its ability to predict human learning curves. Through this, we are able

to provide evidence against intuitively implausible bases such as the nand-basis, and can

test the cognitive plausibility of several interesting representation systems that have been

suggested in cognitive science and AI. In general, we find that representational systems

with non-restricted syntactic forms, a rich set of primitive connectives, and quantification

can best explain human learning. This work moves the LOT from philosophical ground to

a firm empirical basis, and the experiments provide a compelling data set for comparing

different paradigmatic approaches in cognitive science.
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Chapter 2

Bootstrapping in a language of thought:

a formal model of conceptual change in

number word learning1

2.1 Introduction

“We used to think that if we knew one, we knew two, because one and one are

two. We are finding that we must learn a great deal more about ‘and’.” [Sir

Arthur Eddington]

Cognitive development is most remarkable where children appear to acquire genuinely

novel concepts. One particularly interesting example of this is the acquisition of number

words. Children initially learn the count list “one”, “two”, “three”, up to “six” or higher,

without knowing the exact numerical meaning of these words (Fuson, 1988). They then

progress through several subset-knower levels, successively learning the meaning of “one”,

“two”, “three” and sometimes “four” (Wynn, 1990, 1992; Sarnecka & Lee, 2009; Lee

& Sarnecka, 2010b, 2010a). Two-knowers, for example, can successfully give one or two

objects when asked, but when asked for three or more will simply give a handful of objects,

even though they can recite much more of the count list.

1This work is joint with Noah D. Goodman and Joshua B. Tenenbaum.
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After spending roughly a year learning the meanings of the first three or four words,

children make an extraordinary conceptual leap. Rather than successively learning the

remaining number words on the count list—up to infinity—children at about age 3;6 sud-

denly infer all of their meanings at once. In doing so, they become cardinal-principal (CP)

knowers, and their numerical understanding changes fundamentally (Wynn, 1990, 1992).

This development is remarkable because CP-knowers discover the abstract relationship be-

tween their counting routine and number-word meanings: they know how to count and

how their list of counting words relates to numerical meaning. This learning pattern can-

not be captured by simple statistical or associationist learning models which only track

co-occurrences between number words and sets of objects. Under these models, one would

expect that number words would continue to be acquired gradually, not suddenly as a coher-

ent conceptual system. Rapid change seems to require a learning mechanism which comes

to some knowledge that is more than just associations between words and cardinalities.

We present a formal learning model which shows that statistical inference over a suffi-

ciently powerful representational space can explain why children follow this developmental

trajectory. The model uses several pieces of machinery, each of which has been indepen-

dently proposed to explain cognitive phenomena in other domains. The representational

system we use is lambda calculus, a formal language for compositional semantics (e.g.,

Heim & Kratzer, 1998; Steedman, 2000), computation more generally (Church, 1936), and

other natural-language learning tasks (Zettlemoyer & Collins, 2005, 2007; Piantadosi et

al., 2008). The core inductive part of the model uses Bayesian statistics to formalize what

inferences learners should make from data. This involves two key parts: a likelihood func-

tion which measures how well hypotheses fit observed data, and a prior which measures

the complexity of individual hypotheses. We use simple and previously proposed forms

of both. The model uses a likelihood function that uses the size principle (Tenenbaum,

1999) to penalize hypotheses which make overly broad predictions. Frank, Goodman, and

Tenenbaum (2007b) proposed that this type of likelihood function is important in cross-

situational word learning and Piantadosi et al. (2008) showed that it could solve the subset

problem in learning compositional semantics. The prior is from the rational rules model

of Goodman et al. (2008), which first linked probabilistic inference with formal, compo-
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sitional, representations. The prior assumes that learners prefer simplicity and re-use in

compositional hypotheses and has been shown to be important in accounting for human

rule-based concept learning.

Our formal modeling is inspired by the bootstrapping theory of Carey (2009), who pro-

poses that children observe a relationship between numerical quantity and the counting

routine in early number words, and use this relationship to inductively define the mean-

ings of later number words. The present work offers several contributions beyond Carey’s

formulation. Bootstrapping has been criticized for being too vague (Gallistel, 2007), and

we show that it can be made mathematically precise and implemented by straightforward

means2. Second, bootstrapping has been criticized for being incoherent or logically cir-

cular, fundamentally unable to solve the critical problem of inferring a discrete infinity of

novel numerical concepts (Rips et al., 2006; Rips, Asmuth, & Bloomfield, 2008; Rips,

Bloomfield, & Asmuth, 2008). We show that this critique is unfounded: given the assump-

tions of the model, the correct numerical system can be learned while still considering

conceptual systems much like those suggested as possible alternatives by Rips, Asmuth

and Bloomfield. The model is capable of learning conceptual systems like those they dis-

cuss, as well as others that are likely important for natural language. We also show that the

model robustly gives rise to several qualitative phenomena in the literature which have been

taken to support bootstrapping: the model progresses through three or four distinct subset

knower-levels (Wynn, 1990, 1992; Sarnecka & Lee, 2009; Lee & Sarnecka, 2010b, 2010a),

does not assign specific numerical meaning to higher number words at each subset-knower

level (Condry & Spelke, 2008), and suddenly infers the meaning of the remaining words on

the count list after learning “three” or “four” (Wynn, 1990, 1992; Sarnecka & Lee, 2009;

Lee & Sarnecka, 2010b, 2010a).

This modeling work demonstrates how children might combine statistical learning and

rich representations to create a novel conceptual system. Because we provide a fully imple-

mented model which takes naturalistic data and induces representations of numerosity, this

work requires making a number of assumptions about facts which are under-determined by

the experimental data. This means that the model provides at minimum an existence proof

2Running code is available from the first author.
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for how children might come to numerical representations. However, one advantage of this

approach is that it provides a computational platform for testing multiple theories within

this same framework—varying the parameters, representational system, and probabilistic

model. We argue that all assumptions made are computationally and developmentally plau-

sible, meaning that the particular version of the model presented here provides a justifiable

working hypothesis for how numerical acquisition might progress.

2.2 The bootstrapping debate

Carey (2009) argues that the development of number meanings can be explained by (Quinian)

bootstrapping. Bootstrapping contrasts with both associationist accounts and theories that

posit an innate successor function that can map a representation of a number N onto a rep-

resentation of its successor N+1 (Gallistel & Gelman, 1992; R. Gelman & Gallistel, 1978;

Leslie, Gelman, & Gallistel, 2008). In Carey’s formulation, early number-word meanings

are represented using mental models of small sets. For instance two-knowers might have

a mental model of “one” as {X} and “two” as {X ,X}. These representations rely on chil-

dren’s ability for enriched parallel individuation, a representational capacity that Le Corre

and Carey (2007) argue can individuate objects, manipulate sets, and compare sets using

one-to-one correspondence. Subset-knowers can, for instance, check if “two” applies to

a set S by seeing if S can be put in 1-1 correspondence with their mental model of two,

{X ,X}.

In bootstrapping, the transition to CP-knower occurs when children notice the simple

relationship between their first few mental models and their memorized count list of num-

ber words: by moving one element on the count list, one more element is added to the set

represented in the mental model. Children then use this abstract rule to bootstrap the mean-

ings of other number words on their count list, recursively defining each number in terms of

its predecessor. Importantly, when children have learned the first few number-word mean-

ings they are able to recite many more elements of the count list. Carey argues that this

linguistic system provides a placeholder structure which provides the framework for the

critical inductive inference. Subset knowers have only stored a few set-based representa-
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tions; CP-knowers have discovered the generative rule that relates mental representations

to position in the counting sequence.

Bootstrapping explains why children’s understanding of number seems to change so

drastically in the CP-transition and what exactly children acquire that’s “new”: they dis-

cover the simple recursive relationship between their memorized list of words and the infi-

nite system of numerical concepts. However, the theory has been criticized for its lack of

formalization (Gallistel, 2007) and the fact that it does not explain how the abstraction in-

volved in number-word meanings is learned (R. Gelman & Butterworth, 2005). Perhaps the

most philosophically interesting critique is put forth by Rips et al. (2006), who argue that

the bootstrapping hypothesis actually presupposes the equivalent of a successor function,

and therefore cannot explain where the numerical system comes from (see also Margolis &

Laurence, 2008; Rips, Asmuth, & Bloomfield, 2008; Rips, Bloomfield, & Asmuth, 2008).

Rips, Asmuth, & Bloomfield argue that in transitioning to CP-knowers, children critically

infer,

If k is a number word that refers to the property of collections containing n

objects, then the next number word in the counting sequence, next(k), refers to

the property of collections containing one more than n objects.

Rips, Asmuth & Bloomfield note that to even consider this as a possible inference, chil-

dren must know how to construct a representation of the property of collections containing

n+ 1 objects, for any n. They imagine that totally naive learners might entertain, say, a

Mod-10 system in which numerosities start over at ten, with “eleven” meaning one and

“twelve” meaning two. This system would be consistent with the earliest-learned number

meanings and thus bootstrapping number meanings to a Mod-10 system would seem to be

a logically consistent inference. Since children avoid making this and infinitely many other

possible inferences, they must already bring to the learning problem a conceptual system

isomorphic to natural numbers.

The formal model we present shows how children could arrive at the correct infer-

ence and learn a recursively bootstrapped system of numerical meanings. Importantly, the

model can entertain other types of numerical systems like such Mod-N systems, and, as we
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demonstrate, will learn them when they are supported by the data. These systems are not

ruled out by any hard constraints and therefore the model demonstrates one way bootstrap-

ping need not assume specific knowledge of natural numbers.

2.3 Rebooting the bootstrap: a computational model

The computational model we present focuses on only one slice of what is undoubtedly

a complex learning problem. Number learning is likely influenced by social, pragmatic,

syntactic, and pedagogical cues. However, we simplify the problem by assuming that the

learner hears words in contexts containing sets of objects and attempts to learn structured

representations of meaning. The most basic assumption of this work is that meanings are

formalized using a “language of thought (LOT)” (Fodor, 1975), which, roughly, defines

a set of primitive cognitive operations and composition laws. These meanings can be in-

terpreted analogously to short computer programs which “compute” numerical quantities.

The task of the learner is to determine which compositions of primitives are likely to be

correct, given the observed data. Our proposed language of thought is a serious proposal

in the sense that it contains primitives which are likely available to children by the age

they start learning number, if not earlier. However, like all cognitive theories, the particular

language we use is a simplification of the computational abilities of even infant cognition.

We begin by discussing the representational system and then describe basic assumptions

of the modeling framework. We then present the primitives in the representational system

and the probabilistic model.

2.3.1 A formalism for the LOT: lambda calculus

We formalize representations of numerical meaning using lambda calculus, a formalism

which allows complex functions to be defined as compositions of simpler primitive func-

tions. Lambda calculus is computationally and mathematically convenient to work with,

yet is rich enough to express a wide range of conceptual systems3. Lambda calculus is also

3In fact, untyped lambda calculus could represent any computable function from sets to number words.
While we use a typed version of lambda calculus, our numerical meanings still have the potential to “loop
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a standard formalism in semantics (Heim & Kratzer, 1998; Steedman, 2000), meaning that,

unlike models that lack structured representations, our representational system can inter-

face easily with existing theories of linguistic compositionality. Additionally, lambda cal-

culus representations have been used in previous computational models of learning words

with abstract or functional properties (Zettlemoyer & Collins, 2005, 2007; Piantadosi et

al., 2008).

The main work done by lambda calculus is in specifying how to compose primitive

functions. An example lambda expression is

λ x . (not (singleton? x)). (2.1)

Each lambda calculus expression represents a function and has two parts. To the left of a

period, there is a “λx”. This denotes that the argument to the function is the variable named

x. On the right hand side of the period, the lambda expression specifies how the expression

evaluates its arguments. Expression (2.1) returns the value of not applied to (singleton?

x). In turn, (singleton? x) is the function singleton? applied to the argument x4. Since

this lambda expression represents a function, it can be applied to arguments—in this case,

sets—to yield return values. For instance, (2.1) applied to {Bob,Joan} would yield true,

but {Carolyn} yields f alse since only the former is not a singleton set.

2.3.2 Basic assumptions

We next must decide on the appropriate interface conditions for a system of numerical

meaning—what types of questions can be asked of it and what types of answers can it

provide. There are several possible ways of setting up a numerical representation: (i) The

system of numerical meaning might map each number word to a predicate on sets. One

would ask such a system for the meaning of “three”, and be given a function which is

true of sets containing exactly three elements. Such a system would fundamentally repre-

infinitely,” requiring us to cut off their evaluation after a fixed amount of time.
4As in the programming language scheme, function names often include “?” when they return a truth

value. In addition, we use prefix notation on functions, meaning that the function f applied to x is written as
( f x).
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sent a function which could answer “Are there n?” for each possible n. (ii) The system

of numerical meaning might work in the opposite direction, mapping any given set to a

corresponding number word. In this setup, the numerical system would take a set, perhaps

{duckA,duckB,duckC}, and return a number word corresponding to the size of the set—in

this case, “three”. Such a system can be thought of as answering the question “How many

are there?” (iii) It is also possible that the underlying representation for numerical meaning

is one which relies on constructing a set. For instance, the “meaning” of “three” might be

a function which takes three elements from the local context and binds them together into

a new set. Such a function could be cached out in terms of motor primitives rather than

conceptual primitives, and could be viewed as responding to the command “Give me n.”

It is known that children are capable of all of these numerical tasks (Wynn, 1992). This

is not surprising because each type of numerical system can potentially be used to answer

other questions. For instance, to answer “How many are there?” with a type-(i) system, one

could test whether are are n in the set, for n = 1,2,3, . . .. Similarly, to answer “Are there n”

with a type-(ii) system, one could compute which number word represents the size of the

set, and compare it to n.

Unfortunately, the available empirical data does not provide clear evidence for any

of these types of numerical representations over the others. We will assume a type-(ii)

system because we think that this is the most natural formulation, given children’s counting

behavior. Counting appears to be a procedure which takes a set and returns the number

word corresponding to its cardinality, not a procedure which takes a number and returns a

truth value.

Importantly, assuming a type-(ii) system (or any other type) only determines the form of

the inputs and outputs5—the inputs are sets and the outputs are number words. Assuming a

type-(ii) system does not mean that we have assumed the correct input and output pairings.

Other conceptual systems can map sets to words, but do it in the “wrong” way: a Mod-10

system would take a set containing n elements and return the n mod 10’th number word.

5This is analogous to the type signature of a function in computer programming.
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2.3.3 Primitive operations in the LOT

In order to define a space of possible lambda expressions, we must specify a set of prim-

itive functional elements which can be composed together to create lambda expressions.

These primitives are the basic cognitive components that learners must figure out how to

compose in order to arrive at the correct system of numerical meanings. The specific prim-

itives we choose represent only one particular set of choices, but this modeling framework

allows others to be explored to see how well they explain learning patterns. The primi-

tives we include can be viewed as partial implementation of the core knowledge hypothesis

(Spelke, 2003)—they form a core set of computations that learners bring to later devel-

opment. Unlike core knowledge, however, the primitives we assume are not necessarily

innate—they must only be available to children by the time they start learning number.

These primitives—especially the set-based and logical operations—are likely useful much

more broadly in cognition and indeed have been argued to be necessary in other domains.

Similar language-like representations using overlapping sets of logical primitives have pre-

viously been proposed in learning kinship relations and taxonomy (Katz et al., 2008), a

theory of causality (Goodman et al., 2009), magnetism (Ullman et al., 2010), boolean con-

cepts (Goodman et al., 2008), and functions on sets much like those needed for natural

language semantics. We therefore do not take this choice of primitives as specific to num-

ber learning, although these primitives may be the only ones which are most relevant. The

primitive operations we assume are listed in Table 2.1.

First, we include a number of primitives for testing small set size cardinalities, single-

ton?, doubleton?, tripleton?. These respectively test whether a set contains exactly 1, 2,

and 3 elements. We include these because the ability of humans to subitize and compare

small set cardinalities (Wynn, 1992) suggests that these cognitive operations are especially

“easy,” especially by the time children start learning number words. In addition, we include

a number of functions which manipulate sets. This is motivated in part by children’s ability

to manipulate sets, and in part by the primitives hypothesized in formalizations of natural

language semantics (e.g., Steedman, 2000; Heim & Kratzer, 1998). Semantics often ex-

presses word meanings—especially quantifiers and other function words—as compositions
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Functions mapping sets to truth values
(singleton? X) Returns true iff the set X has exactly one element.
(doubleton? X) Returns true iff the set X has exactly two elements.
(tripleton? X) Returns true iff the set X has exactly three elements.

Functions on sets
(set-difference X Y) Returns the set that results from removing Y from X.
(union X Y) Returns the union of sets X and Y .
(intersection X Y) Returns the intersect of sets X and Y .
(select X) Returns a set containing a single element from X.

Logical functions
(and P Q) Returns true if P and Q are both true.
(or P Q) Returns true if either P or Q is true.
(not P) Returns true iff P is false.
(if P X Y) Returns X iff P is true, Y otherwise.

Functions on the counting routine
(next W) Returns the word after W in the counting routine.
(prev W) Returns the word before W in the counting routine.
(equal-word? W V) Returns true if W and V are the same word.

Recursion
(L S) Returns the result of evaluating the entire current

lambda expression S.

Table 2.1: Primitive operations allowed in the LOT. All possible compositions of these
primitives are valid hypotheses for the model.

of set-theoretic operations. Such functions are likely used in adult representations and are

so simple that it is difficult to see from what basis they could be learned, or why—if they

are learned—they should not be learned relatively early. We therefore assume that they are

available for learners by the time they start acquiring number word meanings. The func-

tions select and set-difference play an especially important role in the model: the recursive

procedure the model learns for counting the number of objects in a set first selects an el-

ement from the set of objects-to-be-counted, removes it via set-difference, and recurses.

We additionally include logical operations. The function if is directly analogous to a con-

ditional expression in a programming language, allowing a function to return one of two

values depending on the truth value of a third. This is necessary for most interesting sys-

tems of numerical meaning, and is such a basic computation that it is reasonable to assume

children have it as an early conceptual resource.

The sequence of number words “one”, “two”, “three”, etc. is known to children before

they start to learn the words’ numerical meanings (Fuson, 1988). In this formal model, this
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means that the sequential structure of the count list of number words should be available to

the learner via some primitive operations. We therefore assume three primitive operations

for words in the counting routine: next, prev, and equal-word?. These operate on the

domain of words, not on the domain of sets or numerical representations. They simply

provide functions for moving forwards and backwards on the count list, and checking if

two words are equal6.

Finally, we allow for recursion via the primitive function L permitting the learner to

potentially construct a recursive system of word meanings. Recursion has been argued to

be a key human ability (Hauser, Chomsky, & Fitch, 2002) and is a core component of many

computational systems (e.g., Church, 1936). L is the name of the function the learner is

trying to infer and this can be used in the definition of L itself. That is, L is a special

primitive in that it maps a set to the word for that set in the current hypothesis (i.e. the

hypothesis where L is being used). By including L also as a primitive, we allow the learner

to potentially use their currently hypothesized meaning for L in the definition of L itself.

One simple example of a recursive definition is,

λ S . (if (singleton? S)

“one”

(next (L (select S)))).

This returns “one” for sets of size one. If given a set S of size greater than one, it evaluates

(next (L (select S))). Here, (select S) always is a set of size one since select selects a single

element. L is therefore evaluated the singleton set returned by (select S). Because L returns

the value of the lambda expression it is used in, it returns “one” on singleton sets in this

example. This means that (next (L (select S))) evaluates to (next “one”), or “two”. Thus,

this recursive function returns the same value as, for instance, λ S . (if (singleton? S) “one”

“two”).

Note that L is crucially not a successor function. It does not map a number to its

6It is not clear that children are capable of easily moving backwards on the counting list (Fuson, 1984; Ba-
roody, 1984). This may mean that it is better not to include “prev” as a cognitive operation; however, for our
purposes, “prev” is relatively unimportant and not used in most of the interesting hypotheses considered by
the model. We therefore leave it in and note that it does not affect the performance of the model substantially.
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successor: it simply evaluates the current hypothesis on some set. Naive use of L can give

rise to lambda expressions which do not halt, looping infinitely. However, L can also be

used to construct hypotheses which implement useful computations, including the correct

successor function and many other functions. In this sense, L is much more basic than a

successor function7.

It is worthwhile discussing what types of primitives are not included in this LOT. Most

notably, we do not include a Mod-N operation as a primitive. A Mod-N primitive might,

for instance, take a set and a number word, and return true if the set’s cardinality mod

N is equal to the number word8. The reason for not including Mod-N is that there is no

independent reason for thinking that computing Mod-N is a basic ability of young children,

unlike logical and set operations. As may be clear, the fact that Mod-N is not included as a

primitive will be key for explaining why children make the correct CP inference rather than

the generalization suggested by Rips, Asmuth, & Bloomfield9. Importantly, though, we

also do not include a successor function, meaning a function which maps the representation

of N to the representation of N+1. While neither a successor function or a Mod-N function

is assumed, both can be constructed in this representational system, and the model explains

why children learn the successor function and not the Mod-N system—or any others—in

response to the data they observe.

2.3.4 Hypothesis space for the model

The hypothesis space for the learning model consists of all ways these primitives can be

combined to form lambda expressions—lexicons—which map sets to number words. This

therefore provides a space of exact numerical meanings. In a certain sense, the learning

model is therefore quite restricted in the set of possible meanings it will consider. It will
7Interestingly, the computational power to use recursion comes for free if lambda calculus is the represen-

tational system: recursion can be constructed via the Y-combinator out of nothing more than the composition
laws of lambda calculus. Writing L this way, however, is considerably more complex than treating it as a
primitive, suggesting recursion may be especially difficult or unlikely in the prior.

8That is, if S is the set and |S| = k ·N +w for some integer k, then this function would return true when
applied to S and the word for w.

9This means that if very young children could be shown to compute Mod-N easily, it would need to be
included as a cognitive primitive, and would substantially change the predictions of the model. Thus, the
model with its current set of primitives could be argued against by showing that computing Mod-N is as easy
for children as manipulating small sets.
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One-knower

λ S . (if (singleton? S)
“one”
undef )

Two-knower

λ S . (if (singleton? S)
“one”
(if (doubleton? S)

“two”
undef ))

Three-knower

λ S . (if (singleton? S)
“one”
(if (doubleton? S)

“two”
(if (tripleton? S)
“three”
undef ))

CP-knower

λ S . (if (singleton? S)
“one”
(next (L (set-difference S

(select S)))))

Singular-Plural

λ S . (if (singleton? S)
“one”
“two”)

Mod-5

λ S . (if (or (singleton? S)
(equal-word? (L (set-difference S)

(select S))
“five”))

“one”
(next (L (set-difference S

(select S)))))

2-not-1-knower

λ S . (if (doubleton? S)
“two”
undef )

2N-knower

λ S . (if (singleton? S)
“one”
(next (next (L (set-difference S (select S))))))

Figure 2-1: Example hypotheses in the LOT. These include subset-knower, CP-knower,
and Mod-N hypotheses. The actual hypothesis space for this model is infinite, including
all expressions which can be constructed in the LOT.

not ever, for instance, map a set to a different concept or a word not on the count list.

This restriction is computationally convenient and developmentally plausible. Wynn (1992)

provided evidence that children know number words refer to some kind of numerosity

before they know their exact meanings. For example, even children who did not know the

exact meaning of “four” pointed to a display with several objects over a display with few
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when asked “Can you show me four balloons?” They did not show this patten for nonsense

word such as “Can you show me blicket balloons?” Similarly, children map number words

to some type of cardinality, even if they do not know which cardinalities (Sarnecka &

Gelman, 2004; Lipton & Spelke, 2006). Bloom and Wynn (1997) suggest that perhaps this

can be accounted for by a learning mechanism that uses syntactic cues to determine that

number words are a class with a certain semantics.

However, within the domain of functions which map sets to words, this hypothesis

space is relatively unrestricted. Example hypotheses are shown in Figure 2-1. The hypoth-

esis space contains functions with partial numerical knowledge—for instance, hypotheses

that have the correct meaning for “one” and “two”, but not “three” or above. For instance,

the 2-knower hypothesis takes an argument S, and first checks if (singleton? S) is true—if

S has one element. If it does, the function returns “one”. If not, this hypothesis returns

the value of (if (doubleton? S) “two” undef ). This expression is another if -statement, one

which returns “two” if S has two elements, and undef otherwise. Thus, this hypothesis

represent a 2-knower who has the correct meanings for “one” and “two”, but not for any

higher numbers. Intuitively, one could build much more complex and interesting hypothe-

ses in this format—for instance, ones that check more complex properties of S and return

other word values.

Figure 2-1 also shows an example of a CP-knower lexicon. This function makes use of

the counting routine and recursion. First, this function checks if S contains a single element,

returning “one” if it does. If not, this function calls set-difference on S and (select S). This

has the effect of choosing an element from S and removing it, yielding a new set with one

fewer element. The function calls L on this set with one fewer element, and returns the next

number after the value returned by L. Thus, the CP-knower lexicon represents a function

which recurses down through the set S until it contains a singleton element, and up the

counting routine, arriving at the correct word. This is a version of bootstrapping in which

children would discover that they move “one more” element on the counting list for every

additional element in the set-to-be-counted.

Importantly, this framework can learn a number of other types of conceptual systems.

For example, the Mod-5 system is similar to the CP-knower, except that it returns “one” if
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S is a singleton, or the word before for the set S minus an element is “four”. Intuitively, this

lexicon works similarly to the CP-knower lexicon for set sizes 1 through 4. However, on

a set of size 5, the lexicon will find that (L (set-difference S) (select S)) is equal to “four”,

meaning that the first if statement returns “one”: sets of size 5 map to “one”. Because of

the recursive nature of this lexicon, sets of size 6 will map to “two”, etc..

Figure 2-1 also contains a few of the other hypotheses expressible in this LOT. For

instance, there is a singular/plural hypothesis, which maps sets of size 1 to “one” and

everything else to “two”. There is also a 2N lexicon which maps a set of size N to the

2 ·N’th number word, and one which has the correct meaning for “two” but not “one”.

It is important to emphasize that Figure 2-1 does not contain the complete list of hy-

potheses for this learning model. The complete hypothesis space is infinite and corresponds

to all possible ways to compose the above primitive operations. These examples are meant

only to illustrate the types of hypotheses which could be expressed in this LOT, and the fact

that many are not like natural number.

2.3.5 The probabilistic model

So far, we have defined a space of functions from sets to number words. This space was

general enough to include many different types of potential representational systems. How-

ever, we have not yet specified how a learner is to choose between the available hypotheses,

given some set of observed data. For this, we use a probabilistic model built on the intuition

that the learner should attempt to trade-off two desiderata. On the one hand, the learner

should prefer “simple” hypotheses. Roughly, this means that the lexicon should have a

short description in the language of thought. On the other hand, the learner should find a

lexicon which can explain the patterns of usage seen in the world. Bayes’ rule provides a

principled and optimal way to balance between these desiderata.

We suppose that the learner hears a sequence of number words W = {w1,w2, . . .}. Each

number word is paired with an object type T = {t1, t2, . . .} and a context set of objects

C = {c1,c2, . . .}. For instance, a learner might hear the expression “two cats” (wi =“two”
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and ti =“cats”) in a context containing a number of objects,

ci = {catA,horseA,dogA,dogB,catB,dogC}. (2.2)

If L is an expression in the LOT—for instance, one in Figure 2-1—then by Bayes rule we

have

P(L |W,T,C) ∝ P(W | T,C,L)P(L) =

[
∏

i
P(wi | ti,ci,L)

]
P(L) (2.3)

under the assumption that the wi are independent given L. This equation says that the

probability of any lexicon L given W , T , C is proportional to the prior P(L) times the

likelihood P(W | T,C,L). The prior gives the learner’s a priori expectations that a particular

hypothesis L is correct. The likelihood gives the probability of the observed number words

W occurring given that the hypothesis L is correct, providing a measure of how well L

explains or predicts the observed number words. We discuss each of these terms in turn.

The prior P(L) has two key assumptions. First, hypotheses which are more complex are

assumed to be less likely a priori. We use the rational rules prior (Goodman et al., 2008),

which was originally proposed as a model of rule-based concept learning. This prior favors

lexicons which re-use primitive components, and penalizes complex, long expressions. To

use this prior, we construct a probabilistic context free grammar using all expansions con-

sistent with the argument and return types of the primitive functions in Table 2.1. The

probability of a lambda expression is determined by the probability it was generated from

this grammar, integrating over rule production probabilities10.

The second key assumption is that recursive lexicons are less likely a priori. We intro-

duce this extra penalty for recursion because it seems natural that recursion is an addition-

ally complex operation. Unlike the other primitive operations, recursion requires a poten-

tially unbounded memory space—a stack—for keeping track of which call to L is currently

being evaluated. Every call to L also costs more time and computational resources than

other primitives since using L requires evaluating a whole lambda expression—potentially

even with its own calls to L. We therefore introduce a free parameter, γ, which penalizes

10Similar results are found using simply the PCFG production probability as a prior.
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lexicons which use of recursion:

P(L) ∝

γ ·PRR(L) if L uses recursion

(1− γ) ·PRR(L) otherwise
(2.4)

where PRR(L) is the prior of L according to the rational rules model.

We use a simple form of the likelihood, P(wi | ti,ci,L), that is most easily formulated

as a generative model. We first evaluate L on the set of all objects in ci of type ti. For

instance suppose that ci is the set in (2.2) and ti =“cat”, we would first take only objects of

type “cat”, {catA,catB}. We then evaluate L on this set, resulting in either a number word

or undef . If the result is undef , we generate a number word uniformly at random, although

we note that this is a simplification, as children appear to choose words from a non-uniform

baseline distribution when they do not know the correct word (see Sarnecka & Lee, 2009;

Lee & Sarnecka, 2010b, 2010a). If the result is not undef , with high probability α, we

produce the computed number word; with low probability 1−α we produce the another

word, choosing uniformly at random from the count list. Thus,

P(wi | ti,ci,L) =


1
N if L evaluates to undef

α+(1−α) 1
N if L evaluates to wi

(1−α) 1
N if L does not evaluate to wi

(2.5)

where N is the length of the count routine11. This likelihood reflects the fact that speakers

will typically use the correct number word for a set. But occasionally, the listener will

misinterpret what is being referred to and will hear an incorrectly paired number word

and set. This likelihood therefore penalizes lexicons which generate words for each set

which do not closely follow the observed usage. It also penalizes hypotheses which make

incorrect predictions over those which return undef , meaning that it is better for a learner

to remain uncommitted than to make a strong incorrect predictions12. The likelihood uses

11The second line is “α+(1−α) 1
N ” instead of just “α” since the correct word wi can be generated either

by producing the correct word with probability α or by generating uniformly with probability 1−α.
12It would be interesting to study the relationship of number learning to acquisition of other quantifiers,

since they would likely be other alternatives that could be considered in the likelihood.
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Figure 2-2: Number word frequencies from CHILDES (MacWhinney 2000) used to simu-
late learning data for the model.

a second free parameter, α, which controls the degree to which the learner is penalized for

data which does not agree with their hypothesis.

To create data for the learning model, we simulated noisy pairing of words and sets

of objects, where the word frequencies approximate the naturalistic word probabilities in

child-directed speech from CHILDES (MacWhinney, 2000). We used all English tran-

scripts with children aged between 20 and 40 months to compute these probabilities. This

distribution is shown in Figure 2-2. Note that all occurrences of number words were used to

compute these probabilities, regardless of their annotated syntactic type. This was because

examination of the data revealed many instances in which it is not clear if labeled pronoun

usages actually have numerical content—e.g., “give me one” and “do you want one?” We

therefore simply used the raw counts of number words. This provides a distribution of

number words much like that observed cross-linguistically by Dehaene and Mehler (1992),

but likely overestimates the probability of “one”. Noisy data that fits the generative as-

sumptions of the model was created for the learner by pairing each set size with the correct

word with probability α, and with a uniformly chosen word with probability 1−α.
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2.3.6 Inference & methods

The previous section established a formal probabilistic model which assigns any potential

hypothesized numerical system L a probability, conditioning on some observed data con-

sisting of sets and word-types. This probabilistic model defines the probability of a lambda

expression, but does not say how one might find high-probability hypotheses or compute

predicted behavioral patterns. To solve these problems, we use a general inference algo-

rithm similar to the tree-substitution Markov-chain monte-carlo (MCMC) sampling used

in the rational rules model.

This algorithm essentially performs a stochastic search through the space of hypotheses

L. For each hypothesized lexicon L, a change is proposed to L by resampling one piece of

a lambda expression in L according to a PCFG. The change is accepted with a certain

probability such that in the limit, this process can be shown to generate samples from

the posterior distribution P(L | W,T,C). This process builds up hypotheses by making

changes to small pieces of the hypothesis: the entire hypothesis space need not be explicitly

enumerated and tested. Although the hypothesis space is in principle infinite, the “good”

hypotheses can be found by this technique since they will be high-probability, and this

sampling procedure finds regions of high probability.

This process is not necessarily intended as an algorithmic theory for how children ac-

tually discover the correct lexicon (though see Ullman et al., 2010). Children’s actual

discovery of the correct lexicon probably relies on numerous other cues and cognitive pro-

cesses and likely does not progress through such a simple random search. Our model is

intended as a computational level model (Marr, 1982), which aims to explain children’s

behavior in terms of how an idealized statistical learner would behave. Our evaluation of

the model will rely on seeing if our idealized model’s degree of belief in each lexicon is

predictive of the correct behavioral pattern as data accumulates during development.

To ensure that we found the highest probability lexicons for each amount of data, we

ran this process for one million MCMC steps, for varying γ and amounts of data from 1

to 1000 pairs of sets, words, and types. This number of MCMC steps was much more

than was strictly necessary to find the high probability lexicons and children could search
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a much smaller effective space. Running MCMC for longer than necessary ensures that no

unexpectedly good lexicons were missed during the search, allowing us to fully evaluate

predictions of the model. In the MCMC run we analytically computed the expected log

likelihood of a data point for each lexicon, rather than using simulated data sets. This

allowed each lexicon to be efficiently evaluated on multiple amounts of data.

Ideally, we would be able to compute the exact posterior probability of P(L | W,T,C)

for any lexicon L. However, Equation 2.3 only specifies something proportional to this

probability. This is sufficient for the MCMC algorithm, and thus would be enough for any

child engaging in a stochastic search through the space of hypotheses. However, to compute

the model’s predicted distribution of responses, we used a form of selective model averag-

ing (Madigan & Raftery, 1994; Hoeting, Madigan, Raftery, & Volinsky, 1999), looking at

all hypotheses which had a posterior probability in the top 1000 for any amount of data

during the MCMC runs. This resulted in approximately 11,000 hypotheses. Solely for

the purpose of computing P(L | W,T,C), these hypotheses were treated as a fixed, finite

hypothesis space. This finite hypothesis space was also used to compute model predictions

for various γ and α. Because most hypotheses outside of the top 1000 are extremely low

probability, this provides a close approximation to the true distribution P(L |W,T,C).

2.4 Results

We first show results for learning natural numbers from naturalistic data. After that, we

apply the same model to other data sets.

2.4.1 Learning natural number

The precise learning pattern for the model depends somewhat on the parameter values α

and γ. We first look at typical parameter values that give the empirically demonstrated

learning pattern, and then examine how robust the model is to changing these parameters.

Figure 2-3 shows learning curves for the behavioral pattern exhibited by the model for

α = 0.75 and logγ =−25. This plot shows the marginal probability of each type of behav-

ior, meaning that each line represents the sum of the posterior probability all hypotheses

42



0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Amount of data

P
os

te
rio

r 
pr

ob
ab

ili
ty

One−knower
Two−knower
Three−knower
Four−knower
CP−knower
Others

(a)

0 50 100 150 200 250 300 350

1e
−

26
1e

−
20

1e
−

14
1e

−
08

1e
−

02

Amount of data

P
os

te
rio

r 
pr

ob
ab

ili
ty

 (
lo

g 
sc

al
e)

(b)

Figure 2-3: Figure 2-3(a) shows marginal posteriors probability of exhibiting each type
of behavior, as a function of amount of data. Figure 2-3(b) shows the same plot on a log
y-axis demonstrating the large number of other numerical systems which are considered,
but found to be unlikely given the data.

that show a given type of behavior. For instance, the 2-knower line shows the sum of the

posterior probability of all LOT expressions which map sets of size 1 to “one”, sets of size

2 to “two”, and everything else to undef . Intuitively, this marginal probability corresponds

to the proportion of children who should look like subset- or CP-knowers at each point in

time. This figure shows that the model exhibits the correct developmental pattern. The first

gray line on the left represents many different hypotheses which are high probability in the

prior—such as all sets map to the same word, or are undefined—and are quickly dispre-

ferred. The model successively learns the meaning of “one”, then “two”, “three”, finally

transitioning to a CP-knower who knows the correct meaning of all number words. That is,
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with very little data the “best” hypothesis is one which looks like a 1-knower, and as more

and more data is accumulated, the model transitions through subset-knowers. Eventually,

the model accumulates enough evidence to justify the CP-knower lexicon that recursively

defines all number words on the count list. At that point, the model exhibits a conceptual

re-organization, changing to a hypothesis in which all number word meanings are defined

recursively as in the CP-knower lexicon in Figure 2-1.

The reason for the model’s developmental pattern is the fact that Bayes’ theorem im-

plements a simple trade-off between complexity and fit to data: with little data, hypotheses

are preferred which are simple, even if they do not explain all of the data. The numerical

systems which are learned earlier are simple, or higher prior probability in the LOT. In

addition, the data the model receives follows word frequency distributions in CHILDES,

in which the earlier number words are more frequent. This means that it is “better” for the

model to explain the more frequent number words. Number word frequency falls off with

the number word’s magnitude, meaning that, for instance, just knowing “one” is a better

approximation than just knowing “two”: children become 1-knowers before they become

2-knowers. As the amount of data increases, increasingly complex hypotheses become

justified. The CP-knower lexicon is most “complex,” but also optimally explains the data

since it best predicts when each number word is most likely to be uttered.

The model prefers hypotheses which leave later number words as undef because it is

better to predict undef than the wrong answer: in the model, each word has likelihood

1/N when the model predicts undef , but (1−α)/N when the model predicts incorrectly.

This means that a hypothesis like λ S . (if (singleton? S) “one” undef ) is preferred in the

likelihood to λ S . “one”. If the model did not employ this preference for non-commitment

(undef ) over incorrect guesses, the 1-knower stage of the model would predict children say

“one” to sets of all sizes. Thus, this assumption of the likelihood drives learners to avoid

incorrectly guessing meanings for higher number words, preferring to not assign them any

specific numerical meaning—a pattern observed in children.

Figure 2-3(b) shows the same results with a log y-axis, making clear that many other

types of hypotheses are considered by the model and found to have low probability. Each

gray line represents a different kind of knower-level behavior—for instance, there is a line
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for correctly learning “two” and not “one”, a line for thinking “two” is true of sets of size

1, and dozens of other behavioral patterns representing thousands of other LOT expres-

sions. These are all given very low probability, showing the data that children plausibly

receive is sufficient to rule out many other kinds of behavior. This is desirable behavior for

the model because it shows that the model needs not have strong a priori knowledge of how

the numerical system works. Many different kinds of functions could be built, considered

by children, and ruled-out based on the observed data.

Table 2.2 shows a number of example hypotheses chosen by hand. This table lists each

hypothesis’ behavioral pattern and log probability after 200 data points. The behavioral

patterns show what sets of each size are mapped to13: for instance, “(1 2 U U U U U U

U U)” means that sets of size 1 are mapped to “one” (“1”), sets of size 2 are mapped to

“two” (“2”), and all other sets are mapped to undef (“U”). Thus, this behavior is consistent

with a 2-knower. As this table makes clear, the MCMC algorithm used here searches a

wide variety of LOT expressions. Most of these hypotheses have near-zero probability, in-

dicating that the data are sufficient to rule out many bizarre and non-attested developmental

patterns.

Figure 2-4 shows the behavioral pattern for different values of γ and α. Figures 2-4a

and 2-4b demonstrate that the learning rate depends on α: when α is small, the model takes

more data points to arrive at the correct grammar. Intuitively this is sensible because α

controls the degree to which the model is penalized for an incorrect mapping from sets to

words, meaning that when α is small, the model takes more data to justify a jump to the

more complex CP-knower hypothesis.

Figures 2-4c-2-4f demonstrate the behavior of the model as γ is changed. 2-4c and 2-4d

show that a range of logγ that roughly shows the developmental pattern is from approxi-

mately −20 to −65, a range of forty-five in log space or over nineteen orders of magnitude

in probability space. Even though we do not know the value of γ, a large range of values

show the observed developmental pattern.

Figures 2-4e and 2-4f show what happens as logγ is made even more extreme. The plot

for γ = 1
2( logγ = −0.69) corresponds to no additional penalty on recursive hypotheses.

13For conciseness, we use “U” for “undef”, the numeral 1 for “one”, 2 for “two,” etc. in this table.
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(a) α = 0.55, logγ =−25
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(c) α = 0.75, logγ =−20
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(f) α = 0.75, logγ =−100

Figure 2-4: Behavioral patterns for different values of α and γ. Note that the X-axis scale
is different for 2-4d and 2-4f.

This shows a CP-transition too early—roughly after becoming a 1-knower. The reason for

this may be clear from Figure 2-1: the CP-knower hypothesis is not much more complex

than the 2-knower in terms of overall length, but does explain much more of the observed

data. If logγ =−100, the model is strongly biased against recursive expressions and goes

through a prolonged 4-knower stage. This curve also shows a long three-knower stage,

which might be mitigated by including quadrupleton? as a primitive. In general, however,

it will take increasing amounts of data to justify moving to the next knower-level because of

the power-law distribution of number word occurrences—higher number words are much

less frequent. The duration of the last knower-level before the CP-transition, though, de-

pends largely on γ.

These results show that the dependence of the model on the parameters is fairly in-

tuitive, and the general pattern of knower-level stages preceding CP-transition is a robust

property of this model. Because γ is a free parameter, the model is not capable of predicting

or explaining the precise location of the CP-transition. However, these results show that the
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Figure 2-5: Learning results for a singular/plural system.

behavior of the model is not extremely sensitive to the parameters: there is no parameter

setting, for instance, that will make the model learn low-ranked hypotheses in Table 2.2.

This means that the model can explain why children learn the correct numerical system

instead of any other possible expression which can be expressed in the LOT.

Next, we show that the model is capable of learning other systems of knowledge when

given the appropriate data.

2.4.2 Learning singular/plural

An example singular/plural system is shown in Figure 2-1. Such a system differs from

subset-knower systems in that all number words greater than “one” are mapped to “two”.

It also differs from the CP-knower system in that it uses no recursion. To test learning

for singular/plural cognitive representations, the model was provided with the same data

as in the natural number case, but sets with one element were labeled with “one” and

sets with two or more elements were labeled with “two”. Here, “one” and “two” are

just convenient names for our purposes—one could equivalently consider the labels to be

singular and plural morphology.

As Figure 2-5 shows, this conceptual system is easily learnable within this framework.

Early on in learning this distinction, even simpler hypotheses than singular/plural are con-

sidered: λ S . “one” and λ S . “two”. These hypotheses are almost trivial, but correspond

to learners who initially do not distinguish between singular and plural markings—a sim-
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ple, but developmentally attested pattern (Barner, Thalwitz, Wood, Yang, & Carey, 2007).

Here, λ S . “one” is higher probability than λ S . “two” because sets of size 1 are more

frequent in the input data. Eventually, the model learns the correct hypothesis, correspond-

ing to the singular/plural hypothesis shown in Figure 2-1. This distinction is learned very

quickly by the model compared to the number hypotheses, matching the fact that chil-

dren learn the singular/plural distinction relatively young, by about 24 months (Kouider,

Halberda, Wood, & Carey, 2006). These results show one way that natural number is not

merely “built in”: when given the different kind of data—the kind that children presumably

receive in learning singular/plural morphology—the model infers a singular/plural system

of knowledge.

2.4.3 Learning Mod-N systems

Mod-N systems are interesting in part because they correspond to an inductive leap con-

sistent with the correct meanings for early number words. Additionally, children do learn

conceptual systems with Mod-N-like structures. Many measures of time—for instance,

days of the week, months of the year, hours of the day—are modular. In numerical sys-

tems, children eventually learn the distinction between even and odd numbers, as well as

concepts like “multiples of ten.” Rips, Asmuth, and Bloomfield (2008) even report anecdo-

tal evidence from Hartnett (1991) of a child arriving at a Mod-1,000,100 system for natural

number meanings14.

14They quote,

D.S.: The numbers only go to million and ninety-nine.
Experimenter: What happens after million and ninety-nine?
D.S.: You go back to zero.
E: I start all over again? So, the numbers do have an end?
Or do the numbers go on and on?
D.S.: Well, everybody says numbers go on and on because you start over again with million
and ninety-nine.
E: . . .you start all over again.
D.S.: Yeah, you go zero, one, two, three, four—all the way up to million and ninety-nine, and
then you start all over again.
E: How about if I tell you that there is a number after that?
A million one hundred.
D.S.: Well, I wish there was a million and one hundred, but there isn’t.
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When the model is given natural number data Mod-N systems are given low probability

because of their complexity and inability to explain the data. A Mod-N system makes the

wrong predictions about what number words should be used for sets larger than size N. As

Figure 2-1 shows, modular systems are also considerably more complex than a CP-knower

lexicon, meaning that they will be dispreferred even for huge N, where presumably children

have not received enough data. This means that Mod-N systems are doubly dispreferred

when the learner observes natural number data.

To test whether the model could learn a Mod-N system when the data support it, data

was generated by using the same distribution of set sizes as for learning natural number,

but sets were labeled according to a Mod-5 system. This means that the data presented

to the learner was identical for “one” through “five”, but sets of size 6 were paired with

“one”, sets of size 7 were paired with “two”, etc. As Figure 2-6 shows, the model is ca-

pable of learning from this data, and arriving at the correct Mod-5 system15. Interestingly,

the Mod-learner shows similar developmental patterns to the natural number learners, pro-

gressing through the correct sequence of subset-knower stages before making the Mod-5-

CP-transition. This results from the fact that the data for the Mod system is very similar to

the natural number data for the lower and more frequent set sizes. In addition, since both

models use the same representational language, they have the same inductive biases, and

thus both prefer the “simpler” subset-knower lexicons initially. A main difference is that

hypotheses other than the subset-knowers do well early on with Mod-5 data. For instance,

a hypothesis which maps all sets to “one” has higher probability than in learning number

because “one” is used for more than one set size.

The ability of the model to learn Mod-5 systems demonstrates that the natural numbers

are no more “built-in” to this model than modular-systems: given the right data, the model

will learn either. As far as we know, there is no other computational model capable of

arriving at these types of distinct, rule-based generalizations.

15Because of the complexity of the Mod-5 knower, special proposals to the MCMC algorithm were used
which preferentially propose certain types of recursive definitions. This did not change the form of the
resulting probabilistic model.
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Figure 2-6: Learning results for a Mod-5 system.

2.5 Discussion

We have presented a computational model which is capable of learning a recursive numer-

ical system by doing statistical inference over a structured language of thought. We have

shown that this model is capable of learning number concepts, in a way similar to children,

as well as other types of conceptual systems children eventually acquire. Our model has

aimed to clarify the conceptual resources that may be necessary for number acquisition

and what inductive pressures may lead to the CP-transition. This work was motivated in

part by an argument that Carey’s formulation of bootstrapping actually presupposes natu-

ral numbers, since children would have to know the structure of natural numbers in order

to avoid other logically plausible generalizations of the first few number word meanings.

In particular, there are logically possible modular number systems which cannot be ruled

out given only a few number word meanings (Rips et al., 2006; Rips, Asmuth, & Bloom-

field, 2008; Rips, Bloomfield, & Asmuth, 2008). Our model directly addresses one type

of modular system along these lines: in our version of a Mod-N knower, sets of size k are

mapped to the k mod Nth number word. We have shown that these circular systems of

meaning are simply less likely hypotheses for learners. The model therefore demonstrates

how learners might avoid some logically possible generalizations from data, and further-

more demonstrates that dramatic inductive leaps like the CP-transition should be expected

for ideal learners. This provides a “proof of concept” for bootstrapping.

In implementing a fully working version of this model we have had to make several
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design choices about the representational system and statistical model. These choices of

course affect the final “adult state“ of the model. It is useful to distinguish between the

choices made in our specific implementation of the model, and our general approach to

understanding numerical development. It might turn out, for instance, that children’s num-

ber word meanings are lower-bounded (with “one” meaning “one or more”) (Barner &

Bachrach, 2010) or that the representational system we assume is either too weak or too

powerful. While such discoveries may be inconsistent with our specific implementation,

one could modify the model’s representational basis to accommodate such facts.

We have discussed empirical data that provide support for our modeling approach, but

it is also important to ask what kind of empirical findings would or would not weigh against

our model. Evidence against our most fundamental claim—numerical knowledge comes

from statistical inference over a structured representational system—could be found by

discovering developmental patterns that are inconsistent with the predictions of a statisti-

cal model operating on a plausible representational system—for instance, representational

changes that cannot be explained as a response to evidence. Or, one might show that chil-

dren’s representational primitives give an inductive bias unlike that required for the model

to work16.

It is also tempting to suppose that because the model discovers a recursive form of

numerical meaning, it must have knowledge of “the successor principle.” However, the

model produces explicit representations only of functions which map sets to truth values,

not of, for instance, counting principles. Knowing that “one more element” is “one more

on the count list” is only implicit in the computations performed by the model. Explicit

knowledge of successorship and counting might require “looking at” the representations

learned by the model and noticing that, for instance, every additional element makes the

model return one higher word on the count list. Knowledge of such abstract properties of

numbers does not come for free, even to learners who have discovered a function that can

correctly map sets to number words.

This work leaves open the question of whether our approach can learn the full concept

of natural number. This is a subtle issue because it is unclear what it means to have this

16For instance, as above, if Mod was a primitive.
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concept (though see Leslie et al., 2008). Does it require knowledge that there are an infin-

ity of number concepts, or number words? What facts about numbers must be explicitly

represented, and which can be implicitly represented? The model we present learns natural

number concepts in the sense that it relates an infinite number of set-theoretic concepts to

a potentially infinite list of number words, using only finite evidence. However, the present

work does not directly address what may be an equally interesting inductive problem rel-

evant to a full natural number concept: how children learn that next always yields a new

number word. If it was the case that next at some point yielded a previous number word—

perhaps (next “fifty”) is equal to “one”—then learners would again face a problem of a

modular number system. Rips, Asmuth, and Bloomfield’s arguments about the need to rule

out alternative modular number-system hypotheses could apply to both the Mod-N systems

we considered earlier or the challenge described here, in which next is defined cyclically.

The latter framing may be closer to their intended challenge, and is not directly addressed

by our work here. But it is likely that similar methods to those that we use to solve the

inductive problem of mapping words to functions could also be applied to learn that next

always maps to a new word. It would be surprising if next mapped to a new word for

50 examples, but not for the 51st. Thus, the most concise generalization from such finite

evidence is likely that next never maps to an old linguistic symbol17.

In addition, the model developed here suggests a number of hypotheses for how numer-

ical acquisition may progress:

2.5.1 The CP transition may result from bootstrapping in a general

representation language.

This work was motivated in large part by the critique of bootstrapping put forth by Rips,

Asmuth, and Bloomfield (Rips et al., 2006; Rips, Asmuth, & Bloomfield, 2008; Rips,

Bloomfield, & Asmuth, 2008). They argued that bootstrapping presupposed a system iso-

morphic to natural numbers; indeed, it is difficult to imagine a computational system which

could not be construed as “building in” natural numbers. Even the most basic syntactic

17In some programming languages, such as Scheme, there is even a single primitive function gensym, for
creating new symbols in this manner.
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formalisms—for instance, finite-state grammars—can create a discrete infinity of expres-

sions which are isomorphic to natural numbers. This is true in our LOT: for instance the

LOT can generate expressions like (next x), (next (next x)), (next (next (next x))), etc.

However, dismissing the model as “building in” natural number would miss several

important points. First, there is a difference between representations which could be inter-

preted externally as isomorphic to natural numbers, and those which play the role internally

as natural number representations. An outside observer could interpret LOT expressions as

isomorphic to natural numbers, even though they do not play the role of natural numbers

in the computational system. We have been precise that the space of number meanings we

consider are those which map sets to words: the only things with numerical content in our

formalization are functions which take a set as input and return a number word. Among

the objects which have numerical content, we did not assume a successor function: none

of the conceptual primitives take a function mapping sets of size N to the N’th word, and

give you back a function mapping sets of size N + 1 to the N + 1’st word. Instead, the

correct successor function is embodied as a recursive function on sets, and is only one of

the potentially learnable hypotheses for the model. Our model therefore demonstrates that

a bootstrapping theory is not inherently incoherent or circular, and can be both formalized

and implemented.

However, our version of bootstrapping is somewhat different from Carey’s original for-

mulation. The model bootstraps in the sense that it recursively defines the meaning for

each number word in terms of the previous number word. This is representational change

much like Carey’s theory since the CP-knower uses primitives not used by subset knowers,

and in the CP-transition, the computations that support early number word meanings are

fundamentally revised. However, unlike Carey’s proposal, this bootstrapping is not driven

by an analogy to the first several number word meanings. Instead, the bootstrapping oc-

curs because at a certain point learners receive more evidence than can be explained by

subset-knowers. According to the model, children who receive evidence only about the

first three number words would never make the CP-transition because a simpler 3-knower

hypothesis could better explain all of their observed data. A distinct alternative is Carey’s

theory that children make the CP-transition via analogy, looking at their early number word
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meanings and noticing a correspondence between set size and the count list. Such a theory

might predict a CP-transition even when the learner’s data only contains the lowest number

words, although it is unclear what force would drive conceptual change if all data could be

explained by a simpler system18.

2.5.2 The developmental progression of number acquisition may re-

sult from statistical inference.

We have shown that the developmental trajectory of the model tracks children’s empirically

observed progression through levels of numerical knowledge. In the model, this behavior

results from both the prior and the likelihood, which were chosen to embody reasonable

inferential principles: learners should prefer simple hypotheses which can explain observed

patterns of word usage.

The fact that these two ingredients combine to show a developmental progression any-

thing like children is surprising and we believe potentially quite informative. One could

imagine that the model, operating in this somewhat unconstrained hypothesis space, would

show a developmental pattern nothing like children—perhaps learning other bizarre hy-

potheses and not the subset- and CP-knower hypotheses. The fact that the model does look

like children provides some evidence that statistical inference may be the driving force

in number-word learning. This theory has the advantage that it explains why acquisition

proceeds though the observed regular stages—why don’t children exhibit more chaotic pat-

terns of acquisition? Why should children show these developmental stages at all? Children

should show these patterns because, under the assumptions of the model, it is the way an

ideal learner should trade off complexity and fit to data.

Additionally, the model addresses the question of why the CP-transition happens so

suddenly. Why isn’t it the case that children successively acquire meanings for later num-

ber words? Why is the acquisition all-or-none? The answer provided by the model is that

the representational system may be discrete: at some point it becomes better to restruc-

18These two alternatives could be experimentally distinguished by manipulating the type of evidence 3-
knowers receive. While it might not be ethical to deprive 3-knowers of data about larger number words,
analogy theories may predict no effect of additional data about larger cardinalities, while our implementation
of bootstrapping as statistical inference does.
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ture the entire conceptual system and jump to a different LOT expression. Our model also

predicts recent findings that the amount of evidence children receive about numbers corre-

lates with their knowledge of cardinal meanings, even controlling for other factors such as

socioeconomic status (S. Levine, Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010):

unlike maturational or strongly nativist theories, idealized statistical learners are highly

sensitive to amount of evidence.

2.5.3 The timing of the CP-transition may depend on the primitives in

the LOT and the price of recursion.

Carey (2009) suggests that the limitations of children’s small-set representational system

may drive the timing of the CP-transition. In what appears to be an otherwise puzzling

coincidence, children become CP-knowers roughly at the capacity limit of their small-set

representational system—around 3 or 4. At this point, children may need to use another

strategy like counting to understand exact numerosities, and thus decide to transition to a

CP-knower system.

In the model, the timing of the CP-transition depends both on the primitives in the

LOT, and the value of γ, the free parameter controlling the additional cost of recursion.

The fact that the timing of the model’s CP-transition depends on a free parameter means

that the model does not strongly predict when the CP-transition will occur. However, the

point at which it does occur depends on which primitives are allowed in the LOT. While

a full exploration of how the choice of primitives impacts learning is beyond the scope

of the current paper, our own informal experimentation shows an intuitive relationship

between the primitives and the timing of the CP-transition. For instance, removing dou-

bleton? and tripleton? will make the CP-transition occur earlier since it makes 2-knowers

and 3-knowers more complex. Including quadrupleton? and quintupleton? pushes the CP-

transition beyond “four” or “five” for appropriate settings of γ. Fully and quantitatively

exploring how the choice of primitives impacts the learning is an interesting and important

direction for future work. In general, the model can be viewed as realizing a theory very

much like Carey’s proposal: the CP-transition occurs when the learner runs out of small
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primitive set operations which allow them to simply define early number word meanings,

though, in our model the primitives do not solely determine the timing of the CP transition

since the transition also depends on the cost of recursion.

Alternatively, it may turn out that algorithmic considerations play a role in the timing of

the CP transition. The simple stochastic search algorithm we used can discover the correct

numerical system if given enough time, and the difficulty of this search problem may be one

factor which causes number-word learning to take such a long time. Algorithmic accounts

are not incompatible with our approach: any approximate probabilistic inference algorithm

may be applied to the model we present, producing quantitative predicted learning curves.

2.5.4 The count list may play a crucial role in the CP-transition.

The CP-knower lexicon that the model eventually infers crucially relies on the ability to

“move” on the counting list using next. This function operates on a list of words that

children learn long before they learn the words’ meanings. For the CP-knower, this function

allows learners to return the next number word after the word they compute for a set with

one fewer element. Without this function, no CP-knower could be constructed since the

LOT would not be able to relate cardinalities to successive words in the count list. The

necessity of next makes the interesting prediction that children who learned to recite the

counting words in a different order—perhaps next returns the next word in alphabetical

order—would not make the CP-transition, assuming the words have their standard English

numerical meaning. Such a reliance on the count list matches Carey (2009)’s suggestion

that it provides a key component of bootstrapping, a placeholder structure, which guides

the critical induction. Indeed, cultures without number words lack the capacity to encode

representations of exact cardinalities (Frank, Everett, Fedorenko, & Gibson, 2008; Gordon,

2004; Pica, Lemer, Izard, & Dehaene, 2004)19, although this does not prevent them from

exactly matching large cardinalities (Frank et al., 2008).

Reasoning about LOT expressions may allow learners to understand more explicitly

what happens in moving forward and backward on the count list—e.g that adding one

element to the set corresponds to one additional word on the count list. This potentially
19Though see R. Gelman and Butterworth (2005) and see also Hartnett and Gelman (1998).
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explains why subset-knowers do not know that adding or subtracting an element from a set

corresponds to moving forward and backward on the count list (Sarnecka & Carey, 2008):

subset knowers’ representations do not yet use next.

2.5.5 Counting may be a strategy for correctly and efficiently evaluat-

ing LOT expressions.

As we have presented it, the model makes no reference to the act of counting (pointing

to one object after another while producing successive number words). However, counting

has been argued to be the key to understanding children’s numerical development. Gallistel

and Gelman (1992); R. Gelman and Gallistel (1978) argue children suddenly infer the

meanings of number words greater than “three” or “four” when they recognize the simple

correspondence between their preverbal counting system and their budding verbal count-

ing system. They posit an innate preverbal counting system governed by a set of principles,

along with an innate successor function which can map any number N onto its successor

N +1. The successor function allows the learner to form concepts of all natural numbers,

given a meaning for “one.” Under this theory, the ability to count is a central, core aspect

of learning number, and children’s main task in learning is not creating numerical con-

cepts, but discovering the relationship between verbal counting and their innate numerical

concepts.

In our model there is a role for counting: counting may be used to keep track of which

number word is currently in line to be returned by a recursive expression. For instance,

perhaps each time next is computed on a number word, children say the number word

aloud. This helps them keep track of which number word they are currently on. This

may simplify evaluation of sequences like (next (next (next . . . ))), which may be difficult

to keep track of without another strategy. Similarly, the act of pointing to an object is

also interpretable under the model. In the recursive CP-knower hypothesis, the model must

repeatedly compute (set-difference S (select S)). It may be that each time an element of a set

is selected, it is pointed to in order to individuate it from other objects. This interpretation

of counting differs from Gelman & Gallistel’s view in that counting is only a technique
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for helping to evaluate a conceptual representation. It may be an essential technique, yet

distinct from the crucial representational systems of numerical meaning.

This interpretation of counting explains why children generally do not count when they

are subset-knowers, but do count when they are CP-knowers (Wynn, 1992)20. Because the

subset-knower lexicons make use of LOT operations like singleton? and doubleton?, they

do not need to use next, and therefore do not need to keep track of a location in the recursion

along the list of counting words. When the transition is made to a CP-knower lexicon, all

number words are computed using next, meaning that children need to use counting as a

strategy.

2.5.6 Innovation during development may result from compositional-

ity in a LOT.

One of the basic mysteries of development is how children could get something fundamen-

tally new—in what sense can children progress beyond systems they are innately given?

Indeed, this was one of the prime motivations in studying number since children’s knowl-

edge appears very different before and after the CP-transition. Our answer to this puzzle

is that novelty results from compositionality. Learning may create representations from

pieces that the learner has always possessed, but the pieces may interact in wholly novel

ways. For instance, the CP-knower lexicon uses primitives to perform a computation which

is not realized at earlier subset-knower levels, even though the primitives were available.

The apparent novelty seen in other areas across development may arise in a similar way,

from combining cognitive primitives in never-before-seen ways. This means that the under-

lying representational system which supports cognition can remain unchanged throughout

development, though the specific representations learners construct may change21.

Such compositionality is extremely powerful: as in lambda calculus or programming

languages, one need only assume a very small set of primitives in order to allow Turing-

20Though see Bullock and Gelman (1977); R. Gelman and Meck (1992); R. Gelman (1993) for contrary
evidence.

21This hypothesis provides an alternative view on the distinction between continuity and discontinuity in
development. The model’s learning is continuous in that the representation system remains unchanged; it is
discontinuous in that the learner substantially changes the specific representations that are constructed.

59



complete computational abilities22. This provides an interesting framework for thinking

about Fodor’s radical concept nativism (Fodor, 1975, 1998a). Fodor argues that the only

sense in which new concepts can be learned is by composing existing concepts. He says

that because most concepts are not compositional (e.g., carburetor, banana, bureaucrat),

they could not have been learned, and therefore must be innate (see also Laurence & Mar-

golis, 2002). We have demonstrated that learning within a computationally powerful LOT,

lambda calculus, may be a viable developmental theory. If development works this way,

then concepts that apparently lack a compositional form–like bureaucrat–could be learned

by only requiring a set of primitives of sufficient computational power. The reason for this

is that if a computational theory of mind is correct, all such concepts can be expressed

in lambda calculus or other Turing-complete formalisms, with the appropriate primitives.

Such concepts could be learned in principle by the type of model we present, by searching

through lambda expressions.

2.5.7 A sufficiently powerful representation language may bind to-

gether cognitive systems.

The LOT we use is one of the most important assumptions of the model. We chose to in-

clude primitive LOT operations—like and, not, and union—which are simple and compu-

tationally basic. These simple primitives provide one plausible set of conceptual resources

2-year olds bring to the task of learning number-word meanings.

We also included some operations—for instance singleton?, doubleton? and triple-

ton?—which seem less computationally and mathematically basic. Indeed, they are tech-

nically redundant in that, for instance, doubleton? can be written using singleton? as λ S .

(singleton? (set-difference S (select S))). However, we include all three operations because

there is evidence that even very young children are capable of identifying small set sizes.

This indicates that these three operations are all cognitively “basic,” part of the conceptual

core that children are born with or acquire very early in childhood. The inclusion of all

three of these operations represents an important assumption of the model, since excluding

22The subset of lambda calculus we use is not Turing-complete, though it may not halt. It would be simple
to modify our learning setup to include untyped lambda expressions, making it Turing-complete.
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some would change the inductive bias of the model and lead to a different developmental

pattern.

Thus, the model presented here formalizes and tests assumptions about core cognitive

domains by the primitives it includes in the LOT. Importantly, the core set operations must

interface with basic operations in other domains. The ability to compute singleton? is only

useful if it can be combined with an ability to use the result of applying singleton? to a set.

This requires a representational system which is powerful enough to operate meaningfully

across domains. The LOT we use contains several of these cross-domain operations: for

example, L maps a set to a word, transforming something in the domain of sets to one

in the domain of number words. The primitive equal-word? transforms something in the

domain of words to the domain of truth values, which can then be manipulated by logical

operations. The model therefore demonstrates that core cognitive operations can and must

be integrated with general computational abilities and learning, potentially through a LOT.

As future work elaborates our understanding of children’s cognitive capacities, this class of

model can provide a means for exploring how different abilities may interact and support

learning.

2.5.8 Further puzzles

There are several phenomena in number learning which further work is required to under-

stand and model.

First, since our model is not intended to be an algorithmic theory, it leaves open the

question of why learning number takes so long. This is puzzling because there are many

instances in which children learn novel words relatively quickly (Heibeck & Markman,

1987; Carey & Bartlett, 1978). It is possible that it takes so long because children’s space

of possible numerical meanings is large, and the data is consistent with many different

hypotheses—as in this model. The difficulty with learning number words may even point

to algorithm theories under which children stochastically search or sample the space of

hypotheses (Ullman et al., 2010), as we did with the model. Such an algorithm typically

considers many hypotheses before arriving at the correct one.
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A second puzzle is to formalize the role of counting and its relationship to the abstract

principles of counting (Gallistel & Gelman, 1992; R. Gelman & Gallistel, 1978). We sug-

gested that counting may play a role in helping to evaluate LOT expressions, but this would

require a level of meta-reasoning that is not captured by the current model. Even subset

knowers appear to understand that in specific circumstances, counting can be used to de-

termine cardinality, although it is not clear how able they are to generally use counting

(Sarnecka & Carey, 2008). It may be that the knowledge of when and how to count is

initially learned as a pragmatic—not numerical—principle, and children have to discover

the relationship between counting behavior and their system of numerical representation.

Future work will be required to address counting and understand how it might interact

with the types of numerical representations presented here. Additionally, it will be impor-

tant to understand the role of social and pedagogical cues in number learning. These are

most naturally captured in the likelihood function of the model, perhaps by increasing the

importance of certain socially salient data points.

The model we have presented assumed that number word meanings are exact: “two” is

true of sets containing exactly two elements, and not more. In natural language use, though,

numerals can often receive an interpretation of at least: if there are six professors named

“Mark,” then it is also true that there are three named “Mark.” There is some evidence that

children’s meanings of numbers are exact (Papafragou & Musolino, 2003; Barner, Chow, &

Yang, 2009; Huang, Snedeker, & Spelke, 2004), in which case the exactness assumptions

of the model would be justified. This leaves open the question of how children learn the

scalar implicatures common in numerical meanings, and how such pragmatic phenomena

relate to pragmatics in other determiners and language more generally. One way to capture

this would be to modify the likelihood to include pragmatics, or perhaps even to learn the

correct form of the likelihood—learn how number words are used. On the other hand, it

may turn out that early number words meanings are not exact (Barner & Bachrach, 2010).

If this were true, one could construct a model very similar to the one presented here, but

modify the primitives to non-exact versions. For instance, singleton? would change to at-

least-singleton? and would be true of sets of cardinality one or greater. Such a system

might require pragmatic factors to be included in the likelihood, and could be used to
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explore learning patterns assuming non-exact operations as primitives.

Another key question is how children make the mapping between approximate nu-

merosity (Feigenson, Dehaene, & Spelke, 2004; Dehaene, 1999) and their counting routine.

One way the representations of continuous quantity could interface with the representations

assumed here is that continuous quantities may have their own operations in the LOT. It

could be, for instance, that children also learn a compositional function much like the CP-

knower hypothesis which maps approximate set representations to approximate number

words, and this process may interact with the LOT representations of exact number.

2.6 Conclusion

In number acquisition, children make one of their most elegant inductive leaps, suddenly

inferring a system of numerical competence which is, in principle, infinitely productive. On

the surface, generalization involving such a simple conceptual system is puzzling because it

is difficult to see how such a leap might happen, and in what way children’s later knowledge

could go beyond their initial knowledge.

The model we have provided suggests one possible resolution to this puzzle. Chil-

dren’s initial knowledge may be characterized by a set of core cognitive operations, and

the competence to build a vast set of potential numerical systems by composing elements

of their representational system. The hypothesis space for the learner might be, in prin-

ciple, infinite, including many types of Mod-N systems, singular/plural systems, even/odd

systems, and other systems even more complex. We have shown that not only is it theo-

retically possible for learners to determine the correct numerical system from this infinity

of possibilities, but that the developmental pattern such learning predicts closely resembles

observed data. The model we have proposed makes sense of bootstrapping, providing a

way of formalizing the roles of key computational systems to explain how children might

induce natural number concepts.
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Chapter 3

Quantifiers and the learnability of

language1

3.1 Introduction

In learning language, children achieve a remarkable feat. They come to representations

that support an extraordinarily intricate and productive system for communication, involv-

ing multiple aspects of meaning and complex subtleties. They do this from seemingly

impoverished evidence, arriving at a linguistic system that appears to go beyond what is

directly observable in their input. This is especially striking in children’s acquisition of

function words like “the,” “both,” and “and.” Content words—which map onto objects and

actions—are plausibly learned through tracking co-occurrences between words and things

in the world, perhaps using a sufficiently powerful cross-situational word-learning model

(Siskind, 1996; Vogt & Smith, 2005; Yu & Ballard, 2007; Yu & Smith, 2007; Frank et

al., 2007a). But function words do not correspond to any plainly observable perceptual

phenomena and express their meaning only through combination with other words. They

therefore embody two of the most challenging, interesting, and fundamental aspects of

language learning: abstractness and compositionality.

Indeed function words appear as a striking gap in most theories of language learning,

with little to no attention from statistical approaches, and relatively incomplete and non-

1This work is joint with Noah D. Goodman and Joshua B. Tenenbaum.
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computational (non-implemented) nativist theories. Even for a maximally nativist theory

under which all function word meanings are innately specified, children still face a problem

of mapping them to their corresponding arbitrary phonetic forms. As we show, this is no

easy task.

Because function word meanings are abstract and compositional—yet likely must be

inferred from impoverished and non-explicit evidence—they provide a clear case for inte-

grating structured representations with statistics: structure is needed to explain adult com-

petence, and statistics is needed to explain learning. Here, we develop a statistical model

of one interesting and representative class of function words: quantifiers. We present a

model that can use naturalistic data to infer rich lexical meanings for quantifier meanings,

including literal meaning and presupposition. We use the model to study the learnability

of quantifier meanings, and show that our approach provably learns the adult meanings,

using only positive evidence if necessary. We use the model to evaluate claims about the

utility of various constraints on these meanings, and the potential role of negative evidence.

We then relate the learning model to developmental data, arguing that broad patterns in the

acquisition of these words can be captured by the types of inductive methods we propose.

3.2 Learnability and quantification

At first pass, the inductive problems faced by language learners seem perplexing. Perhaps

the most-cited formal result about language learning is Gold (1967), who demonstrated

conditions under which even very simple classes of formal languages cannot be identified

by idealized learners (see K. Johnson, 2004; Bertolo, 2001). Gold’s theorem shows how,

in the worst case, learners could receive infinitely many positive examples of utterances

from a formal language L , and never be able to identify that L was the correct target lan-

guage. This was taken to be relevant to natural language since natural languages seem to

satisfy necessary assumptions for Gold’s theorem to apply—in particular, language learn-

ers appear not to receive negative evidence, explicit instruction about what constructions

are not grammatical (Braine, 1971; Marcus, 1993; Brown & Hanlon, 2004)2. Gold’s theo-

2Though see Pullum and Scholz (2002).
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Figure 3-1: The representation of “every” or “all” (a) and “some“ (b) in Clark (1998)’s
learning model.

rem therefore provides a puzzle for the study of language acquisition (Wexler & Culicover,

1983; Osherson, Stob, & Weinstein, 1984): how might children learn language if many

languages cannot even be identified in theory by the available evidence? One approach to

resolving this dilemma is to build in sets of innate constraints, supposing that the major task

for children during acquisition is to determine the correct way of setting simple parame-

ters that capture cross-linguistic variation (Wexler & Culicover, 1983; Niyogi & Berwick,

1996; Gibson & Wexler, 1994; Sakas & Fodor, 2001; J. Dresher & Elan, 1990; B. Dresher,

1999; Yang, 2002; Fodor, 1998b; Kohl, 1999). These approaches have typically posited

rich sets of language-specific rules and constraints, and simple learning mechanisms that

change states of a grammar depending on patterns in the input. However, in thinking about

quantifier meanings, it is not clear that any simple acquisition theory based on, for instance,

parameter setting is sufficiently powerful: the meaning of quantifiers (and function words

in general) requires computation and semantic composition. Learners must therefore con-

sider potential quantifier meanings to be some space of computational devices, consisting

of at least those present in natural languages. This search through the space of computa-

tional representations is likely much harder than, for instance, a search through grammati-

cal parameters would be (e.g., Gibson & Wexler, 1994), and is made especially difficult by

the fact that such function words are not captured by easily perceptible phenomena in the

world, like objects, properties, and events.

As a result, quantifier learning has previously been studied using tools from computabil-

ity theory. Quantifier meanings can be associated with computational devices of varying

degrees of complexity theoretically, ranging from finite-state automata, to more complex

computational devices like pushdown automata (van Benthem, 1984, 1986; M. Mostowski,
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1998; Tiede, 1999; Florêncio, 2002; Gierasimczuk, 2007). This basic approach builds on

computational ideas developed by van Benthem (1984), who noted that the computations

required by many quantifiers—in particular, those like “every” and “some” that can be

written in first-order logic—can be captured by finite-state automata (for extensions up the

automata hierarchy, see M. Mostowski, 1998). The meaning of “every” can be captured

by a finite-state machine like that shown in Figure 3-1(a). Here, a language user wishing

to check if “every A is B” would start in the double-circled state true and proceed to look

at elements of A. Each element a ∈ A is processed and if it is an element of B, a 1 link is

followed; if it is not, a 0 link is followed. Thus, as long as every element in A is in B, the

learner will stay in the true state; otherwise they will fall inextricably into the false state.

A similar example for “some” is shown in Figure 3-1(b), only here one positive example is

enough to change the automaton permanently to an accepting state.

Clark (1996) presents a detailed account of quantifier acquisition based on finite state

models, and provides similar automata for even more complex meanings, such as “none,”

“at least two,” and “an even number of” (see also Clark, 2010). By formalizing meanings

as finite-state automata, Clark is able to apply learnability results for regular languages

(Angluin, 1987) to show that first-order quantifiers3 can be learned jointly using positive

and negative evidence. Unfortunately, this approach requires the adults to provide explicit

counterexamples for the learner, perhaps an unrealistic expectation since it involves know-

ing the learner’s hypothesized meanings. These results were extended by Tiede (1999),

who showed that first-order left increasing monotonic quantifiers are identifiable in the

limit (i.e. Gold-learnable) from positive evidence alone4. Not all first-order quantifiers are

identifiable in the limit from positive evidence: Tiede shows that quantifiers that are left

decreasing (e.g., “few”) monotonic, right increasing monotonic (e.g., “several”), or right

decreasing monotonic (e.g., “no”) do not come with guarantees of learnability5. Florêncio

3Those which can be expressed in first-order logic; not, e.g., “most.”
4Left increasing monotonic quantifiers are those quantifiers Q such that (QAB)→ (QA′B) where A ⊆ A′.

In other words, quantifiers that, if true, can generalize to any more inclusive first set. For instance, “several”
is left-upward-monotonic since if “several angry lawyers are fools” is true, then “several lawyers are fools”:
by increasing the size of the first set from “angry lawyers” to “lawyers,” we do not make the sentence false.
Note that this is not true for “few”: “few angry lawyers are fools” does not imply “few lawyers are fools.”

5Tiede also shows how all quantifiers with a certain form in Presburger arithmetic are learnable in the
limit.
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(2002) extends these results to what he argues are “psychologically plausible” restrictions

on learning algorithms, such as algorithms that do not care about the order of sets or only

change hypotheses when they are incorrect.

While these results have mapped out the space of learnability for some quantifiers in

a mathematically sophisticated way, this general approach is lacking in several important

respects. First, these learning theories only apply to subsets of natural language quantifiers

(for instance, the left-upward-monotonic ones), yet a full learning theory should handle at

least everything observed in natural language. In addition, it is not clear how these learn-

ing frameworks might be extended to handle noisy evidence. In the case of quantifiers, this

means perhaps incorrectly identifying the relevant sets, and also occasionally hearing quan-

tified expressions which are false. The learning theories are not implemented, meaning that

it is unclear if the amount of data required to learn quantifier meanings is at all plausible.

These accounts are disconnected from data, as the authors do not use them to make empir-

ical predictions, much less explain developmental phenomena. The correct learning theory

should ideally predict the developmental trajectory of learning, including the types of er-

rors that children make. These theories only capture literal meanings and to our knowledge

have not been extended to other aspects of meaning, such as presupposition. Relatedly,

these learning theories use representations which are wholly unlike anything else used

in semantics. Finite-state machines are standard computational formalisms, but it is not

clear how they relate to more standard machinery of linguistic theories like lambda expres-

sions; indeed, the choice of these representations—though mathematically elegant—seems

largely ad hoc. Finally, these approaches typically do not explicitly address or discuss what

we see as one of the most interesting and challenging aspects of learning semantics from

noisy positive evidence, the subset problem.

3.2.1 The subset problem in semantics

The subset problem is that learners may incorrectly infer and under-restrictive word mean-

ing, and positive data cannot provide direct evidence that they have done so. For instance,

SOME is logically weaker than EVERY: every time “Every accordion is heavy” is true it
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is also true that “Some accordion is heavy.” This means that if at any stage of acquisi-

tion, children incorrectly guess that “every” has the denotation of “some,” then positive

evidence would never lead them to change their mind. This problem appears in many areas

of language acquisition including syntax (Wexler & Manzini, 1987; Berwick, 1985) and

and phonology (Smolensky, 1996; Hale & Reiss, 2003).

The subset problem also appears in learning compositional semantic structures. Crain,

Ni, and Conway (1994) discuss the ambiguous sentence, “The big elephant eats only

peanuts.” This could either mean, (i) the only thing the big elephant does is eat peanuts,

or (ii) the only food the big elephant eats is peanuts. Importantly, in any context where (i)

is true, (ii) is also true: if all the elephant does is eat peanuts, peanuts must be the only

food it eats. Crain et al. (1994) discuss the subset problem that this poses: if learners ini-

tially thought meaning (i) was not permissible but (ii) was, no positive evidence could ever

compel them to accept (i). This is because they would never have a truth-functional reason

for extending their meaning to include interpretation (i) since learners who interpreted the

meaning as (ii) would already think the utterance was true6.

In these domains—syntax, phonology, and compositional semantics—one proposed so-

lution is the subset principle, which holds that learns should have a strong innate bias for

logically stronger hypotheses (Wexler & Manzini, 1987; Berwick, 1985; Smolensky, 1996;

Crain, 1992, 1993; Crain & Philip, 1993; Gualmini & Schwarz, 2009; Crain & Thornton,

2000; Crain et al., 1994; Musolino, 2006). Positive evidence then compels learns to move

to logically weaker hypotheses. In the case of “every” and “some,” learners’ initial state

would be to prefer the correct meaning of “every” for both words, and then uses in other

context would eventually show them that “some” has its logically weaker meaning. In

Crain et al. (1994)’s example, learners would innately prefer interpretation (i) and it would

take positive evidence to convince them that (ii) must also be possible.

This theory requires learners to have a very specific initial state with meanings or hy-

potheses ordered by logical strength. Innately preferred specific meanings are then broad-

6Another possibility that has been suggested is that positive evidence is enough to solve the subset problem
for sufficiently sophisticated learners. Gualmini and Schwarz (2009) argue that other syntactic and semantic
principles can resolve the learnability problems with these types of sentences and others, although it is not
clear that a similar approach could be applied to the case of quantifiers or verbs discussed above. Musolino
(2006) argues the problem does not exist in the first place.
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ened to a more inclusive hypothesis in order to explain observed data. Unfortunately, even

within quantifiers, it is not always possible to order hypotheses by logical strength, as with

“most” and “many.” Subset principle learning does not provide an account of how learn-

ers sort out these types of word meanings, which cannot be ordered by logical strength.

Additionally, the subset principle approach seems much less plausible when one considers

that the subset problem is faced even more generally in acquisition—for instance, in learn-

ing lexical semantics. Surely learners do not have an innate specification that PUSHING is

more specific than TOUCHING, GREYHOUND is more specific than DOG, etc. Perhaps more

problematic is that the subset principle appears unable to handle noisy input because it im-

plicitly formalizes an irreversible process. Once learners come to think that a word means

SOME, no (positive) evidence can ever convince them that it really meant EVERY. But oc-

casionally learners will receive incorrect evidence—for instance, hearing “every scientist

is an accordionist” in a context where it is untrue, but “some” is true. How might learn-

ers deal with this problem? Strictly taken, the subset principle holds that learners should

change their meaning of “every” to SOME, since EVERY is now no longer consistent with

their evidence. A related problem, the “triggering problem” (Borer & Wexler, 1987), is

that these types of accounts must explain why observed data often does not quickly change

learners’ hypotheses. One can imagine versions of the subset principle to solve both of

these problems, where learners have some threshold for the amount of evidence required

to change their meaning. To our knowledge such a system has never been formalized or

shown to learn correctly.

Finally, the subset principle appears to make falsified predictions about learning trajec-

tories in learning semantics. Musolino (2006) reviews some predictions of the semantic

subset principle that fail in experiments. For instance, sentences such as “Every student

can’t afford a new car.” could mean either (i) for each student s, s cannot afford a new

card, or (ii) it is not the case that every study can afford a new card. Since (i) implies (ii),

the subset principle implies early learners should interpret the sentences as (i), not (ii); but,

the opposite is true (Musolino, Crain, & Thornton, 2000). Similar incorrect predictions

can be found in studies of word learning. Xu and Tenenbaum (2007) presented children

with examples of objects chosen from either subordinate (dalmatian), basic-level (dog), or
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superordinate (animal) categories. In the context of the subset problem, children must have

some way of discovering that “dalmatian” does not mean DOG and “dog” does not mean

ANIMAL. One way to test the predictions of a learner who uses the subset principle is to

look at conditions where evidence is provided that is only consistent with the subordinate

level category, the most specific generalization children could make. Xu and Tenenbaum

(2007) find that children shown one example of the subordinate level category generalized

its label to higher level categories 31% of the time in one experiment and 40% of the time

in another. In other words, 31-40% of the time children do not make the most specific

generalization from data that is possible. With 3 examples from the subordinate level cate-

gory, generalization to the basic level category dropped to 13% in one experiment, and 6%

in another, showing that children were sensitive to the amount of data as well. Note that

this differential pattern of generalization with only positive evidence is not predicted by the

subset principle. Subset-principle learners should, from the earliest amount of evidence,

make the most specific generalizations, and this pattern should not change as additional

consistent evidence is provided.

We take the above arguments as compelling problems with using the subset principle

to solve the subset problem in language acquisition. It requires a complex innate set of

language-specific hypotheses and computations, is not clearly able to handle noisy data,

and appears to make already falsified predictions. Moreover no implemented models exist

demonstrating the computational tractability and theoretical soundness of these proposals.

However, the subset principle does motivate the appealing intuition that more specific

hypotheses should be preferred when they are right. A learner should dis-prefer for “ev-

ery” to mean SOME because it makes the incorrect, broad prediction that “every” should

be a possible option in all situations where “some” is. We capture this intuition in a prob-

abilistic model described in the next section. In contrast to subset-principle proposals, our

proposal draws on potentially domain-general techniques to solve the subset problem: the

subset problem is solved by any model which engages in statistically sound reasoning. We

additionally show this model is provably learnable from arbitrarily noisy data, and does

not require specific innate ordering of hypotheses. We apply these techniques to learning

quantifier meanings, but they are considerably more general, applicable in theory to subset
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problems in syntax and phonology as well.

3.3 Learning quantifiers

We begin our approach to quantifier learning by first articulating the types of representa-

tions learners must eventually acquire. We are motivated by the types of representations

often posited in semantic theories, since these constitute our “best guess” for adults’ knowl-

edge of quantifier meanings. However, like all models, our target meanings are a simpli-

fication. They are intended to capture many of the most interesting aspects of quantifier

meanings.

The most basic assumption we make in this paper is that learners express hypothe-

ses about word meanings using a language of thought (LOT) (Fodor, 1975), a structured

representational system in which complex semantic representations are built by compos-

ing a small set of cognitive primitives. There are several motivations for this approach.

First, semanticists often express word meanings using a structured, compositional repre-

sentation system (e.g., Montague, 1973; Heim & Kratzer, 1998; Steedman, 2000), because

doing so allows complex word meanings to be formalized precisely in terms of simple,

known, and well-defined logical operations. Second, as we show, a compositional repre-

sentation system provides a compelling account of learning: learning consists of appro-

priately combining (composing) simpler logical capacities. This type of system need not

be language-specific and indeed has been proposed to explain learning and development

in other domains, including kinship relations (Katz et al., 2008), abstract relational con-

cepts (Kemp et al., 2008a), boolean rule-based concepts (Goodman et al., 2008), lexical

semantics (Siskind, 1996), number-word acquisition (Piantadosi, Tenenbaum, & Good-

man, submitted), compositional semantics (Zettlemoyer & Collins, 2005; Kwiatkowski et

al., 2009; Piantadosi et al., 2008), intuitive notions of causality (Goodman et al., 2009), and

magnetism (Ullman et al., 2010).

Given that we posit learners acquire representations consisting of logical expressions

“built” out of conceptual primitives, there are three aspects of quantifier meanings that

our learning model aims to acquire: literal meaning, presupposition, and word production
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probability.

Literal meaning

We follow Heim and Kratzer (1998) in supposing that to a first approximation, the literal

meaning of quantifiers can be captured with generalized quantifiers, logical operations that

denote relations between sets (see also Montague, 1973; Barwise & Cooper, 1981; Keenan

& Stavi, 1986; Keenan & Westerståhl, 1997)7. For instance, a sentence like “Some reporter

is a liar” might be mapped to a logical expression like

(nonempty? (intersection reporters liars)). (3.1)

Throughout this paper we use prefix notation, meaning that a function f applied to an ar-

gument x is written (f x). Expression (3.1) is an expression that says that the intersection

of the set of reporters and liars is not empty. It is built using two logical operations: in-

tersection computes the set-intersection of its arguments, and nonempty? checks if a set is

not empty8. To arrive at such a meaning, comprehenders, for instance, would hear “Some

reporter is a liar,” parse the sentence and use their compositional semantics to appropriately

compose the word meanings in the sentence to arrive at (3.1). Simple formalized systems

for this type of language understanding can be found in Blackburn and Bos (2005); detailed

linguistic accounts can be found in Heim and Kratzer (1998) and Steedman (2000)9. In a

very simplified system, “reporters” would map to the set of reporters, “liar” would map to

the set of liars, and “some” would have a special denotation, a function of two sets:

λ A B . (nonempty? (intersection A B)). (3.2)

7We note that this is a nontrivial assumption, but see Heim and Kratzer (1998) for arguments that this
is indeed a good way to characterize quantifier meanings. Learning that quantifiers denote these types of
meanings is not addressed here.

8In standard set-theoretic notation this would be reporters∩ liars 6= /0; in first-order logical notation it
might be written ∃x.reporter(x)∧ lied(x). We use prefix notation keeping in line with previous work (e.g
Piantadosi et al., submitted; Piantadosi, Tenenbaum, & Goodman, 2009), and the computer-programming
language scheme, which we use to implement these models.

9Here, we will focus only on the meaning of the quantifier and not how it compositionally combines with
other words, though see Piantadosi et al. (2008) and Zettlemoyer and Collins (2005) for theories of learning
compositional structures.
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This notation, lambda calculus, provides a convenient formalism for expressing functions.

Here, “λ A B .” denotes that the expression after the period is a function of the variables A

and B. The compositional semantics of English would have to pass reporter for “reporter”

as the argument A, and lied as the argument B in order to arrive at (3.1). Many quantifier

meanings can be written down as lambda expressions like this that take two sets and return

a truth value. For instance, “every” might be denoted

λ A B . (subset A B) (3.3)

where subset is a function which is true if the first set is a subset of the second. “No” (or

“none of the”) might be written as

λ A B . (empty? (intersection A B)). (3.4)

We note that we could have written down each of the above quantifiers in first-order logic,

using ∀ and ∃. The use of set-theoretic operations is motivated by other quantifiers mean-

ings which provably cannot be expressed in first-order logic (A. Mostowski, 1957; Barwise

& Cooper, 1981). For instance “most” cannot be written down using ∃ and ∀, intuitively

because “most” requires comparing potentially arbitrarily large cardinalities (“Most A are

B” if there are more As that are B than those that are not), but a finite expression in first-

order logic can only manipulate finitely many cardinalities. However, it can be expressed

very naturally with set-operations:

λ A B . (card> (intersection A B) (set-difference A B)) (3.5)

where card> is a function that compares the cardinality of its first argument to the car-

dinality of its second. This formal insufficiency of first-order logic for natural language

semantics is a deeply interesting and nontrivial property of human language—language

apparently involves rich and complex types of quantification. This move from first-order

logical operations, which have no explicit notion of number or cardinality, to set-based rep-

resentations with cardinality operations seems to fit with evidence that the interpretation of
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quantifiers draws on neural systems for processing number (McMillan, Clark, Moore, De-

vita, & Grossman, 2005; McMillan, Clark, Moore, & Grossman, 2006; Clark & Grossman,

2007), although there may be differences between quantifiers which can and cannot be

written down in first-order logic (Troiani, Peelle, Clark, & Grossman, 2009; Szymanik &

Zajenkowski, 2010).

We note that for “most” and all the other quantifiers studied here, there are many equiv-

alent ways of writing their meanings. Alternative formalizations, when treated as explicit

theories of the computational processes underlying these word meanings have been argued

to give rise to different behavioral hallmarks (Hackl, 2009; Pietroski, Lidz, Hunter, & Hal-

berda, 2009), but these distinctions will not be addressed in this work.

Presupposition

The second aspect of quantifier meaning is presupposition, which captures the assumptions

that are required for a statement to receive a truth value (see Heim & Kratzer, 1998, section

6.7, for an overview). Our primary representational choices build off proposals in semantics

and philosophy of language dating back to B. Russell (1905) and Strawson (1950)10, who

argued about the correct way to handle presuppositions in the definite determiner, “the.”

Russell argued that the meaning of sentences like “The A is B” asserts that A is true of

exactly one element and that element is in B. In other words “The accordionist is cooking”

is true if and only if there is exactly one accordionist and that accordionist is cooking.

This proposal captures the notion that “the” can only be used in situations where there

is a unique referent. However, as argued by Strawson (1950), this account is lacking in

that it seems to assign truth values to sentences which intuitively may not even have truth

values. Strawson’s sentence, “The present king of France is bald” would be strictly false

under Russell’s account, since it is not true that there is exactly one present king of France.

Strawson argues that our intuitions really say this sentence does not have a truth value

(see also B. Russell, 1957; Von Fintel, 2004). Strawson argues that sentences like “The

present king of France ... ” presuppose the existence of a king of France, rather than assert

10We do not wish to get bogged down in the details of the semantic analyses of these words, or the large
philosophical and linguistic literature devoted to more thoroughly developing theories of semantics, refer-
ence, and presupposition; for a detailed description, see (see Ludlow & Neale, 2008).
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it. That is, in order for such sentences to be true or false, there must exist a present king

of France. If there is no king of France, the sentence is neither true nor false. Indeed,

violations of such background assumptions appear to have different behavioral hallmarks

than truth-value violations of asserting something false (Langford & Holmes, 1979).

Such presupposed meanings are an important aspect to the semantics of many quanti-

fiers. For instance, in a situation where there is exactly one sailor, it is bizarre to assert

“Both sailors are happy.” (3.6)

regardless of whether the one sailor is happy. Sentence (3.6) appears to require as part of its

background assumption that there are exactly two sailors, and it is difficult to say whether it

is strictly true or false if there are not exactly two. Moreover, if there were two sailors, the

background assumptions do not intuitively change if the sentence is negated—in contrast

to literal meaning: “It is not the case that both sailors are happy” still assumes there are two

sailors.

Representationally, we can capture presuppositional aspects of meaning by assuming

that semantic representations have two parts: the presupposed content and the asserted

content (see Karttunen & Peters, 1979; Heim, 1991). For instance, “the” would presuppose

exactly one element in A, and assert that the element of A is in B. In this case, both the

presupposed and asserted content can be expressed as lambda expressions:

Presupposed λ A B . (singleton? A)

Asserted λ A B . (nonempty? (intersection A B))

Here, singleton? is a function which is true if given a set of size one, a singleton. In

principle these two aspects of meaning could be combined within one single LOT expres-

sion. For instance,

λ A B . (presup (singleton? A) (nonempty? (intersection A B))) (3.7)

where presup is a function which returns undefined if its first argument is false, and it
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returns its second argument if the first argument is true. Here, we choose to separate these

two aspects of meaning because the probabilistic model we present will need access to

both the presupposed and asserted aspects of meaning, allowing us to separately evaluate

the learning of each.

Probability of production

Not all true and presuppositionally valid quantifiers are equally appropriate in each situa-

tion. For instance, in every situation where “a” is true, “the” is also true: if “the mayor

is cheating” then “a mayor is cheating.” However, it is intuitively somewhat odd to use

“a” in this situation when “the” is true. Heim (1991) proposed explaining these types

of intuitions—and others that are unrelated to quantification—with a pragmatic principle

known as maximize presupposition. This principle holds that all else being equal, speak-

ers will prefer utterances with the strongest presuppositions (see also Sauerland, 2003;

Schlenker, 2006; Singh, 2009). For instance, since “the” presupposes exactly one, it will

be uttered over the presuppositionally weaker “a” when both are true. This intuitively

captures something very similar to Grice (1975)’s maxim to be informative, except that

maximize presupposition is argued to be valid even when the quantifiers convey the same

amount of information.

Maximize presupposition provides an interesting challenge for computational learning

theories. Even if maximize presupposition is assumed to be known to young learners,

they would still have to be able to correctly score the probability that an adult with their

grammar would have produced the utterances they observe. This would involve comput-

ing the relative logical strength of any of their hypothesized expressions, which is likely

to be extremely costly—if not uncomputable—depending on the space of primitives in

their representations. This means that fully implementing maximize presupposition on an

unrestricted space of meanings is likely untractable, both for children and computational

models. Worse still, if learners do not know maximize presupposition, they would addi-

tionally have to find this principle from some larger space of principles, which would make

learning substantially harder.

An alternative to maximize presupposition—or other explicit principles in pragmatics—

78



is to assume that each word’s probability of production is lexicalized. Here, we assume that

learners store a single number, a weight, for each word that quantifies how likely that word

is to be uttered when it is true. For instance, “the” would have a higher weight than “a”

so that whenever both are true, “the” is more likely to be uttered. Speakers in this sys-

tem only need to “look up” a word’s weight in order to determine what is most likley to

be said, and learners would only need to search through weights. This system is chosen

here for reasons of computational tractability, and for the right settings of the weights, it

is possible to emulate any other measure on words. However, it is not unreasonable to

think that real language-processing systems might work this way, also for reasons of com-

putational tractability11. It will be informative for future work to study the way in which

abstract principles like maximize presupposition might be learned, and the ways in which

early knowledge of pragmatics—through explicit principles or lexicalized weights—affects

learning trajectories.

3.3.1 The target space of meanings

Given the above three aspects of meaning, we can define a lexicon to be a mapping from

words to literal meanings, presuppositional meanings, and weights. To our knowledge,

previous learning models have not tackled the complexity of learning these multiple aspects

of meaning, simultaneously and for a plausible set of function words. Figure 3-2 shows the

target set of words the learning model will acquire. The general learning setup is that

learners hear utterances like “All A are B” in some context containing a set of objects,

and must use the cross-situational occurrences to infer the best lexicon. The details of this

statistical inference are described in the modeling section.

For this target lexicon we chose eight words that differ on their literal meanings and

presuppositions. The specific meanings and presuppositions in Figure 3-2 are meant to

provide an interesting approximation to English, but available data does not distinguish

between this grammar and close alternatives. For instance, the literal meaning of “the”

11In other words, this can be taken as a hypothesis for how learners “implement” maximize presupposition.
Lexicalized word weights could be experimentally distinguished from principles like maximize presupposi-
tion by teaching people a novel quantifier and seeing if it is used in accordance with maximize presupposition
from the start, or whether people would also need to learn its probability of production.
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Word Presupposition Literal meaning Weight
the λ A B . (singleton? A) λ A B . (singleton? (intersection A B)) 1000
a λ A B . (nonempty? A) λ A B . (nonempty? (intersection A B)) 100

two λ A B . (nonempty? A) λ A B . (doubleton? (intersection A B)) 250
both λ A B . (doubleton? A) λ A B . (doubleton? (intersection A B)) 25
every λ A B . (nonempty? A) λ A B . (subset? A B) 10
most λ A B . (nonempty? A) λ A B . (card> (intersection A B) (set-difference A B)) 1
none λ A B . (nonempty? A) λ A B . (empty? (intersection A B)) 1

neither λ A B . (doubleton? A) λ A B . (empty? (intersection A B)) 1

Figure 3-2: Target quantifier meanings for the learning model.

might be captured with either λ A B . (singleton? (intersection A B)) or λ A B. (nonempty?

(intersection A B)). In this table, the meanings for “a” and “every” could alternatively

mean “some” and “all” and learning to distinguish these respective pairs surely presents an

interesting problem, but this is not addressed here.

The “weights” in this table were set by hand to make the target lexicon approximate

English production frequencies of these words, on randomly generated sets of objects.

This makes the adult productions approximate English, and so the task for learners—who

do not know these weights—is as close as possible to learning English. Figure 3-3 shows

the probability (normalized frequency) of each word according to CHILDES, and when the

lexicon in Figure 3-2 is used to generate words. Using just a few different possible weight

the a every both neither two most none
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Figure 3-3: Word frequencies from CHILDES (MacWhinney, 2000) compared with
probability-of-mention according to the target grammar in Figure 3-4, when labeling ran-
domly generated sets. The model frequency distribution is used as the “adult” utterances
for testing the learning model.
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Nonterminal Expansion Gloss

START → λ A B . BOOL Function of A and B
BOOL → true Always true

→ f alse Always false
→ (total-intersection A B) The intersection of A and B exhaust the entire set.
→ (card> SET SET) Compare cardinalities (>)
→ (card= SET SET) Check if cardinalities are equal
→ (and BOOL BOOL) Boolean conjunction
→ (or BOOL BOOL) Boolean disjunction
→ (not BOOL BOOL) Boolean negation
→ (subset? SET SET) Is a subset?
→ (empty? SET) Is a set empty?
→ (nonempty? SET) Is a set not empty?
→ (singleton? SET) Contains 1 element?
→ (doubleton? SET) Contains 2 elements?
→ (tripleton? SET) Contains 3 elements?

SET → (union SET SET) Union of sets
→ (intersection SET SET) Intersection of sets
→ (set-difference SET SET) Difference of sets
→ (complement SET) Complement of a set
→ A Argument A
→ B Argument B

Figure 3-4: A grammar that generates quantifier meanings.

values allows us to approximate the observed word distribution so that we can study words

which occur with a range of frequencies spanning several orders of magnitude.

Each word in the adult “target” lexicon is written as a lambda expression that uses

set-theoretic primitives. For the learner, these lambda expressions can be modeled as being

generated from a grammar of concepts, corresponding to a fully productive, compositional,

representation language for expressing word meanings. Figure 3-4 presents a context-free

grammar to generate these expressions. To see how the grammar could generate an expres-

sion such as,

λ A B . (subset? A (complement B)), (3.8)

we first start with the START symbol. We then recursively expand nonterminals according

to the possible rules in Figure 3-4 until no more nonterminals remain. The only possible

way to expand START is to λ A B . BOOL, meaning we always will generate an expression

representing a function of two arguments, A and B. This function returns a boolean (BOOL)

since BOOL only expands to functions which return boolean values. For instance, a BOOL

can expand to (subset? SET SET), yielding the expression λ A B . (subset? SET SET). Here,

we can expand the first SET to A, and the second set to (complement SET), and expand this

last SET to B. This yields the full expression in (3.8).
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This grammar includes a number of primitive operations that manipulate logical values

(and, or, not), sets (union, intersection, set-difference, complement), small-set cardinalities

(singleton?, doubleton?, tripleton?), and which can relate properties of sets to truth val-

ues (subset?, empty?, nonempty?). We also include the ability to form trivial expressions

such as λ A B . true, and also include one special expression, λ A B . (total-intersection A

B) which is true if the intersection of A and B exhaust the entire context. The cardinality

primitives and special form of λ A B . (total-intersection A B) are motivated by the errors

that children commonly make. In particular, on Give-N tasks, children often respond from

a “base” distribution that is biased toward small cardinalities and biased towards respond-

ing with the entire set (Sarnecka & Lee, 2009; Lee & Sarnecka, 2010b, 2010a). That is,

Sarnecka and Lee show with a Bayesian data analysis that after controlling for numerical

knowledge, children’s chance responses can be modeled as coming from a distribution that

assigns small sets and the entire set large probability mass. This suggests that both small

set primitives, and representations of A and B exhausting the entire set should be concep-

tually preferred, which here means including these primitive functions. Inclusion of the

total-intersection rule in the grammar will be important later for explaining errors children

make with learning “every.”

There are a vast number of potential hypotheses that can be generated according to this

grammar. Some of these are relatively complex. For instance,

λ A B . (or (empty? (set-difference B A)) (not (doubleton? (intersection A B)))) (3.9)

is a quantifier which could be expressed in this language. This is true if all elements of A

are in B, or if the intersection of A and B does not contain exactly two elements. Of course,

one can also generate hypotheses like those necessary for natural language, including all

of those shown in Figure 3-2. The challenge for the learning model is to infer which

representations are best given some evidence. This inductive problem is formalized and

solved using a probabilistic model over the space of meanings defined by the grammar in

Figure 3-4. This approach is best understood in the context of program induction, an area

of machine learning which attempts to learn programs—here, lambda expressions—that
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generate observed data (e.g., Koza, 1992).

While our grammar for concepts defines a capacity for creating new representations,

the grammar is qualitatively unlike those typically posited as linguistic theories. First,

it requires no additional principles or parameters—the system is itself extremely simple,

only a context-free grammar. This means that the amount of information such a grammar

“builds in” for learners is very small. Second, this grammar uses only plausibly domain-

general primitives, and is highly overlapping with representational systems posited in other

domains, for instance, in learning the meaning of number words (Piantadosi et al., submit-

ted)12. This means that this approach potentially provides a simple unified way of under-

standing how learners acquire many types of structured conceptual systems in language.

3.3.2 Challenges for learning

To summarize, we have outlined several challenges for accounts of quantifier learning.

Most basically, quantifier meanings are abstract and the representational system that sup-

ports them cannot simply be based on associations between, say, words and objects or

events. It is also difficult to see how such meanings could be captured by simply remem-

bering previous instances, as in prototype or exemplar models. Instead, learners must have

some mechanism for representing and inferring unseen abstract relations between sets of

objects. Second, quantifiers have more than just a literal meaning. Each quantifier also

has assumptions it carries and different probabilities of being uttered in any situation, and

learners must have a mechanism to learn these meanings, and indeed to correctly distin-

guish presuppositions from literal meanings. The space of possible meanings—both pre-

suppositional and literal—is complex and rich, with word meanings potentially in subset

relations to each other. The evidence that children get is bound to be noisy—especially for

function words—since children may lack knowledge of the relevant content words, they

12The major exception to this is that the primitives here include operations for exact cardinality, the very
thing Piantadosi et al. (submitted) are trying to learn. The results from Pietroski et al. (2009) indicate that
these word meanings are expressed using the approximate, not exact systems—perhaps providing indirect
evidence for the claim of Piantadosi et al. (submitted) that exact meanings are constructed from other logical
primitives. Here, we choose to include exact meanings rather than approximate because it substantially
simplifies implementation of the model: approximate meanings return distributions (or samples from them)
on set cardinalities, but exact cardinality returns a single number. However, we expect that our learnability
results will generalize to representation systems that use approximate numerosity.
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may misunderstand the intended referents, or adults may occasionally say wrong or infe-

licitous things. It is therefore unrealistic to put hope in a theory that is irreversible, such as

the subset principle.

We aim to address all of these challenges with a fully implemented13 learning model

presented in the next section. This model formulates quantifier acquisition as a problem of

learning the correct LOT representation to describe observed quantifier usages. As we ar-

gue, this can solve all of the above problems learners face, providing a working hypothesis

for the representational and computational substrate that supports quantifier learning, and

perhaps function word learning in general. Our aim here is breadth—to show how learning

in a sufficiently powerful representation system can explain both the ability of children to

learn these word meanings at all, and the general types of errors they make. The details

of this account like depend on many factors we have simplified away, including memory,

other cognitive systems, syntax, and the precise nature of the input.

3.3.3 The probabilistic model

Here we present the learning model is a relatively abstract form by supposing that learners

must map an arbitrary set of words to an arbitrary set of meanings. We assume that there

is some collection of words w1,w2, . . . ,wk that the learner is trying to discover meanings

for. For the purposes of this section, this could be any set of words, even those that are not

quantifiers. We denote the meaning of word wi by mi, and the collection of all meanings

as m = (m1,m2, . . . ,mk). In the case of quantifiers, for instance, m5 might be the literal

meaning, presupposition, and word weight for the word “every”14. It might seem peculiar

that we are formalizing the learning of sets of words, rather than individual words. This

turns out to be an important part of a generative statistical model of language acquisition,

since the probability of a particular word or utterance can only be computed by using what

other utterances possibly could have been produced.

We will assume that the learner hears a sequence of uttered words u1,u2, . . . ,un each in

13Running code is available from the first author.
14The meanings need not necessarily be semantic—they could also include pieces of syntactic structure as

in, for instance, Combinatory Categorial Grammar (Steedman, 2000).
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a corresponding linguistic context ci. We will here consider the simplest case, where each

ui is only a single word from w1, . . . ,wk. This is equivalent to assuming that each wi occurs

in contexts containing only other known words. For instance, the parent might say “most

snakes are hungry animals”, with ui = “most” and ci = “ snakes are hungry animals”. In

our quantifier learning model, we assume children already know (or can guess) the mean-

ings of “snakes,” “are,” “hungry,” “animals,” and are trying to figure out the meaning of

“most.” However, the results we describe here could be extended to utterances of any form,

containing any number of unknown words.

If mi is a hypothesized meaning of wi, with m = (m1,m2, . . . ,mk), then we can write

using Bayes rule,

P(m | u1, . . . ,un,c1, . . . ,cn) ∝ P(u1, . . . ,un | m,c1, . . . ,cn) ·P(m). (3.10)

This equation says that the probability m is the correct set of meanings, given the ui and

ci, depends on two things. First, it depends on P(m), a prior probability on meanings.

The prior formalizes the expectations learners have about the correct meaning before any

data has been observed. In this paper, we do this by converting the grammar in Figure

3-4 to a probabilistic context-free grammar (PCFG) by supposing that each nonterminal is

equally likely to expand by any of its rules, except the rules that generate A and B, the ar-

guments to the function, are 10 times as likely than other rules. This probabilistic grammar

induces a probability distribution on expressions, assigning a probability to an expression

corresponding to how likely it is to sample jointly each of the rules required to generate

the expression. This assigns short expressions higher prior probability, corresponding to

the intuition that simple (concise) representations should be preferred a-priori by rational

learners (Feldman, 2000; Chater & Vitányi, 2003; Goodman et al., 2008; Piantadosi et al.,

submitted). This prior is similar to more sophisticated versions of rule-length priors devel-

oped in other work (Goodman et al., 2008). The prior on any set of meanings m can be

found by assuming that each was chosen independently from this PCFG. The up-weighting

of rules that generate A and B is necessary to ensure that the grammar does not generate

infinitely long expressions, and also to bias the learner to preferentially use the sets that are
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arguments to the function.

The other term in (3.10), P(u1, . . . ,un | m,ci, . . . ,cn), is the likelihood. The likelihood

measures the probability that u1, . . . ,un would be produced in their corresponding contexts

if m was the correct meaning. It makes sense to assume that each utterance ui depends on

m and ci, and is independent of the other utterances and contexts once m and ci are known.

This means that the likelihood can be rewritten as

P(u1, . . . ,un | m,ci, . . . ,cn) =
n

∏
i=1

P(ui | m,ci). (3.11)

In establishing learnability, it is important that learners know the correct form of the likeli-

hood, P(ui | m,ci), although they do not know the correct target meanings. Learners must

be able to say if a particular hypothesized set of meanings were correct, what the probabil-

ity of an utterance would be. Learners’ knowledge may be very weak: for our meanings,

part of the meanings m are the weights, which determine how likely each true word is to

be uttered. These weights need not be known to learners, so learners have to discover each

word’s probability of being uttered in each context. Instead, learners must only understand

the structure of this model—for any guess at the correct weights, adult utterances are typi-

cally chosen by sampling from the true and presuppositionally valid words, with probability

proportional to their weights. Our implementation is therefore Gricean: speakers tend to

say things which are true and relevant to the current context (Grice, 1975).

Formally, we will suppose that adults first choose with some probability αp whether or

not to say something which has met presuppositions. Assuming they do, then they choose

from the true words, proportional to their weights, with probability αt , and something at

random (proportional to its weights) otherwise. If the adult chooses not to say something

with a met presupposition, they choose from all words proportional to their weights. Thus,

two parameters αp and αt characterize the probability that true and presuppositionally valid

words are uttered. For simplicity we assume αp and αt are high and known to learners, but

neither of these is necessary for the learnability proof. To compute P(ui | m,ci) we must

sum over all the ways words could be generated. So if ui is true and presuppositionally
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valid in context ci, then

P(ui | m,ci) =
αp ·αt ·w(ui)

Wp∧t
+

αp(1−αt) ·w(ui)

Wp
+

(1−αp) ·w(ui)

W
. (3.12)

Here, w(ui) is the weight of the quantifier ui, according to the learner’s hypothesized mean-

ings m. Wp∧t is the sum of the weights of all true and presuppositionally valid words for

ci, Wp is the sum of all weights of presuppositionally valid words for ci, and W is the

sum of weights of all words. So, for instance, the second term is included because a word

could have been generated by choosing a word at random from the presuppositionally valid

words, ignoring truth values. This happens with probability αp · (1−αt), and generates the

word ui with probability w(ui)/Wp. To compute words which are either false or presuppo-

sitionally invalid, the corresponding terms from (3.12) are dropped. For instance, if ui is

not presuppositionally valid, only the last term in (3.12) is included since the word could

not have been generated by choosing from presuppositionally valid words, or true words.

Our learnability results do not depend on this specific choice of likelihood function, but we

use it here because it captures the notion that true and presuppositionally valid words tend

to be uttered.

Equation 3.12 embodies an important principle for Bayesian statistical learning: the

size principle (Tenenbaum, 1999). The size principle has been argued for in other models

of word learning (Xu & Tenenbaum, 2007; Piantadosi et al., 2008; Frank et al., 2007a;

Piantadosi et al., submitted), and here means that the probability that any particular word

ui is used in ci depends on the weight of the words which alternatively could have been

uttered15.

3.3.4 How the size principle solves the subset problem

To illustrate how the size principle solves the subset problem, it is useful to consider the

example of “every” and “some,” and suppose that they are the only words in the lexicon. For

simplicity, in this section, we also assume that αp =αt = 1, so that the only utterances under

consideration are true and presuppositionally valid. In this case, the likelihood P(ui | m,ci)

15This is why in Equation 3.11, the probability of ui depends on all of m, and not just mi.
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is only the first term of (3.12), which reduces to

P(ui | m,ci) =
w(ui)

Wp∧t
. (3.13)

The key is to look at the likelihood of observed instances of “some” when “every” means

SOME, compared to when “every” means EVERY. If “every” meant EVERY, then most of

the time it would not be true in a context where “some” was uttered, since it is logically

stronger. This means that it will typically be the case that

P(“some” | m,ci) =
w(“some”)
w(“some”)

= 1. (3.14)

since if “every” is not true, Wp∧t is only the weight of “some.”

In contrast, if “every” meant SOME, then the observed instances of “some” would be

less likely:

P(“some” | m,ci) =
w(“some”)

w(“some”)+w(“every”)
< 1, (3.15)

since now “every” would be true in all the situations where “some” is. Letting “every”

mean SOME decreases the likelihood of the observed instances of “some.” The reason for

this is intuitive: if “every” meant SOME, each instance of “some” would have to have been

sampled from two possible true utterances rather than just one. Analogously, in a sequence

of coin flips, ten heads in a row are more likely under a hypothesis of a coin with heads

on both sides, than a coin with heads on one side and tails on another. Intuitively if both

heads and tails were possible, the sequence of heads is less likely to occur; if “every” and

“some” could both be used in many contexts, the observed instances of “some” would have

to be less likely. Probability mass should not be held out for events that don’t occur. This is

an application of the size principle: hypotheses can assign the observed utterances higher

likelihood if they predict that fewer words are true in each context.

The size principle is similar to the subset principle proposed previously in that it prefers

meanings which are logically strong, or true less often. However, it differs from the subset

principle in the root cause of this preference. The size principle prefers meanings which

are true less often because they can assign the observed utterances a higher likelihood, all
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else being equal. In contrast, the subset principle puts the bias in the prior, assuming that

learner’s innate expectations lead them to prefer stronger logical meanings. This is unde-

sirable for a few reasons. First, it requires positing a rich set of innate logical orderings, a

claim which seems unlikely without strong empirical evidence. Second, it cannot handle

noise: an ideal learner will always use the data to arrive at the correct meaning, overwhelm-

ing any prior expectations. This means that enough misunderstood or noisy occurrences

will overwhelm any bias for logically stronger meanings in the prior. The advantage of

putting the preference in the likelihood is that it falls out very naturally by positing that

learners think about how language is generated. All they must realize is that utterances are

generated using a set of meanings, and that the total probability of all possible utterances

must sum to 1. In this sense, the size principle is a simple consequence of formalizing a

fully generative statistical model. One could imagine alternative models that, for instance,

set P(ui | m,ci) = α if ui is true, and 1−α if ui is false. Such a model is intuitive in penal-

izing incorrect meanings, but doesn’t specify a valid probability distribution and would fail

to solve the subset problem.

In the next section we show that this Bayesian framework is considerably more power-

ful than only solving the subset problem: it can always learn the correct set of meanings.

3.3.5 The Bayesian model is provably learnable

This section is meant to introduce a simple proof of the learnability of meanings in a

Bayesian framework. The proof is not novel—it is well-known that in the limit, the data

will support the correct model. We present it here because we hope to refine the debate

on learnability, moving away from questions of what is in principle learnable, to questions

of what can be learned by plausible computational models on realistic data. The proof is

different from, for instance, Chater and Vitányi (2007)’s very general proof of language

learnability in that it does not require Kolmogorov complexity (Li & Vitányi, 2008), and is

more obviously applicable to psychologically plausible representations like those we use

for quantifier meanings. Moreover, it explicitly formalizes the learning problem as one of

inferring unseen linguistic structures, rather than asymptotically matching the statistics of
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observed language.

To show learnability with this setup, we will consider the Bayes factor, a measurement

which quantifies the strength of belief an ideal learner should have for one model over an-

other (Jeffreys, 1998). The Bayes factor is simply the log ratio of the posterior probabilities

of two statistical models. In this case, one statistical model will be data generated with the

correct set of meanings, m̂. The alternative model will be any other set of meanings, m.

The Bayes factor in favor of m̂ is then given by

BF = log
P(m̂ | u1, . . . ,un,c1, . . . ,cn)

P(m | u1, . . . ,un,c1, . . . ,cn)
. (3.16)

The Bayes factor ranges from negative infinity (definitive support of m) to positive infinity

(definitive support of m̂), and equals zero when m̂ and m have the same posterior probability.

We will show that as the amount of data gets large, the Bayes factor in support of the

correct model over any alternative goes to infinity. Thus, with enough positive examples,

learners will accumulate an arbitrarily large amount of evidence supporting the correct set

of meanings.

Using Bayes rule, we can rewrite the Bayes factor as

log
P(m̂)P(u1, . . . ,un | m̂,c1, . . . ,cn)

P(m)P(u1, . . . ,un | m,c1, . . . ,cn)
. (3.17)

As above, we assume that each ui depends only on ci and is conditionally independent of

all other u j and c j ( j 6= i). In other words, each utterance depends only on the context it

occurs in and not any other utterances or contexts. This means that we can factor (3.17), as

log

[
P(m̂)

P(m)

n

∏
i=1

P(ui | m̂,ci)

P(ui | m,ci)

]
. (3.18)

which can be re-written to

log
P(m̂)

P(m)
+

n

∑
i=1

log
P(ui | m̂,ci)

P(ui | m,ci)
. (3.19)

This says that the Bayes factor can be re-written as the sum of the log ratio between the
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prior on m and m̂, a constant, plus the sum of the ratio between the likelihoods on each data

point. We are concerned with what happens for learners who get increasing amounts of

data generated from the correct model. This means that for each i, ui is chosen according to

the correct adult meaning, P(ui | m̂,ci). Clearly, as n gets large, the behavior of (3.19) de-

pends on the expected value of log P(ui|m̂,ci)
P(ui|m,ci)

under sampling utterances from the correct set

of meanings. If this term tends to be positive, then (3.19) will grow to positive infinity as n

gets large—increasing amounts of evidence will support the correct meaning m̂. This will

eventually overwhelm any effect of the prior log ratio log P(m̂)
P(m) , meaning that learners will

eventually assign m̂ the highest posterior probability. This would establish learnability be-

cause it would show that the correct model will eventually be preferred over any alternative

hypothesis.

The expected value of this term can be found by averaging or integrating over contexts

ci and utterances ui. Let’s assume that each context ci has a probability given by P(ci). In

ci, ui has a probability of P(ui | m̂,ci), since ui is generated from the adult grammar. Thus,

Eui,ci

[
log

P(ui | m̂,ci)

P(ui | m,ci)

]
= ∑

ci

P(ci)∑
ui

P(ui | m̂,ci) log
P(ui | m̂,ci)

P(ui | m,ci)
. (3.20)

A standard theorem in information theory and probability, known as the Gibbs inequality,

holds that

∑
x

A(x) log
A(x)
B(x)

> 0 (3.21)

if A and B are different distributions on elements x. A basic proof of this is provided in

Cover and Thomas (2006, Theorem 2.6.3) . This applies to (3.20), by letting A(ui) = P(ui |

m̂,ci) and B(ui) = P(ui | m,ci). Thus, for any ci the term ∑ui P(ui | m̂,ci) log P(ui|m̂,ci)
P(ui|m,ci)

> 0

meaning that the entire expected values in (3.20) is greater than 0. This means that on

average, the next data point provides support in favor of the correct meanings m̂. This

completes the proof, since it shows that with enough data, an ideal learner will favor m̂ over

any alternative m. Note that we have made no assumptions about the form of P(ui | m,ci)—

that is, about how the set of meanings m give rise to utterances. Under any such system,

corresponding to any linguistic system, the above argument will hold: negative evidence is

not necessary.
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3.4 The implemented learning model

More important than establishing learnability in theory is showing that the correct mean-

ings are learnable with a developmentally plausible amount of data. Here, we use an im-

plemented version of the model to study how many example utterances are necessary to

correctly learn the meanings in Figure 3-2.

3.4.1 Methods

Because naturalistic data consisting of quantifiers used by parents in the presence of sets

of objects is not available, we constructed simulated data by creating sets at random, and

sampling adult meanings according to the likelihood process described above, with αp =

αt = 0.9. This means that the data is fairly noisy, with roughly 10% of the utterances

not satisfying presuppositions, and of those that do, 10% are false. We generated sets at

random, each containing between 1 and 8 objects. Each object in a set was one of three

animals (mouse, pig, rabbit) that was one of three colors (white, brown, or pink). Here,

the argument A was an animal and B was a color. For each set, we sampled utterances

according to the target grammar: for instance, for a set containing a pink mouse and two

brown rabbits, we might sample the quantifier “some” in the context “ mouse is pink.”

The model described in the previous section is a computational theory of quantifier

learning, not an algorithmic one (Marr, 1982). We combine several techniques from prob-

abilistic modeling to implement a working version of this model. This provides us with

learning curves as the amount of data for the model varies, which represent the learning

curves for an idealized statistical learner, operating over the space of meanings we de-

scribe. In principle, learners should be able to consider any hypothesis generated by the

grammar in Figure 3-4. In practice, most of the hypotheses this grammar generates are

very low probability, either by being long (small prior) or not explaining the data (low in

the likelihood). The first approximation that we make is that our algorithm looks only at

hypotheses that use 10 or fewer rule expansions16. We enumerate this space of hypothe-

ses, and, for computational tractability, collapse equivalent hypotheses. Thus, for instance,

16Hypotheses which are excluded this way have a prior probability less than 1 in 10 million.

92



λ A B . (or (singleton? A) f alse) is not treated distinctly from λ A B . (singleton? A).

This results in 699 hypotheses (or equivalence classes of hypotheses) that represent distinct

functions on sets. This space was treated as a fixed, finite hypothesis space of expressions

for purposes of inference. We note that this still represents a huge effective hypothesis

space for the learner since the number of possible ways of mapping 8 word meanings and

presuppositions to 699 hypotheses is 6998+8 ≈ 1045. In addition, we allowed each word to

have a weight chosen from {1,5,10,25,50,100}, corresponding to a superset of weights

necessary for the target meanings. Again, each mapping from words to meanings is a lexi-

con. To search through lexicons, we first ran Gibbs sampling (Geman & Geman, 1984) for

varying amounts of data from 0 to 2000 sets. For each set size we ran 100 separate Gibbs

sampling runs, storing 10 lexicons with highest posterior for each run at each amount of

data. This finite space of lexicons was treated as the finite hypothesis space for constructing

the learning curves and results here. Note that this method means that the target lexicon

had to be found at some amount of data by Gibbs sampling. However, once it is found by

one run, it will be included in the final finite hypothesis space of lexicons, allowing for bet-

ter statistical estimation. This is a form of selective model averaging (Madigan & Raftery,

1994), that we have used in other similar learning models (Piantadosi et al., submitted).

It amounts to using sampling techniques as essentially search for finding high probability

hypotheses, and then using the high probability hypotheses as a finite space for performing

statistical inference.

3.4.2 Idealized learnability of quantifiers

Figure 3-5 shows learning curves for learning model, broken down by each of its three

aspects of meaning: presupposition, literal meaning, and probability of production. This

shows the model’s probability of correctly learning each aspect of word meaning, as a

function of the number of examples observed. Note that the x-axis in this plot does not

represent the number of times that each of these words is heard; instead it shows the total

number of labeled sets, only some of which are labeled with the word. This is an important

point because a contributor to learning is both the number of times a word is heard, and
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Figure 3-5: Learning curves for αp = αt = 0.9, showing model proportion correct (y-axis)
versus amount of data (x-axis) for each aspect of meaning.

the number of times it is not, using the implicit negative evidence provided by the size

principle.

The figure shows that the most frequent word in the input, “the,” is learned extremely

quickly, within around 100 labeled sets, while infrequent words like “most” and “none”

take several hundred. The absolute scale of the learning rates and variability is quite im-

portant since it shows that a set of 8 determiners can be learned simultaneously from noisy

positive evidence, using a developmentally plausible amount of data. It would not take

children hundreds of thousands or millions of determiners to learn the correct meaning—

hundreds to one or two thousand examples are sufficient. To put this amount of data in
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perspective, determiners or quantifiers are used in Adam’s section of the Brown corpus in

CHILDES (MacWhinney, 2000) over 8000 times, and this corpus represents only a small

subset of the data Adam heard. This quantity of data would be enough for an ideal learner to

discover all aspects of meaning studied here, even assuming that only a quarter of instances

have clear and known referents.

An important facet of this learning account is that it can handle noisy evidence. Learn-

ing proceeds quickly even in the presence of about 10% noise consisting of utterance pro-

duced at random. This is possible because the model works cross-situationally, aggregating

evidence from multiple utterances in multiple contexts in order to determine the most likely

word meanings. Cross-situational word learning (Yu & Smith, 2007; Siskind, 1996; Vogt

& Smith, 2005; Yu & Ballard, 2007; Frank et al., 2007a) is likely especially important

for function word meanings because their meaning is never unambiguous from a single

context.

This plot reveals a strong tendency for literal meanings to be learned before presup-

positions, and around the same time as the word weights. That is, under our form of the

likelihood, the assumptions required for a meaning to get a truth value are hardest for ideal

learners to determine. For the model, the majority of these errors are thinking that the utter-

ance always has met presuppositions (λ A B. true), and other likely errors are to presuppose

that the intersection of A and B is nonempty (λ A B. (nonempty? (intersection A B))), or that

A and B exhaust the entire set (λ A B. (total-intersection A B)). We note that the difficulty

of lexical presuppositions appears to be a robust prediction of this form of the likelihood;

although to our knowledge lexical presuppositions have not been studied empirically in

detail other than for the word “the,” discussed below.

3.4.3 Constraints on quantifier meanings

One interesting aspect of the learning model is that its hypothesis space is relatively unre-

stricted. On one hand, this is a strength because it means that fewer constraints need to be

posited as part of children’s innate linguistic repertoire. On the other hand, it might seem

that an unrestricted hypothesis space would make learning unnecessarily difficult because
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there are so many hypotheses to consider. One potential constraint on quantifier meanings

that is proposed be universal is conservativity (Keenan & Stavi, 1986; Barwise & Cooper,

1981). In our notation, a quantifier is conservative if it depends only on the elements of A,

the first argument to the function. Thus, “Most men are happy” can be checked by looking

only at the set of men17. Keenan and Stavi (1986) argue that conservativity provides a use-

ful constraint for language learners; in a simple example involving sets of two individuals,

they count 65,536 possible quantifiers, only 512 of which are conservative. Intuitively,

learners should benefit by narrowing down the space of possible meanings by a factor of

128. On the other hand, it may be the case that most of the quantifiers that are ruled out

with a conservativity constraint are already low-probability. Furthermore, a factor of 128

is not necessarily very useful: it corresponds to just 7 bits of information about the correct

meaning.

Figure 3-6 shows a model-based analysis of how much conservativity helps under the

assumptions of the idealized learning model. The line labeled ‘C’ (conservative) shows

learners who only consider conservative quantifiers18. This shows that on average conser-

vativity helps very little; quantifier meanings are almost equally as learnable in the uncon-

strained space. The reason for this is that the data evidently provides a much more useful

constraint than conservativity. Observed usages of quantifiers quickly provides much more

information about their meaning than a priori constraints. There is still evidence that chil-

dren prefer to learn quantifiers that are conservative (Hunter & Conroy, 2009), but this

figure demonstrates that this constraint should not be posited for reasons of learnability.

This raises the question of whether any constraints on quantifier meanings could sub-

stantially aid learning. One way to determine this is to compare the unconstrained learner to

what might be considered the most constrained learner possible. The blue ‘R’ (restricted)

lines in Figure 3-6 show the performance of a learner who only considered expressions

necessary for the literal meanings or presuppositions in Figure 3-2 as possible hypotheses.

That is, for such a learner, there are only the necessary semantic concepts, and the task

17Conservativity is perhaps best understood by a potential counter-example to it, “only.” “Only men are
happy” depends on the set of things which are not men, violating conservativity. However, “only” is argued
not to be a quantifier due to the fact that it patterns differently in some syntactic constructions.

18For computational tractability, conservativity was evaluated “empirically” by evaluating the quantifier on
200 randomly generated sets.

96



0 500 1000 1500 2000

0.
0

0.
4

0.
8

the

Amount of data

P
ro

po
rt

io
n 

co
rr

ec
t

o
oo
o
o
o
o

o
o
oo
oo
oooo o o o o o o o

CC
CC
C
CC
C
C
C
C
CC
CCCCC C C C C C C

R

RR
R
RR
R
R

R
R
RR
RRR

RRR R R R R R R

0 500 1000 1500 2000

0.
0

0.
4

0.
8

a

ooooooooooooooooo o o
o

o
o

o
o

CCCCCCCCCCCCCCCCCC C
C

C

C
C

C

RRR
R
R
R
RR
R
RR
RRRR

R
R

R R R R R R R

0 500 1000 1500 2000

0.
0

0.
4

0.
8

two (exact)

ooooooooooooooooo o
o

o

o
o

o
o

CCCCCCCCCCCCCCCCCC C

C

C

C
C

C

RRR
RR
R
RRR
R
RR
RRR

RR
R R R

R R R R

0 500 1000 1500 2000

0.
0

0.
4

0.
8

both

oooooooooo
o
o
o
o
o
o

o
o

o o o o o o

CCCCCCCCCCC
C
C
C
C
C
C

C
C C C C C C

RRRRRR
RR
RR
RR
R
R
R
RRR R R R R R R

0 500 1000 1500 2000

0.
0

0.
4

0.
8

every

oooooooooooooo
o
o

o

o o o o
o

o o

CCCCCCCCCCCCC
C
C
C

C
C

C C C C C C

RRRRRRRRRRR
R
R
RR

RR
R R

R
R R

R R

0 500 1000 1500 2000

0.
0

0.
4

0.
8

most

ooooooooooooooooo o o o
o

o

o
o

CCCCCCCCCCCCCCCCCC C C
C

C

C

C

RRRRRRRRRRRRRR
R

R

R
R

R
R R

R R R

0 500 1000 1500 2000

0.
0

0.
4

0.
8

none

ooooooooooooo
oo

o
o

o
o

o
o

o o o

CCCCCCCCCCCCCC
C
C
C

C
C

C
C

C C C

RRRRR
RRR
RRR
R
R
RR

RRR R R
R R

R R

0 500 1000 1500 2000

0.
0

0.
4

0.
8

neither

oooooooo
oo
o
o
oo
o

o
o

o o o o o o o

CCCCCCCC
CC
C

C
C
CC

CCC C C C
C C C

RR
RR
RR
RR
R
R
R
RR
R
RRRR R R R R R R

Figure 3-6: Learning curves for the basic unrestricted model (black), conservative quanti-
fiers (C, green), and the maximally restricted model (R, blue). The y-axis shows probability
of correct acquisition of all aspects of meanings (literal, presupposition, production proba-
bility).

of learning is to figure out which maps to which words. Note that this is the minimum

amount of learning which must happen, since even under such an extreme nativist theory,

learners must still figure out the arbitrary mapping between phonological forms and mean-

ings. This line in Figure 3-6 shows that such a learner does not have a much easier time

than the unconstrained learner who considers all possible representations for each word.

Such a constrained space only substantially helps for “a,” “two,” and “most.” This indi-

cates that in many cases the hard part of learning is narrowing down the correct meaning

from among several high-probability competitors. The problem is not in weeding out im-
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plausible hypotheses. This is potentially a non-obvious and important point for language

acquisition: restricted hypothesis spaces—often posited to reduce computational demands

on learners—do not always substantially improve acquisition, especially if they still in-

clude many of the likely competitors included in the unrestricted space. Said another way,

learning in unrestricted hypothesis spaces is not necessarily much harder for ideal learn-

ers than restricted ones, at least for models where the data is capable of quickly providing

a substantial amount of information about the target meanings. Constraints need not be

posited for reasons of learnability.

3.5 Detailed patterns of acquisition

Here we show that the model additionally provides a plausible account of quantifier mean-

ing from a developmental perspective by showing that the learning patterns of the model

are similar to empirically observed patterns.

3.5.1 Probability of production

Figure 3-5 showed that learning the probability of production—word weights—was as easy

for the model as learning the literal meanings. This makes the prediction that children’s

probability of producing each of these words should match their parents’ probability of

production, starting from earliest utterances. That is, once children have figured out when

to use each word, they should also know the relative frequency of each word. This would

not be predicted by the model if, for instance, the word weights took substantially longer

than the literal meanings to learn. Figure 3-7 shows the parental relative frequency for the

eight determiners, plotted against childrens’ relative frequency, for every year from 1 to 5

years old (point size). This shows a strong linear correlation of R2 = 0.91 between parents’

production frequency and children’s, spanning several orders of magnitude in frequency

and ranging throughout development. These frequencies do not change substantially for

parents or children throughout development, indicating that children’s earliest productions

follow the relative distribution of the adult grammar. Thus, as predicted by the model, chil-

dren who know the meaning of determiners well enough to use them, also know their rela-
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Figure 3-7: Data from CHILDES (MacWhinney, 2000) showing parental production fre-
quencies compared to child production frequencies, binned every 12 months from 1 to 5
years (point size small to large). The dotted line is y = x. These frequencies are correlated
in the log domain at R2 = 0.91 (p < 0.001).

tive frequencies. Of course, there are many other ways to get these patterns—for instance,

if children often repeated what their parents said. Such nearly perfect correlations are not

always found, however: children’s probability of saying the function words “who,” “what,”

“where,” “when,” “how,” or “why” has a substantially lower correlation of R2 = 0.73 with

their parents’ probability.

3.5.2 The definite article

Although “the” is the most frequent determiner in child-directed speech (Figure 3-3), chil-

dren fail some tasks that test their comprehension of “the” until surprisingly late. English-

speaking children as old as 9 years systematically arrive at non-adult semantics for “the”

(Maratsos, 1974, 1976; Warden, 1974, 1976; Karmiloff-Smith, 1981; Modyanova & Wexler,

2007). For instance, after one turtle in an array of turtles is explicitly identified, children

will fail to consistently put a star on “the turtle,” instead putting it on any of the turtles

(consistent with “a turtle”) (Modyanova & Wexler, 2007). This represents a failure to un-
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derstand that “the” requires a unique referent in the singular case (e.g., “the turtle”). In the

plural case, this notion of uniqueness generalizes to maximal sets, so that “the turtles” refers

to all of the turtles in the locally salient set, not a subset of them (Heim, 1991). Maratsos

(1976) argues that analogous production errors result from children acting egocentrically,

broadly in line with Piaget (1955): children may choose a unique referent and fail to rec-

ognize that others would not recognize it as unique. Under this view, children have full

semantic competence for “the” but have difficulty integrating the necessary semantic rep-

resentations with their understanding of others’ knowledge. An alternative is argued for by

Wexler (2011): children may lack the uniqueness or maximality presupposition of “the.”

In our formalization as lambda calculus, this incorrect presupposition might be

λ A B . true (3.22)

instead of the correct form,

λ A B . (singleton? A). (3.23)

But there are many other formulations of their knowledge of the presuppositions of “the”

that are consistent with their errors, such as λ A B. (nonempty? A), or λ A B . (nonempty?

(intersection A B)). Wexler (2011)’s account is specifically maturational, meaning that he

argues children’s lexical entry for “the” is initially wrong because of biological facts about

the computational system that supports language learning and use, rather than, for instance,

difficulties with learning. One difficulty with a maturational account is that similar effects

are seen in L2 language learners (Ko, Ionin, & Wexler, 2006; Ko, Perovic, Ionin, & Wexler,

2008), meaning that the effects are seen in learners who have already fully matured.

Our model suggests an alternative: perhaps children’s errors result, at least in part, from

the difficulties faced during learning. Intuitively, singleton? may be difficult to distinguish

from meanings such as true or the nonempty? because of subset-superset relationships

among these hypotheses. To evaluate this, we can examine the errors made by the model

over the course of learning. Figure 3-8 shows the top 10 most frequent presuppositions

learned by the model. Note that because “the” is learned so quickly by the model, we

have logarithmically transformed the x-axis (amount of data) to show more detail early
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Figure 3-8: Posterior probability (z-axis) of the most-likely presuppositions of “the” (y-
axis) over the course of acquisition (x-axis). Note the x-axis has been logarithmically
transformed to show more detail early in acquisition.

in learning. The top row of this figure is the correct presupposition, which is eventually

learned. The next several rows include the true presupposition, and nonemptyness of the

intersection, which are consistent with the observed errors. This shows that the correct

presupposition for “the” is indeed hardest to distinguish from meanings like λ A B . true

and λ A B . (nonempty? (intersection A B)), both of which are consistent with children’s

lack of presupposition. Indeed early in acquisition, the model consistently believes that

“the” is always presuppositionally valid, represented by λ A B . true. This explanation in

terms of difficulty for learners additionally explains why similar errors are common in adult

L2 language learning. We believe it is substantially informative that a model operating over

a relatively unrestricted set of meanings shows errors like children’s.

However, there is one aspect of the learning pattern here which is distinctly not like chil-

dren: the model learns the correct meaning of “the” within dozens of examples, rather than

requiring perhaps a decade of data. It is also possible that more complete versions of the

model would show substantially delayed acquisition relative to these results. For simplic-

ity, this implementation of the model assumed that “the” is only used with singular count

nouns. In real acquisition, children hear these determiners with plural nouns (“the aliens”)
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and mass nouns (“the pasta”), and these tokens may substantially complicate acquisition19.

In particular, learning maximality, a logical form that covers both singular and plural uses

of “the,” might be substantially more difficult if maximality must be expressed in terms of

other primitives; here, uniqueness is “built in” by the primitive singleton?. The idea that

maximality must be “built” is attractive since it can explain other evidence offered in sup-

port of maturational accounts of maximality: for instance, other work has found significant

delays until around 7 years on wholly separate syntactic constructions that are argued to

involve maximality (Munn, Miller, & Schmitt, 2006; Modyanova & Wexler, 2008; Capon-

igro, Pearl, Brooks, & Barner, 2010).

An alternative is that children actually do learn much of the meaning of the definite de-

terminer early, but fail on certain tasks for othe reasons. Indeed, the empirical evidence does

not unambiguously support slow acquisition of the definite determiner. Karmiloff-Smith

(1981, Experiment 12) tested French children’s knowledge of the uniqueness presupposi-

tions of “le” using a task that is intuitively much more difficult. Karmiloff-Smith showed

French-speaking children scenes in which a boy had, for instance, a number of brushes

and a girl had a single brush. Children heard an adult ask for either “le” brush, picking

out a unique individual, or “un” brush, picking one from a set, and were asked whether

the speaker was talking to the boy or the girl. Children as young as 3 years were 85%

accurate at responding correctly. This means that French-speaking 3-year-olds must know

“le” picks out a unique individual, and they are also capable of combining this with world

knowledge to determine who someone else is speaking to. Karmiloff-Smith describes the

key differences between these experiments as pertaining to usage: the experiment in which

children succeed is deictic since world context establishes the referent, and the other is

anaphoric since the linguistic context establishes the referent. In general, this indicates

that current empirical results do not rule out early knowledge of these types of meanings,

and that further empirical work is needed to make sense of the precise timecourse of chil-

dren’s acquisition.

19It is tempting to look at languages like French that have different forms for singular (le) and plural (les),
but it is not clear how phonetically distinct these forms are for learners, and, as discussed, the acquisition path
even in French is not entirely clear.
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(a)

(b)

Figure 3-9: Illustration of the two types of spreading errors common in the acquisition of
“every,” classical spreading (a) and bunny spreading (b). In both cases, children incorrectly
reject a sentence like “Every robot is wearing a hat,” pointing to the unworn hat in (a) and
the man with a cape but no hat (b).

3.5.3 Acquisition of “every”

As with “the,” the word “every” has received special attention in developmental studies.

Unlike “the,” children (likely) have trouble learning its literal meaning, as first noted by

Inhelder and Piaget (1969). In a situation with several robots wearing hats, children often

would think that “Every robot is wearing a hat” would not apply if there was a hat not

worn (Figure 3-9(a)). If asked why the sentence is not true, children explain that it is false

because there is a hat not being worn (Philip, 1991, 1992, 1995)20. This error is known

as a spreading error because “children extend the quantifier ‘all’ to the logical predicate

of the sentence as well as to its logical subject” (Inhelder & Piaget, 1969, pg 70-71). This

spreading error has been replicated cross-linguistically (Takahashi, 1991; Philip, 1995,

1998; Kang, 1999; Philip, 2003; Fiorin, 2010), and in large-scale developmental studies

20Children similarly reject “A boy is pulling every wagon” in a situation in which there is a boy not pulling
a wagon, but otherwise all wagons are pulled by boys. Here, we will not deal with quantifiers in object
position since this requires additional syntactic or semantic machinery.
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(e.g., Seymour, Roeper, & De Villiers, 2003; Roeper et al., 2004). Following Roeper et

al. (2004), we refer to this spreading error as classical spreading. In a second kind of

spreading, bunny spreading (Roeper et al., 2004), children believe that the intersection of

the two sets, A (the set of robots) and B (the set of hat-wearers) must exhaust the entire

set observed in the context. So if children were shown a scene with several robots wearing

hats, and a man wearing a cape, they will say that it is not true that “Every robot is wearing

a hat” because of the man wearing a cape (Figure 3-9(b)). This latter form of spreading can

be characterized using the primitive total-intersection, discussed above, as simply,

λ A B . (total-intersection A B). (3.24)

Note that there is not as simple a representation for classical spreading, since the set of

hats is not naturally an argument to “every” (in the way that the set of hat-wearers is). We

therefore will focus on bunny spreading here in our modeling work.

Roeper et al. (2004) charts out the developmental trajectory of spreading errors, find-

ing that at age 6, about 40% of children show both errors and 20-30% show only classi-

cal spreading. By age 8-9, bunny spreading becomes even less common (about 20% of

children), but still 40-50% of children show classical spreading. Indeed, spreading errors

persist quite late in development. Even at 8-9 years old, about 30-40% of children show

no spreading errors. By 12 years old, only 50-60% of children show no spreading errors.

Spreading is therefore remarkable in both its consistency cross-linguistically and across

studies, as well as its persistence throughout development.

Two primary theories have been offered to explain children’s spreading errors. Philip

(1995) argues that spreading results from children incorrectly quantifying over events rather

than objects. In classical spreading, for instance, children might incorrectly think that “ev-

ery robot is wearing a hat” would mean that for all events e in the context involving a robot

or a hat, then the robot is wearing the hat. Philip observes that children’s rough acquisition

order from bunny spreading to classical spreading to adult representations follows what

would be expected for learners that ordered hypotheses in terms of logical strength, as in

the subset-principle learning framework discussed above. Crain et al. (1996) argue for an
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alternative—though still strongly nativist—account (see also Meroni, Gualmini, & Crain,

2000; Gualmini, Meroni, & Crain, 2003; Rakhlin, 2007). Crain et al. show that children

can often provide adult-like interpretations of “every” when the context is more pragmati-

cally felicitous—in particular, when the negation of the target sentence, e.g., “Every robot

is wearing a hat,” could potentially be false. Under this view, children have a full adult

semantic representation for “every” but are pragmatically unable to interpret “every” in

contexts used in previous experiments.

Both of these accounts have shortcomings. Most troublingly, neither account explains

how children learn which words go with which semantic representations—that is, they are

not situated in the context of a sufficiently competent and formalized learning model. Philip

(1995)’s account, like other subset-principle accounts, does not explain how children tran-

sition between hypotheses in the face of noisy evidence. As far as we can tell, Crain et al.’s

account cannot explain the fact that children still do make errors in these quantifier mean-

ings. Their explanation additionally relies on an extremely subtle experimental manipula-

tion. As pointed out by Roeper et al. (2004), another challenge for Crain et al.’s account is

that recent work has found similar patterns in L2 acquisition (DellaCarpini, 2003), meaning

that adults who presumably have competent pragmatics still show these errors. As Roeper

writes, the errors likely result from the “challenge of grammar construction” facing both

L1 and L2 learners. Both of these theories are somewhat post-hoc, explaining children’s

errors but not predicting them a priori from any independently motivated basis.

From the viewpoint of an idealized statistical learner, what is especially interesting

about these spreading errors is that they do not appear to be simpler meanings than the

correct meaning of “every.” However, one possibility is that bunny spreading results from

children’s bias for expressions involving the entire set. As discussed above, children of-

ten have a bias to respond with the entire set (Sarnecka & Lee, 2009; Lee & Sarnecka,

2010b, 2010a), which motivated our inclusion of the total-intersection primitive function.

The question remains, however, whether this meaning is indeed difficult to rule out as the

meaning of “every.” Figure 3-10 shows the errors made by the model in learning the literal

meaning of “every,” analogous to the plot for “the” above. Apart from true and f alse, this

meaning is indeed the most common error the model makes, indicating that typical evi-
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Literal meaning of ‘every’
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Figure 3-10: Posterior probability (z-axis) of the most-likely literal meanings of “every”
(y-axis) over the course of acquisition (x-axis).

dence distinguishes the meaning of “every” poorly from this alternative. This error is still

relatively uncommon for the model, mostly because the errors are dominated by true and

f alse. However, it is easy to imagine that such meanings may not really be considered by

learners as plausible literal meanings since they are semantically vacuous21.

This account of spreading errors differs from Philip’s in that it is a fully implemented ac-

quisition model, using data to search through hypotheses. The fact that this roughly shows

the types of errors children make is informative since the hypothesis space is relatively un-

restricted and one might imagine that other bizarre hypotheses could be considered by such

a learner. It is also informative that an ideal learner with this simple representational sys-

tem has more trouble ruling out true and f alse than total-intersection, potentially providing

indirect evidence that such semantically vacuous meanings are dispreferred by young learn-

ers. These results are suggestive that refinements of the learning setup—in terms of data

presented to the model and the assumed representational system—could potentially explain

children’s spreading errors from this type of independently motivated statistical model.

21However, true at least is potentially high in the prior for the presupposition of “the,” as required above,
since some words do not have presuppositions.
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3.6 General Discussion

These results have revealed that some aspects of the learning model are very child-like: the

model’s mistakes are similar to those made by children, despite the fact that it is operating

in a relatively unrestricted hypothesis space. In this sense, the model is to some degree

able to predict these errors from domain-general, independent principles—the challenge

of searching through hypotheses to explain observed utterances. This prediction is not

perfect because we have chosen a very simple representational system, but its particular

components have not yet been established through independent experimentation. Inclusion

of the right representational components like the meaning total-intersection is important

for modeling children’s responses to developmental experiments. Further work to discover

what types of set operations children find most natural may lead to a learning model that

more accurately captures observed developmental patterns.

One feature of the learning model that differs from children is that it appears to be

extremely easy for the learning model to discover these word meanings—typically within

hundreds to a few thousand labeled sets. We have made several simplifications that lead

to this. First, the model assumes the sets A and B are known. If learners are simulta-

neously learning nouns, then this would introduce more uncertainty, delaying acquisition.

Second, we have assumed that the syntactic and semantic compositionality of quantifiers is

known—that is, that they take two sets and assert something about their relationship. It is

possible that if this also must be learned simultaneously, it would substantially complicate

learning and slow acquisition. The model in its present form also has perfect memory of

previous data. This assumption is not necessary for this type of LOT statistical model (see

Chapter 3), but also leads to increased rates of acquisition. Finally, we have assumed rel-

atively high rates for αp and αt . As the learner’s settings of these parameters are brought

to 0, the model “cares” less about explaining the observed utterances. In this sense, the

learning rate of the model is essentially a free parameter, and is not strongly predicted by

our account. However, it is informative that for high and we believe intuitively plausible

settings of these parameters, the model learns substantially faster than children.

The ease of learning for this idealized model may raise one interesting possibility for
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language acquisition. It may be the case that the key puzzle for language acquisition is not

the poverty of the stimulus, but the abundance of stimulus: why do some aspects of lan-

guage acquisition take so long, given that an idealized statistical learner would find them so

easy? The answer above is that children are non-ideal in all sorts of ways, including mem-

ory limitations, and imperfect observations. But it might be the case that even given these,

facts, idealized learners find it easier than children; it is not intuitively clear to us if address-

ing these simplifications in the model would make learning “the” take the amount of data

present in 10% of a person’s life, rather than the amount of data present in a single conver-

sation. Similarly, abstract syntactic principles may be learnable from surprisingly little data

(Perfors et al., 2011). Indeed, the abundance of the stimulus was argued by Babyonyshev,

Ganger, Pesetsky, and Wexler (2001) to support a maturational account of other syntactic

phenomena, such as A-chain formation, since children are substantially delayed with A-

chains despite their prevalence in the input. Addressing the abundance of stimulus problem

is an interesting challenge for statistical learning models—one that is the polar opposite of

traditional poverty arguments put forth against statistical learning. This paints a different

picture of acquisition, one where the environment is full of information sources, and the

hard part of language learning is using those information sources effectively—not that fact

that the information is not present.

We take the most substantive contribution of this work to be the learnability arguments

and simulations. We have contrasted our approach to finite-state, Gold-style learnability

proofs for quantifier meanings, which either require positive and negative evidence, or only

provably work for a subset of meanings. It is also unclear how these accounts would handle

noisy data, or if they could show developmental patterns that are anything like children’s.

Unlike these approaches, our model was motivated by the types of representations common

in semantic theories—i.e. functions on sets. We think of quantifier learning as a problem of

composing primitive cognitive operations in order to form conceptual representations that

explain observed utterances. This general approach can be viewed as a kind of program

induction, where learners must create a simple expression in their “language of thought”

that assigns observed data high probability. This has the advantage of explicitly formal-

izing what knowledge learners must bring to acquisition (representational primitives and
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rules of composition) and how this knowledge interacts with observed evidence (through

approximately optimal statistical inference). Our model therefore provides an appealing

compromise between nativist and empiricist theories in language development. The model

is nativist in that it “builds in” a hypothesis space of potential meanings. This amount

of nativism is, in some sense, a necessity for any learning model that can arrive at the

correct set of meanings—even models which do not have explicit representations build in

spaces of hypotheses (see Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). How-

ever, language-specific—or, more precisely, semantics-specific—constraints and learning

procedures are not necessary for learning: an ideal learner in an unrestricted hypothesis

space takes only marginally more data to arrive at the right answer, than a learner with even

the most restricted set of potential meanings. The model is empiricist in that it learns in a

relatively unrestricted hypothesis space, with the data determining the correct hypothesis

in the limit. In this sense, we have directly tackled the question of what must be innate

specifically for learning these meanings: the capacity for structure, statistical inference,

and the capacity to apply it in a particular domain.

The conceptual foundations of this approach draw heavily on work by Chater and

Vitányi (2007). They argued that in language acquisition, learners need not be innately

constrained at all in order to learn language, contrasting with Gold’s theorem. Chater

and Vitányi (2007) demonstrate conditions under which any computable language is learn-

able from positive evidence only, by learners who potentially consider any computable

language—as unrestricted a learner as possible. This proof works by assuming that learn-

ers attempt to find what are essentially short computer programs to describe the data they

say. Chater and Vitányi (2007) apply Solomonoff (1978)’s Prediction Theorem to show

that such learning can always identify the correct linguistic system given enough data, with

relatively little error. The assumptions of this approach differ from Gold’s in several key

ways. Rather than a worst-case analysis, Chater and Vitányi (2007) present average-case

learnability results. Second, their learning criterion differs from Gold’s. They consider the

task of the learner to be modeling the data, rather than correctly identifying the language in

the limit. We take the results of Chater and Vitányi (2007) as providing a definitive theo-

retical argument that language is learnable from unrestricted hypothesis spaces. However,
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their work leaves many practicalities to be resolved. For one it is not immediately clear how

to apply their results and methods to actual acquisition problems. This is in part because

their results are stated using Kolmogorov complexity, a formal measure based on descrip-

tion length of, in this case, grammars. This measure is formally uncomputable, and—even

if it were computable—seems an unlikely measure for children to compute. The alternative

worked out here is that children “compute” using a set of conceptual primitives—in this

case, functions that manipulate sets of objects. Their task in acquisition is to determine

how to compose these cognitive primitives into the correct representations. The represen-

tations can be thought of as computer program that are written in the “language of thought.”

The standard learnability proof we present shows that in language acquisition such repre-

sentations can always be recovered from positive evidence, and our implementation shows

that the amount of data required is surprisingly small. This type of acquisition from a com-

position space of semantic primitives can “really work” in explaining language learning.

Indeed, the general class of model presented here could be generalized to learning other

types of semantic and even syntactic operations, especially those formalized using a lexi-

calized grammar (e.g., Steedman, 2000); for a simple example of this, see Piantadosi et al.

(2008).

3.7 Conclusion

This paper has studied learning problems in semantics as a case study of the logical problem

of language acquisition. We have argued that learners of quantifier meanings face many of

the complexities that make learning language daunting: non-obvious literal meanings, the

subset problem, presuppositional content, and variable word frequencies. The learning

model we present shows how fairly rich representations of quantifier meanings could be

learned from positive evidence alone, using a developmentally plausible amount of data.

These general techniques could be applied to other subset-problems in language, or areas

where unseen abstract structure must be inferred. Like most Bayesian models, the one we

present is provably learnable. The implementation has also allowed us to test the utility of

constrained hypothesis spaces for quantifier learning, and provides a potentially statistical
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explanation for some of the most-studied effects in quantifier acquisition.

We have argued against several approaches to quantifier learning, namely those which

use ad-hoc representations such as finite-state machines, or require innate ordering on hy-

potheses to solve the subset problem. The model presented here is only one exemplar of a

family of theories that explain learning as composition from innate or previously learned

primitive functions. Examining the details of this type of model’s acquisition patterns will

likely require both more sophisticated data sets of naturalistic adult productions (in seman-

tic contexts) and independent experimentation to establish plausible cognitive primitives.

Function word acquisition provides a rich test case for understanding how learners come to

abstract knowledge in domains like language, and how existing representational theories in

linguistics can be combined with sophisticated statistical inference techniques to produce

empirically and theoretically tenable learning theories.
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Chapter 4

Concept learning and the language of

thought1

4.1 Introduction

One of the basic puzzles of human cognition is the extraordinary richness of our con-

ceptual systems. We are not restricted to simple similarity-based generalization or rote

memorization, but easily create and manipulate abstract, compositional, and structured

representations—concepts like prime number, half-sister, the tallest building in Cambridge,

or the semantic representations of function words like “every.” Such concepts are interest-

ing in part because they appear to be most easily characterized as logical rules. For instance,

A is the tallest building in Cambridge if for all other buildings B, A is taller than B; two girls

are half-sisters if they share one but not both parents; “every” is often formalized in seman-

tics as a logical relation (subset) between two sets (Montague, 1973; Barwise & Cooper,

1981; Keenan & Stavi, 1986; Keenan & Westerståhl, 1997).

The existence of such concepts presents two challenges to cognitive science. The first

challenge is understanding how children learn rule-like representations. How might chil-

dren take observed instances of concepts like tallest or half-sister and determine the correct

rules? Children are likely not born knowing these concepts and so they must be constructed

from the knowledge children do bring to acquisition; yet, learning in logical systems is

1This work is joint with Noah D. Goodman and Joshua B. Tenenbaum.
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nontrivial because the space of possible concepts is large and potentially Turing-complete.

Recently, computational work has explored learning concepts in logical domains (Siskind,

1996; Feldman, 2000; Zettlemoyer & Collins, 2005; Goodman et al., 2008; Katz et al.,

2008; Kemp et al., 2008a; Piantadosi et al., 2008; Goodman et al., 2009; Kemp, 2009;

Kwiatkowski et al., 2009; Ullman et al., 2010; Piantadosi et al., submitted). Most of this

work formalizes learning as inductive inference over a compositional representation sys-

tem, a language of thought (LOT) (Fodor, 1975; Boole, 1854), and such systems have

been argued to explain the mind’s productivity, systematicity, and compositionality (Fodor,

1975; Fodor & Pylyshyn, 1988; Fodor, 2008). Our goal here is to extend LOT learning

models to richer languages capable of expressing the types of quantification and logical

operations that we argue will be necessary for capturing human learning patterns.

The second challenge posed by these types of logical concepts is that of discovering

the right representational system for these concepts—what logical primitives and laws of

combination do people use to construct these types of representations? Is our represen-

tation of tallest built out of concepts like taller than and quantification? Or is tallest a

conceptual primitive, perhaps accessible even to the youngest learners? A coarse charac-

terization of the right system for these concepts can be made in terms of computational

power: representations must be capable of supporting the knowledge people have and the

computations they perform (Marr, 1982). For instance, people’s representational systems

must extend beyond simple Boolean propositional logic since such systems that lack quan-

tification provably cannot express concepts like tallest. However, descriptions based only

on computational power are always under-determined. Two representations can be equally

expressive—capable of solving the same computational problems—yet distinct in how they

achieve that computational power (see, e.g., Hackl, 2009; Pietroski et al., 2009, for exam-

ples in semantics). A full understanding of human conceptual systems must therefore aim

to characterize the precise components of rule-like concepts.

Here we present a formal learning model for learning compositional, rule-based con-

cepts that aims to address these challenges. We model learning of compositional rules as

Bayesian inference over a hypothesis space of concepts that are generated by a probabilis-

tic grammar. The grammar can generate concepts of any expressivity and computational
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power, allowing the model to, in principle, learn concepts that require arbitrarily complex

computations. This work therefore pushes studies of rule-based learning beyond the do-

main of simple Boolean concepts (e.g., Feldman, 2000; Goodman et al., 2008). The use of

a full probabilistic model allows us to capture detailed learning curves and patterns of gen-

eralization participants exhibit while learning novel concepts. This shows how these two

ideas—a grammar for generating expressions that represent arbitrary computations and a

statistical learning model over thse representations—can be combined in a way that cap-

tures some of the richness of human inductive processes over computationally complex

representations.

One key idea behind our approach is that representational simplicity is a major deter-

minant of learnability (Neisser & Weene, 1962; Haygood, 1963; Feldman, 2000, 2003c,

2003b; Chater & Vitányi, 2003; Goodman et al., 2008; Kemp et al., 2008a): people pre-

fer to make representationally simple generalizations from data. In learning, a bias for

simplicity allows the model to narrow down the vast space of possible rules. Intuitively,

simplicity does provide a compelling way to decide between possible generalizations: in

machine learning and statistics, for instance, simplicity plays a key role in model selection

because simple models are more parsimonious (e.g., Conklin & Witten, 1994), explaining

the data with fewer free parameters or arbitrary stipulations. As we show, when simplicity

is measured in the right way, the model generalizes much like human participants. Second,

the existence of a bias for representational simplicity allows us to reverse engineer likely

components of people’s representations. Different hypothesized LOTs will likely have dif-

ferent measures of simplicity even if they have equivalent computational power, meaning

that we can compare representational systems to see which ones measure simplicity most

like humans.

A key example for our purposes is Feldman (2000), who showed that people’s difficulty

with learning Boolean concepts is well-modeled by the concept’s description length in

logic. For example, subjects would find it harder to learn the concept2,

[red and [not square]] or [[not red] and square] (4.1)

2We will use brackets to group/disambiguate English descriptions of concepts.
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compared to

red or square (4.2)

since the former has a longer description in standard Boolean logic. This suggests that

subjects who learn such concepts actively compose logical operators (and, or, not) to ex-

press concepts, and that they have a bias to prefer concise representations in this system.

Goodman et al. (2008) extend this idea by presenting a probabilistic model over Boolean

logical expressions. They show that many experimental results could be captured by mod-

eling learning as idealized statistical inference over a Boolean hypothesis space, assuming

a bias for simpler expressions.

However, as is often pointed out in philosophical discussions of induction, what counts

as “simple” is not at all straightforward (Goodman, 1955). For instance if people’s rep-

resentational system included the exclusive-or function (XOR) as a primitive, then the

complexity—and therefore learning biases—for the above two concepts would be equal.

Concept (4.2) could be expressed the same way, but (4.1) becomes

red XOR square (4.3)

which is as simple as (4.2) in terms of total number of logical operations. Importantly,

adding XOR to the representational system does not change its computational power3. This

demonstrates that (4.1) is not more complex than (4.2) in any independent, objective sense;

indeed, it is difficult to avoid the problem that what counts as simple is to some extent

arbitrary4. Here, we turn this philosophical puzzle into an experimental tool: if subjects

actually do find (4.2) easier than (4.1), that provides evidence that their representational

system measures simplicity according to a logical language that lacks the logical connective

XOR.

The outline of this paper is as follows: first, we present a massive concept learning ex-

3Since in general A XOR B can be expressed as [A and [not B]] or [[not A] and B].
4Although Kolmogorov complexity (see Li & Vitányi, 2008) is a good attempt. As Feldman (2003a)

points out, Boolean description length is independent of the representational system up to a multiplicative
constant, much as Kolmogorov complexity is independent of the representation system up to an additive
constant. Unfortunately, even within these constraints, there is still a huge range of possible ways in which
people might measure simplicity.
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periment that taught subjects novel rule-based concepts, ranging from those studied previ-

ously in Boolean concept learning experiments (Bruner, Goodnow, & Austin, 1956; Shep-

ard et al., 1961; Feldman, 2000; Goodman et al., 2008) to those involving richer types of

quantification (e.g Kemp, 2009). We then describe how we formalize the LOT in terms of

lambda calculus, and we develop two kinds of models. The first is a learning model that—

like participants in the study—takes observed data and infers likely LOT expressions. As

we show, the learning model is capable of inferring quite complex concepts from data, and

the generalizations it makes closely track those of participants in the experiment. Second,

we develop a data analysis model that uses participants’ experimental data to infer unknown

parameters of the learning model—for instance, the probability of different primitives or

participants’ memory-decay parameters. These models allow us to quantitatively evaluate

different LOTs to see which ones best explain participants’ learning curves. We first apply

these methods to only Boolean concepts in the experiment, and then to concepts involving

quantification.

4.2 Experimental paradigm

Simple Boolean concepts can be understood as mapping a given set of objects to a subset.

For instance, you might be handed a set of balloons and be asked to give back the red or

green ones. This can easily be generalized to concepts involving quantification: for in-

stance, you might be asked to hand back all balloons such that every other balloon in the

set is not the same color or every balloon such that there exists another balloon in the set of

the same shape. Note that for quantificational concepts to make sense, they must quantify

over some domain of objects—here, either all objects in the set or all other objects in the

set. The choice of concepts that map sets to subsets is not exactly what is necessary for

natural language quantifiers, since quantifiers are often relations on sets—they map two

sets to a truth value. We chose concepts mapping sets to subsets because this most natu-

rally generalizes previous Boolean concept learning experiments, and the representational

machinery needed for these concepts can naturally be extended to generalized quantifiers.

In deciding on the space of concepts, one might attempt to enumerate all possible concepts
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up to a given length, as in Feldman (2003a) and Kemp (2009). Unfortunately the number

of such concepts quickly becomes intractable. We therefore chose to construct a space by

hand consisting of 108 different concepts chosen to span an interesting and wide range of

possible concepts involving quantification and relational terms. To do this, we considered

different kinds of basic Boolean concepts (e.g., blue objects) and incoporated quantifica-

tional and relational terms (e.g., the unique blue object, same shape as a blue object, every

other object with the same shape is blue, etc.). We additionally took these quantificational

and relational concepts and added Boolean terms (e.g., [same shape as a blue object] and

circle). The full set of concepts is listed in Figures 4-2 to 4-4.

In the experiment, subjects were told that they had to discover the meaning of “wudsy,”

a word in an alien language. They were explicitly told that this word applied to some objects

in a set, and that whether or not an object was wudsy might depend on what other objects

were present in the set. The learning paradigm was then sequential: subjects were shown

a set and asked to guess at which items were “wudsy.” After responding, they were shown

the right answers. The correctly labeled sets stayed on the screen, and subjects moved on to

the next set. So, on set N, a subject could still see the correct answers to the previous N−1

sets. Thus, the Nth subject’s response represents their inferences conditioned on the pre-

vious N −1 labeled data points. This continuous measure of generalization contrasts with

previous Boolean concept learning paradigms which have typically tested only after a fixed

amount of training. Our paradigm allows a substantial amount of inductive generalizations

to be gathered, providing a detailed picture of human learning curves.

An example experimental item is shown in Figure 4-1, showing subjects being asked

to generalize to a set containing five elements after seeing the two preceding sets, only one

of which contained a positive instance of the concept. To aid in motivation, subjects were

required to wait 5 seconds when they made a mistake in any element of a set. The space

of objects included squares, circles, and triangles, that were either green, blue or yellow.

Object sizes ranged through 3 logarithmically spaced sizes, labeled size 1 (smallest), 2, and

3 (largest). Sets were generated from this space of objects at random, by first uniformly

choosing a set size between 1 and 5, and then randomly sampling objects without replace-

ment. Random generation was used to ensure that subjects do not assume sets were chosen
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Figure 4-1: An example item from the concept learning experiment. Here, the subject has
seen two example sets of objects, and is asked to generalize to a new set. A likely response
here would be to answer in accordance with the simple concept triangles.

to be informative about target concepts (as in, e.g., Shafto & Goodman, 2008). Subjects

were shown 25 sets of objects in total.

Subjects were randomly assigned to a concept and one of two lists in that concept,

where each list was a different sequence labeled according to the target concept. Subjects

were allowed to do multiple concepts, but could not repeat the same concept twice. The

small number of lists allowed us to run more subjects within each list to get higher confi-

dence in the exact learning curves for any particular sequence of labeled data. The specific

shapes and colors in each target concept were randomized across subjects. For example,

red and circle was randomized to blue and triangle, blue and square, green and circle,

etc. across subjects. Subjects were run online using Amazon’s Mechanical Turk. Subjects

who fell more than 2 standard deviations below the mean accuracy in their concept were

removed. Data from subjects who completed fewer than 5 sets of a given concept was also

removed, but otherwise partial data from subjects was included in this analysis.

At sets 5, 10, and 25, subjects were asked to describe what they thought “wudsy” meant.

In general, verbal descriptions proved extremely difficult to analyze because subjects often
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wrote ambiguous descriptions. For instance, we ran concepts such as the unique tallest

(cannot be tied for tallest shape in the set) and one of the tallest (can be tied for tallest

shape in the set). Subjects with both of these concepts wrote “tallest,” which, in English,

might mean either concept5.

4.2.1 Results

A total of 1596 subjects were run on 108 concepts. Individual subjects completed an aver-

age of 4.24 concepts (median 2), with the maximum number of concepts run by a subject

at 80. Overall accuracy in the experiment was 78% with a chance rate of 56%, though

the accuracies varied substantially by concept. Mean accuracies on concepts were highly

consistent across the two lists, with a correlation of R2 = 0.81. Subjects were run until each

concept and list was completed by approximately 20 subjects.

Figures 4-2 to 4-4 list the 108 concepts tested here, as well as raw subject performance

on these concepts. Each horizontal line in these figures shows a compressed learning curve

with two points, representing mean subject performance on the first and last quarter of

the experiment. Each figure shows one third of the total concepts tested, sorted by over-

all mean accuracy: Figure 4-2 shows the most easily learned concepts, Figure 4-3 shows

concepts that are likely learnable with some difficulty, and Figure 4-4 shows concepts that

are extremely difficult to learn, some of which may not have been learned by anyone over

the course of the experiment. These plots also include blue bars corresponding to chance

performance. Chance was computed by assuming that subjects guess with the correct base

rate: thus, if the concept is true of set elements 30% of the time, then subjects matching the

base rate would be correct with probability 0.3 ·0.3+(1−0.3) · (1−0.3). The horizontal

lines in these plots are green for simple Boolean concepts and black for concepts that have

no equivalent in Boolean logic.

This graph demonstrates several basic patterns previously found in Boolean concept

learning. For instance, complex concepts (circle and blue) are learned less quickly than

5Indeed, the ambiguity in subject descriptions provides some evidence that subjects did not represent
target concepts in natural language—doing so often leaves the target concept underspecified. On the other
hand, it is possible that the descriptions subjects provided were incomplete characterizations of unambiguous
linguistic representations.
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CIRCLE OR [BLUE IMPLIES TRIANGLE]
[NOT BLUE] IMPLIES [NOT CIRCLE]

DOES NOT EXIST ANOTHER OBJECT WITH SAME SHAPE AND COLOR
SAME SHAPE AS ONE OF THE LARGEST AND BLUE

ONE OF THE SMALLEST
CIRCLE OR BLUE

CIRCLE IMPLIES BLUE
UNIQUE CIRCLE

[SAME SHAPE AS A BLUE OBJECT] AND CIRCLE
NOT [CIRCLE AND BLUE]

[CIRCLE AND BLUE] OR [TRIANGLE AND GREEN]
BLUE IMPLIES CIRCLE

[NOT BLUE] IMPLIES CIRCLE
UNIQUE LARGEST BLUE OBJECT

CIRCLE OR [BLUE AND TRIANGLE]
THE UNIQUE ELEMENT AND IS [BLUE AND CIRCLE]

ONE OF THE LARGEST AND BLUE
SIZE 3 OR SIZE 2

THE UNIQUE ELEMENT AND IS [BLUE OR GREEN]
CIRCLE AND [NOT BLUE]

THE UNIQUE ELEMENT AND IS [BLUE OR CIRCLE]
BLUE OR GREEN

CIRCLE AND BLUE
SIZE 2

SIZE 1 AND BLUE
CIRCLE OR TRIANGLE

SIZE 2 OR SIZE 1
THE UNIQUE OBJECT THAT IS [BLUE AND CIRCLE]

NOT CIRCLE
FALSE

CIRCLE AND NOT BLUE
SIZE 1

THE UNIQUE OBJECT
BLUE

CIRCLE
SIZE 3
TRUE

Proportion Correct

0.5 0.6 0.7 0.8 0.9 1.0

Figure 4-2: Proportion correct on the first 25% of the experiment (open circle) and last
25% (closed circles) for the top third of concepts most easily learned. Green lines denote
concepts that can be written in simple Boolean (propositional) logic. Blue bars denote
chance guessing at the correct base rate.

simple ones (circle) (Feldman, 2000). The graph also shows that conjunctions (circle and

blue) are easier than disjunctions (circle or blue). The and/or asymmetry is one of the

oldest findings in rule-based concept learning (Bourne, 1966; Shepard et al., 1961) and has

been replicated across cultures and levels of education (Ciborowski & Cole, 1972). These

results also suggest selective attention effects where multiple references to the same feature

dimension (blue or green) are easier than references across dimensions (circle or blue).

Figure 4-2 also suggests that many concepts that are not Boolean but can nonetheless be

easily learned. For instance, the unique element and is [blue or green], one of the smallest,

exists another object with the same shape and color.

However, direct comparisons on this data are not straightforward. For one, the concepts

vary in their base rate accuracy (blue points) and so it is difficult to know if differences in
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THERE EXISTS A BLUE OBJECT OF THE SAME SHAPE
ONE OF THE SMALLEST OF ITS SHAPE

CIRCLE XOR [NOT BLUE]
NOT [CIRCLE XOR BLUE]

SAME SHAPE AS A BLUE OBJECT
ONE OF THE LARGEST OF ITS SHAPE

[SAME SHAPE AS A BLUE OBJECT] OR GREEN
ALL (>= 1) OBJECTS WITH THE SAME SHAPE IS BLUE

THE UNIQUE OBJECT THAT IS [BLUE OR CIRCLE]
SAME SHAPE AS A [BLUE OR GREEN] OBJECT (POTENTIALLY ITSELF)

SAME SHAPE AS THE UNIQUE LARGEST BUT NOT THE LARGEST
CIRCLE XOR BLUE

SAME SHAPE AS A [BLUE OBJECT OR GREEN OBJECT]
EVERY OTHER OBJECT WITH THE SAME SHAPE IS NOT THE SAME COLOR

EXISTS ANOTHER OBJECT WITH THE SAME SHAPE
NOT ONE OF LARGEST OR SMALLEST

ALL (>= 1) OTHER OBJECTS WITH THE SAME SHAPE ARE NOT THE SAME COLOR
EXISTS ANOTHER OBJECT WITH THE SAME COLOR

UNIQUE LARGEST AND BLUE
UNIQUE SMALLEST

UNIQUE LARGEST OR BLUE
THERE EXISTS A SMALLER OBJECT

[SAME SHAPE AS A BLUE OBJECT] AND GREEN
SIZE 1 OR BLUE

[EXISTS ANOTHER OBJECT WITH THE SAME SHAPE] AND BLUE
NOT [CIRCLE OR BLUE]

EVERY OBJECT WITH THE SAME SHAPE IS BLUE
ONE OF LARGEST OR SMALLEST

UNIQUE LARGEST
CIRCLE OR BLUE OR [TRIANGLE AND GREEN]

SIZE 3 OR SIZE 1
UNIQUE BLUE OBJECT

[CIRCLE OR TRIANGLE] IMPLIES BLUE
ONE OF THE LARGEST

THE UNIQUE OBJECT THAT IS [BLUE OR GREEN]
BLUE IMPLIES SIZE=1

Proportion Correct

0.5 0.6 0.7 0.8 0.9 1.0

Figure 4-3: Proportion correct on the first 25% of the experiment (open circle) and last
25% (closed circles) for the second third of concepts most easily learned. Green lines
denote concepts that can be written in simple Boolean (propositional) logic. Blue bars
denote chance guessing at the correct base rate.

accuracy result from difference in chance performance. Worse, though, is that subjects can

achieve high accuracy on concepts not by learning the correct concept, but by learning a

closely related one. Subjects may, for instance learn one of the tallest (the object can be

tied for tallest) for the unique tallest (the object cannot be tied for tallest). A third problem

is that it is not clear how informative learning rates are for comparisons since the observed

data may be differentially informative as to the target concept. For instance, an ideal learner

who is equibiased between circle and blue and circle or blue may nonetheless find the

former easier to learn because it is true less often, meaning that the positive examples may

be more diagnostic for the target concept or maybe more psychologically available. In

general, then, these types of learning curves are not directly informative as to the prior

biases of learners. To address these issues, we develop a model in the next section that
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EXACTLY ONE ELEMENT IS BLUE
EXISTS ANOTHER OBJECT WITH SAME SHAPE THAT HAS ANOTHER WITH SAME COLOR

SHARES A FEATURE WITH EVERY OBJECT
EXACTLY ONE OTHER ELEMENT IS BLUE

ALL (>= 1) OBJECTS WITH THE SAME SHAPE ARE THE SAME COLOR
[EVERY OTHER OBJECT WITH THE SAME SHAPE IS SAME COLOR] OR CIRCLE

THE UNIQUE SMALLEST OF ITS SHAPE
EVERY OTHER OBJECT WITH THE SAME SHAPE IS BLUE

EXISTS ANOTHER OBJECT WITH SAME SHAPE, AND A DIFFERENT ONE WITH SAME COLOR 
EVERY OTHER OBJECT WITH THE SAME SHAPE IS THE SAME COLOR

[EVERY OTHER OBJECT WITH THE SAME SHAPE IS SAME COLOR] OR BLUE
SAME SHAPE AS A [BLUE OBJECT OR CIRCLE]

EXISTS ANOTHER OBJECT WITH SAME SHAPE, AND ONE WITH SAME COLOR
SAME SHAPE AS ANOTHER OBJECT WHICH IS [BLUE OR GREEN]

SAME SHAPE AS ONE OF THE LARGEST BLUE OBJECTS
SAME SHAPE AS THE UNIQUE LARGEST BLUE OBJECT

SAME SIZE AS A CIRCLE
THERE EXISTS A SMALLER BLUE OBJECT

SAME SHAPE AS EXACTLY ONE BLUE OBJECT
SAME SHAPE AS ONE OF THE LARGEST BUT NOT ONE OF THE LARGEST

THERE EXISTS ANOTHER BLUE OBJECT WITH THE SAME SHAPE
SAME SHAPE AS EXACTLY ONE OTHER BLUE OBJECT

[SAME SHAPE AS A BLUE OBJECT] AND NOT BLUE
EXACTLY ONE OTHER ELEMENT IS THE SAME COLOR

EXISTS ANOTHER OBJECT WITH THE SAME SIZE
[EXISTS ANOTHER OBJECT WITH THE SAME SHAPE] OR BLUE

SAME SHAPE AS THE UNIQUE LARGEST
SAME SHAPE AS ONE OF THE LARGEST

EVERYTHING IFF TRIANGLE
SAME SHAPE AS ANOTHER OBJECT WHICH IS BLUE

SAME SHAPE AS ONE OF THE LARGEST OR BLUE
ONE OF THE LARGEST OR BLUE

DOES NOT EXIST ANOTHER OBJECT WITH SAME SHAPE
SAME SIZE AS THE UNIQUE BLUE OBJECT

UNIQUE LARGEST [BLUE OR GREEN] OBJECT

Proportion Correct

0.5 0.6 0.7 0.8 0.9 1.0

Figure 4-4: Proportion correct on the first 25% of the experiment (open circle) and last
25% (closed circles) for the third of concepts hardest to learn, none of which are simple
Boolean expressions. Blue bars denote chance guessing at the correct base rate.

attempts to capture the details of the learning curves, rather than such coarse patterns.

Our modeling is in part inspired by the richness of individual subject response patterns.

Figure 4-5 shows responses to 6 examples concepts: Figure 4-5(a) and 4-5(b) from the

upper most accurate third of concepts, 4-5(c) and 4-5(d) from the middle third, and 4-

5(e) and 4-5(f) from the lower third. Each sub-figure shows a subject on a row, and their

response to each object in each set over the course of the experiment. Black squares in

this plot represent incorrect responses, and white represent correct responses. Columns

on the left of these plots correspond to early responses in the experiment, columns on the

right correspond to later ones, when correct answers for all previous (leftward) examples

have been observed. So for example, the top two rows of Figure 4-5(c) shows two subjects

who did not learn the target concept and made mistakes throughout the entire experiment.

The rows (subjects) in these plots are sorted by clustering to reveal subjects whose patterns
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Not one of largest or smallest
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There exists a blue object of the same shape
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(e)

Exactly one element is blue

Response Number
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(f)

Figure 4-5: This figure shows subjects on each row, and elements of each set in columns,
throughout the course of the experiment (left to right). The key at the bottom shows which
elements are grouped together in each set. This shows systematic patterns of mistakes
during learning, and often all-or-none acquisition by individual subjects.

group together. The blue and gray bar is a key that shows which individual responses were

responses to objects in the same set: adjecent columns with the same color in the key were

correspond to objects presented in the same set.

This plot demonstrates several interesting patterns. Even in concepts that subjects read-

ily learn (e.g., 4-5(a)), they still make occasional errors. These errors, however, appear not
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to be systematic across subjects or sets. In other situations, such as Figure 4-5(d), subjects

make highly systematic patterns of mistakes, often incorrectly labeling the same elements

of the same sets. There are three subjects in the middle of this plot, however, who appear

to correctly get the target early concept and answer perfectly for most of the experiment.

This pattern is also found in harder concepts, 4-5(e) and 4-5(f), where only a few subjects

achieve high accuracy and the rest appear to make similar patterns of responses. Note that

even though mean accuracy is low on these concepts, these figures demonstrate that one

would not want to classify these concepts as impossible for participants to learn in this

setting since some actually do learn them.

These plots also demonstrate that while the average subject may show graded per-

formance, individual subjects likely have very rule-like hypotheses in mind (Nosofsky,

Palmeri, & McKinley, 1994): at some point, subjects appear to “get it” and respond per-

fectly or nearly perfectly for the remainder of the experiment. Subject averages, though,

show more gradual patterns of learning since subjects often “get it” in slightly different

places. This means that while it may be reasonable to model averaged learning data, it is

important to recognize that a model of average learning does not necessarily represent how

individuals act. It would be revealing to try to understand what hypotheses subjects have

in mind at each point in time (e.g., M. Levine, 1966), yet also difficult since any set of

responses they make at one time is consistent with a large number of hypotheses.

Our experimental results generally suggest that there is a wide range of potential con-

cepts that people are able to learn, and in learning these concepts they show intricate,

clustered, patterns of responses. A question is then what type of cognitive system could

ever accommodate such general capacities for representation and learning? Indeed, for

these models, it appears difficult to apply standard exemplar (e.g., Medin & Schaffer, 1978;

Nosofsky, 1984) or prototype (e.g., Rosch & Mervis, 1975) models to this data. There is no

exemplar or prototype of objects that are the same color as a triangle, because this concept

is highly context-dependent. It cannot be captured by simple properties of objects, or even

by most obvious properties of sets. The use of these concepts is by design because many

concepts in language have this character or not being characterizable in terms of proto-

type or exemplar theory—it is hard to imagine a sense in which there could be a prototype
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representation of “most” or “of.”

The rest of this paper presents a learning framework that makes predictions about learn-

ing curves, conditioned on labeled data and allows us to compare different representation

systems and models on this learning data. Our learning framework explicitly represents

hypotheses at each iteration through the 25 labeled sets, and updates them according to

an ideal Bayesian analysis. We primarily vary the priors used by this model, correspond-

ing to different LOTs for expressing these types of concepts. We provide validation for

our method by showing that intuitively implausible bases for thought (such as the NAND-

basis for Boolean logic) can be excluded based on quantitative data analysis. In addition,

we vary the form of the model used in order to determine what probabilistic frameworks

best capture learning of Boolean and more difficult concepts. After all, it is possible that

people’s inferences in our experiment actually are best explained by an exemplar or proto-

type theory—perhaps their generalizations over the course of learning use some similarity

metric between sets or objects, and perhaps they never actually acquire the rich set of

structured concepts we had in mind. We begin by describing how we formalize different

representational systems for learners.

4.3 Languages of thought

Desiderata for a theory of the concepts appear daunting (see Prinz, 2004): (i) the represen-

tational system should support the type of learning that occurs in this experiment and more

generally in cognitive development; (ii) the representation system should allow suitable ex-

pressivity, including the concepts subjects learn in this experiment and those necessary for

natural language; (iii) the representation system should be able to explain the systematicity

of generalization across subjects; (iv) the representation system should ideally interface

with linguistic systems. These desiderata appear to be difficult to satisfy simultaneously—

more expressive systems are likely more difficult to do learning in, for instance.

We argue that these desiderata can all be satisfied by rule-like representations, which

we express in lambda calculus. In general, lambda calculus allows for flexability in the-

orizing that is not possible in other systems such as propositional, first-order, or second-
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order logic. Lambda calculus allows for any amount of computational power, ranging

from the expressiveness of these logical systems, up to Turing-completeness. In previ-

ous work, we (Piantadosi et al., submitted, 2008; Piantadosi, Tenenbaum, & Goodman,

in prep) and others (Zettlemoyer & Collins, 2005; Liang, Jordan, & Klein, 2010) have

argued for the developmental and computational plausibility of learning lambda calculus

expressions. In particular, previous results show that learning in lambda calculus is com-

putationally tractable, both in terms of the computational resources and amount of data

necessary (i). Moreover, lambda calculus allows for arbitrary expressivity: the choice of

cognitive primitives allows us to specify representational systems with any degree of power,

ranging from predicate logic, to Turing-complete systems (ii). In simple cases—some of

which are presented here—it reduces to formalisms previously posited in Boolean concept

learning, including propositional logic. The discrete, rule-like nature of lambda calculus

means that in an appropriate learning model, subjects may come to correct and incorrect

rules based on their observed data, potentially explaining systematicity in generalization

and mistakes (iii). Finally, lambda calculus is often used in compositional semantics (e.g.,

Heim & Kratzer, 1998; Steedman, 2000) because it provides a convenient way for captur-

ing the systematic compositional patterns of natural language. This means that our system

automatically interfaces with contemporary theories of linguistic meaning (iv).

4.3.1 Lambda calculus

Lambda calculus can be viewed as a formalism for expressing hypotheses about how a

compositional LOT may work. As such, it provides a framework-level theory, the particu-

lar instances (grammars) of which can be evaluated empirically. Lambda calculus was de-

veloped by Church (1936) as part of his work investigating computability and foundations

of mathematics. It is especially convenient here because it provide a simple and uniform

syntax for composing hypothesized elementary cognitive operations into more complex

concepts. An example lambda expression is

λ x . (and (red? x) (circle? x)). (4.4)
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Each lambda expression has two parts and represents a function. To the left of the period

is “λ x”. This signifies that the expression represents a function of the variable named x.

Here, x is an object in one of the presented sets6. To the right of the period is an expression

representing what to compute. For convenience, we write functions in prefix notation, with

the function the first symbol in the parentheses, followed by its arguments. In this case,

we first compute (red? x), a predicate that checks if x is colored red7. Then, we compute

(circle? x), which checks if x is a circle. We combine the two values (red? x) and (circle?

x) using logical conjunction, and, yielding a function that returns true iff x is a red cir-

cle. An equivalent expression in propositional logic might be written as red(x)∧ circle(x).

However, the reason not to use propositional logic is that lambda calculus provides a much

richer and more powerful formalism. Lambda expressions can manipulate other lambda

expressions and define higher-order functions (functions that manipulate functions). One

example is

λ x S . (or (blue? x) (exists (λ x2 . (and (red? x2) (equal-shape? x x2))) S)) (4.5)

Here, we have λ x S, representing that this function takes two arguments, in this case an

object denoted x and a set denoted S. This function checks if x is blue, via (blue? x). It

also computes (exists (λ x2 . (and (red? x2) (equal-shape? x x2))) S). Here, exists is a

function which takes two arguments, another predicate and a set. It implements existential

quantification, returning true if the predicate is true of any element of the set. In this case,

the predicate is (λ x2 . (and (red? x2) (equal-shape? x x2))), which is true when x2 is red

and x2 is the same shape (equal-shape?) as x. Note that this predicate depends on what x

is, and so is actually a different function depending on what object has been passed in as x.

Overall, then, (4.5) returns true if x is blue or there is a red object of the same shape.

This compositional representation system allows a relatively small number of primitives

to be used in a combinatorially large number of ways. Once a set of primitive operations

is defined, they inductively define a vast space of potential concepts. This implicitly pro-

vides an explanation for where part of the richness of cognition comes from: we are able

6We are therefore working with typed lambda calculus, in which every variable has a type.
7Predicates are given a “?” to indicate that they return Boolean values.
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SIMPLE-BOOLEAN

START → λ x . BOOL
BOOL → (and BOOL BOOL)

(or BOOL BOOL)
(not BOOL)

BOOL → (F OBJECT)
OBJECT → x
F → COLOR

SHAPE
SIZE

COLOR → blue?
green?
yellow?

SHAPE → circle?
rectangle?
triangle?

SIZE → size1?
size2?
size3?
(a)

NAND

START → λ x . BOOL
BOOL → (nand BOOL BOOL)

true
f alse

BOOL → (F OBJECT)
OBJECT → x
F → COLOR

SHAPE
SIZE

COLOR → blue?
green?
yellow?

SHAPE → circle?
rectangle?
triangle?

SIZE → size1?
size2?
size3?
(b)

Figure 4-6: Two bases for Boolean logic: (a) writes expressions using the standard logical
connectives (and, or, not), while (b) uses only one connective (not-and). Both are universal,
in that all propositional formulas can be written using either set of primitives.

to recombine our perhaps small set of cognitive operations in new ways, allowing for sys-

tematicity, productivity, and compression in conceptual space. We define a representation

language as the set of all structures which can be built in lambda calculus, assuming some

set of primitives. The structures built must respect the types of arguments each primitive

requires: exists, for instance, could not be given two Boolean arguments. To formalize this,

we use a context-free grammar.

4.3.2 Grammars for lambda calculus

An example grammar is shown in Figure 4-6(a). Each row in this table represents an

expansion rule: the left hand side is a type and the right hand side is an expression that

that type expand to. Thus, for instance, we could create the expression λ x . (or (green?

x) (blue? x)) by first expanding the START symbol with START → λ x . BOOL. We then

expand the BOOL in the right hand size of λ x . BOOL to (or BOOL BOOL), yielding the

intermediate expression λ x. (or BOOL BOOL). Then, each of these BOOLs are expanded

to (F x) yielding λ x. (or (F OBJECT) (F OBJECT)) . Finally, the first F is expanded
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to COLOR, then green? and the second F is expanded to COLOR and then blue?. Both

OBJECTs are expanded to xes, yielding the full expression.

In general, we expand expressions until they contain no more nonterminals, the upper-

case symbols on the left side of this grammar. These grammars are meant to capture a core

generative capacity of learners—that learners can in principle construct a huge number of

potential concepts. Note that the majority of rules in the grammar are actually methods

of accessing perceptual primitives. The core logical or computation parts of the grammars

are relatively small. In this case, there are just three logical connectives for Boolean ex-

pressions. In practice, these grammars more accurately model people’s learning curves if

we additionally include rules START → true and START → f alse, corresponding to trivial

concepts that are always true or false. These rules are included in all grammars but, for

conciseness, not shown.

There are many other ways to write down expressions in Boolean logic, corresponding

to different languages of thought. Figure 4-6(b) shows one other: the NAND grammar

uses only a single logical connective, NAND, yet can provably express all concepts the

SIMPLEBOOLEAN grammar 4-6(a) can8. These two grammars provide distinct representa-

tional hypotheses of equivalent computational power, but distinct computational processes.

Importantly, 4-6(a) and 4-6(b) measure simplicity in different ways. A concept like red and

circle might be written using the SIMPLEBOOLEAN grammar as

λ x . (and (red? x) (circle? x)). (4.6)

Using the NAND basis, this would have to be written as

λ x . (nand true (nand (red? x) (blue? x))). (4.7)

Expressing this concept in the NAND basis requires two logical connectives, and an ex-

pansion to true; expressing it in SIMPLEBOOLEAN requires only one logical connective. In

contrast, the concept not [red and circle] requires only one logical primitive in NAND and

8We include true and false as expansions of BOOL only for the NAND grammar, because NAND requires
true in order to express the equivalent of not.
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SIMPLE-FOL
(SIMPLE-BOOLEAN rules not shown)

SET → S
→ (non-Xes S)

BOOL → (forall F SET)
(exists F SET)

(a)

FOL
(SIMPLE-BOOLEAN rules not shown)

F → (λ xi . BOOL)
SET → S

→ (non-Xes S)
BOOL → (forall F SET)

(exists F SET)
(size>= OBJECT OBJECT)
(size> OBJECT OBJECT)
(squal-size? OBJECT OBJECT)
(equal-color? OBJECT OBJECT)
(equal-shape? OBJECT OBJECT)

(b)

Figure 4-7: Two grammars for generating expressions with quantification. Both build on
FULLBOOLEAN by adding primitives: (a) adds quantifiers, and (b) adds quantifiers and
lambda abstraction, allowing for quantification over arbitrary predicates.

two in SIMPLEBOOLEAN. As above, this means that the relative difficulty of concepts may

be informative about which representational system better-approximates human notions of

simplicity. These two grammars also make different predictions about how the difficulty

of red and circle is related to other concepts: SIMPLEBOOLEAN predicts that its difficulty

should be predicted by the difficulty of using the operation and, whereas NAND predicts

this difficulty should depend on the difficulty of using nand twice. Teasing apart the types

of grammars in Figure 4-10 is the goal of the computational model presented in the next

section.

We can also define grammars that go beyond simple Boolean logic. Figure 4-7(a),

defines a grammar that involves simple quantification. Here, we introduce two more func-

tions that return truth values, exists and forall. These correspond to the standard logical

quantifier ∃ and ∀. These quantifiers are somewhat nonstandard in that they operate only

over a very restricted domain, the objects in the current set. These functions themselves

take a function, F, as an argument, as well as a set. So exists returns true if its argument F

evaluates to true on any element of the set; forall returns true if F evalutes to true on all

elements of the set. We must therefore include sets to quantify over. Here we choose two

that are natural: the set of all elements in the current set, S, and the set of all elements in

the context other than x, (non-Xes S). The nonterminal F expands as in SIMPLEBOOLEAN

to some set of primitive functions. Thus we can write concepts such as There exists a red
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object:

λ x . (exists red? S). (4.8)

All elements in a set would be “wudsy” under this concept, if the set contained a single red

element. Similarly, we can write concepts like There exists a red object other than x:

λ x . (exists red? (non-Xes S)). (4.9)

Note that in SIMPLE-FOL the only predicates that can quantify over S are those that F can

expand to—namely the primitive feature accessors for size, shape, and color.

A much more interesting kind of quantification can be created if the grammar can po-

tentially define new functions from sets to objects. FOL is one such grammar, where now F

can expand to a new lambda expression using the rule F → (λ xi . BOOL) . Such a grammar

is shown in 4-7(b). This means we can create concepts like (4.5) above, or,

λ x S . (exists (λ x2 . (and (red? x2) (equal-shape? x x2))) S). (4.10)

Here, the F on the right hand size of the rule for exists was expanded to a new lambda

expression, (λ x2 . (and (red? x2) (equal-shape? x x2))). We note one small technical com-

plication, which is that when new lambda expressions are created, they introduce a new

bound variable, xi (for i = 1,2,3, . . .). To deal with this, any time a lambda expression is

generated, we also add a rule that allows OBJECT → xi. That is, inside the BOOL gen-

erated on the right hand side of the first rule of FOL, we modify the PCFG to generate

OBJECT → xi. For simplicity, we make all expansions of OBJECT to x or any of the ex-

isting xi equally likely. In this setup, our actual grammar is not a context-free grammar, but

is closely related. Once new variables xi are introduced, it is natural to include comparison

operators such as size> and equal-shape?, which respectively check if an object is larger

than another object or if two objects are the same shape9. In this example, we therefore ex-

pand the innermost lambda expression by choosing rules for and, red?, and equal-shape?,

and expanding OBJECT to x in some places and x2, the variable introduced by the λ x2,

9In the case of SIMPLEBOOLEAN, there is no way to call functions on anything except x, meaning that it
would be useful to have primitives for size, shape, and color comparison.
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in others. Unlike the Boolean languages above, the FOL languages add expressive power:

concepts involving exists and forall cannot be written down without quantifiers. As a repre-

sentational theory, they therefore predict that people should be able to go beyond Boolean

logic to learn these types of concepts that involve quantification.

4.4 Inference and the language of thought

So far we have defined several languages, spaces of lambda expressions compositionally

built out of a given set of primitives. Our goal in this section is to develop an inferential

theory around these representations. For learners, such rule-based concepts are only cogni-

tively useful if they can be inferred from data. In other work we have argued that learning in

this type of system predicts acquisition patterns and rich adult-knowledge in number-word

learning (Piantadosi et al., submitted), and also can explain learning of multiple aspects

of quantifier meaning (Piantadosi et al., in prep). We first present a learning theory that

captures how expressions in a grammar like those above may be learned from labeled data.

This is meant to model subjects’ cognitive processes in the experiment: they take labeled

examples and infer a target concept. On top of this model, we then introduce a Bayesian

data analysis model (A. Gelman, Carlin, Stern, & Rubin, 2004), which takes subjects’ re-

sponses and determines the probability of any particular representational system, given the

structure of the learning model. This allows us to evaluate the ability of any grammar to

explain the human learning curves.

Figure 4-8 shows the a graphical model (Pearl, 1998) that describes the relationships

between the random variables in the learning model. The blue nodes in this figure denote

variables that are known to learners. Let si and li respectively denote the i’th set of objects

observed and their corresponding labels. For i < n, the sets and the labels are both known

to learners since they have been provided feedback on previous sets. The main variable of

interest, h, is a lambda expression in some representation language, G. The true value of

h is the lambda expression that generates the true / f alse labels for each past set and the

current set sn. It is assumed that learners know a grammar G that generates expressions

h, as well as variables that parameterize the likelihood (α, β, γ), and the prior (D∗∗), both
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Figure 4-8: Graphical model representing the variables of the learning model. Here, the
expression for the target concept h depends on Dirichlet parameters D∗∗ and the grammar
G. The specific labels observed for the i’th object of the n’th set depend on the hypothesis,
set, and likelihood parameters, α and γ. In responding, the labels for the n’th set of objects
are not observed, but the n’th set is.

of which are discussed later. Thus, learners must take their grammar and the previously

observed labels to infer a hypothesis h, and apply this to the current set sn to find ln. We

first show how the probability of h can be computed given any set of previously labeled

data.

For convenience, denote the sequence of sets (s1,s2, . . . ,si) by~si and the corresponding

sequence of sets of labels~li. We are interested in scoring the probability of h given these

previously observed sequences,~sn−1 and~ln−1, and the other known variables. Using Bayes

rule, this probability is given by

P(h |~sn−1,~ln−1,G,D∗∗,α,γ,β) ∝ P(h | G,D∗∗)P(~ln−1 | h,~sn,α,γ,β)

= P(h | G,D∗∗)
n−1

∏
i=1

P(li | h,si,α,γ,β).
(4.11)

Equation (4.11) makes use of several natural conditional independences shown in Figure 4-

8, for instance, the fact that ln is independent of G once the hypothesis h is known, and that

the li are independent once h is known. This equation has two parts, a prior and likelihood,

which we now address in turn.
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4.4.1 Priors on expressions

The prior P(h | G,D∗∗) embodies the core assumptions that learners bring to learning. Here

we choose the prior to capture the assumption that learners should prefer representationally

simple hypotheses. What is simple may depend on several factors: simplicity might depend

on an expression’s description length, corresponding to the number of primitives used in

the expression h. Or, it may not be the case that all primitives are equally costly, meaning

that the prior might depend on which primitives are used, not just how many. Additionally,

Goodman et al. (2008) show that a model that prefers re-use can capture selective attention

effects in concept learning, where subjects prefer concepts that use the same dimension

(e.g., color) multiple times to those that use different dimensions. Thus, circle or square is

easier than circle or red since the former references two shape dimensions, and our prior

should potentially incorporate notions of re-use.

One simple way to capture all of these factors is to first imagine converting one of the

above context-free grammars (e.g., Figure 4-6(a)) to a probabilistic context-free grammar

(PCFG). This amounts to assigning a probability that each nonterminal will be expanded

according to each of its rules (see Manning & Schütze, 1999). For instance one could make

all rule expansions equally likely, meaning that learners would have equal preferences for

using any primitive (given a nonterminal type). However, we might also assign the proba-

bilities non-uniformly, corresponding to varying expectations about the probability of any

particular expansion or primitive. Any such choice of probabilities induces a distribution

on expressions, with the probability of any expression given by product of the probabilities

of each of its expansions. Following Goodman et al. (2008) and M. Johnson, Griffiths, and

Goldwater (2007) we use a variant of PCFGs that potentially encourage re-use of rules: a

multinomial Dirichlet PCFG (see also O’Donnell et al., 2009). This is best understood as

integrating over the rule production probabilities, using a Dirichlet prior on the (multino-

mial) rule expansions. Suppose that CAB(h) is the count of how many times an expression h

uses the rule A → B, and that CA∗ is a vector of counts of how many times the nonterminal
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A expands to each B. Then, for a given grammar G,

P(h | D∗∗,G) ∝ ∏
nonterminals A

β(CA∗(h)+DA∗)

β(DA∗)
, (4.12)

where DA∗ is a vector of parameters of the same length as CA∗, and D∗∗ is the set of all

Dirichlet parameters (for each A). Here, β is the multinomial beta-function, which is given

in terms of the Gamma function:

β(c1,c2, . . .cn) =
∏n

i=1 Γ(ci)

Γ(∑n
i=1 ci)

. (4.13)

This prior uses a single Dirichlet-multinomial for each set of rule expansions for each

nonterminal A. This Dirichlet-multinomial is parameterized by a set of real numbers, DA∗.

If we re-normalize DA∗, we get the expected probability of each rule expansion from A,

using the basic properties of the Dirichlet-distribution. Importantly, however, the Dirichlet

parameters also characterize re-use: if the Dirichlet parameters are small in magnitude,

then observing a rule used once will substantially increase its probability of being re-used

in the future. In contrast, if the magnitude of DA∗ is large, then adding additional rule

counts does not change the probability an expansion will be re-used, so the model does not

prefer re-use strongly. When DA∗ = 1 for all A, this prior recovers the rational rules model

of Goodman et al. (2008). By doing inference over the D∗∗ we are therefore able to infer

both the relatively probabilities of each rule expansion, and how much their probabilities of

use in the future are influenced by whether or not they were used already in an expansion.

We also include one more parameter, a temperature T , which controls the strength of

this prior by raising it to the 1/T ’th power. As T → 0 the prior assigns most probability

mass to short expressions, and as T → ∞ the prior approaches a uniform distribution. For

notational simplicity, this is left out of our equations.

4.4.2 The likelihood of data given an expression

The likelihood P(~ln | h,~sn,α,γ,β) in Equation (4.11) quantifies how well each expression

h explains previously observed labels. Following the set-up of the experiment, we can
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consider sets of objects and learners who have observed true and f alse labels on some col-

lection of previously observed data points. Given h, we assume labels are noisily generated

for the current set by choosing the correct label (according to h) for each item with high

probability α, and with probability (1−α) choosing from a baseline distribution on labels,

parameterized by γ. Thus, when the labeling is not done according to h, true is chosen with

probability γ and f alse is chosen with probability (1− γ). This captures the intuition that

the labels typically come from h, but occasionally noisy labels are generated from some

baseline distribution. This process is therefore parameterized by two variables, α and γ.

This process gives that

P(li = x | h,si,α,γ) =



α+(1−α) · γ if h returns x for si and x = true

α+(1−α) · (1− γ) if h returns x for si and x = f alse

(1−α) · γ if h returns y 6= x for si and y = true

(1−α) · (1− γ) if h returns y 6= x for si and y = f alse.

(4.14)

Equation (4.14) simply adds up all the ways that x could be generated for si. When x is the

correct label generated by h, then x could be generated by labeling from h with probability

α, or by choosing from the baseline distribution with probability (1−α). This choice from

the baseline depends on whether x is true (probability γ) or x is f alse (probability 1−γ). If

x is not the label returned by applying h to si, then it has to have been generated from the

baseline distribution. This equation embodies the assumption that learners reason about the

statistical process that generates their observed data, allowing them to imagine how likely

any particular hypothesis h would make the observed data, given the noisy labeling process.

Equation (4.14) allows us to score the likelihood of the label for any particular labeled

set of objects. But in the experiment, subjects see a sequence of labeled sets and objects.

It is likely that learners have better memory for more recent examples, so we include a

memory-decay on the likelihood, so that learners prefer more strongly to get more recent

examples correct. Motivated by power law decays in memory (Anderson & Schooler,
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Figure 4-9: Learning curves with expressions from FOL-OTHER, with α = 0.75,γ =
0.5,β = −0.1. The top six hypotheses are shown in color and all other hypotheses are
in gray.

1991), this takes the form of a power law decay on the log likelihood:

logP(~ln | h,~snα,γ,β) =
n

∑
i=1

(n− i+1)−β logP(li | h,sn,α,γ) (4.15)

Here, we have weighted the likelihood of an individual set from (4.14) by a power-law term,

(n− i+1)−β which makes earlier data less important. This introduces one free parameter,

β> 0, which controls the amount of memory-decay in the model. For β> 0, learners prefer

hypotheses that explain more recent data, but as β → 0, this preference is reduced.
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4.4.3 The dynamics of LOT learning

In this section, we illustrate some simple dynamics of learning with the prior and likeli-

hood described above. In its current form, this learning model takes labeled examples and

returns a distribution over hypotheses, which are expressions in a representation language.

Figure 4-9 shows the posterior probability of several hypotheses as the amount of training

data increases for four target concepts. This figure collapses across logically equivalent

hypotheses: for instance, (λ x S. (and (blue? x) (circle? x))) is logically equivalent to (λ

x S. (and (circle? x) (blue? x))). We have merged both into a single line meaning that

these plots essentially show behavioral predictions, collapsing across the specific form of

the representation. This figure shows hypotheses from the FOL grammar shown in Figure

4-7(b).

These plots were produced by running 250,000 steps of the Metropolis Hastings algo-

rithm (Metropolis et al., 1953; Hastings, 1970; MacKay, 2003) on each amount of data,

ranging through the 25 sets run in the experiment. At each amount of data, the top 250

hypotheses were stored, forming a large finite hypothesis space that was used for all fur-

ther analysis. This means that any hypothesis that was found to be high probability at any

amount of data was re-evaluated on the entire set of data, producing the learning curves

shown in Figure 4-9.

These plots illustrate several important aspects of the learning dynamics. First, they

show that in many cases, the learning model can arrive at the correct concept. This is true

even when the target concept is quite complex: for instance, in the unique largest (Figure

4-9(b)) the model correctly constructs a lambda expression that quantifies over all elements

other than x and asserts that all other objects x2 are strictly smaller than x. In this sense, the

learning model “really works” and is capable of narrowing down a vast space of hypotheses

using only a few labeled examples—in this case, around 30 labeled sets.

Second, these plots demonstrate the model’s simplicity bias: the expressions that are

learned early are often simplified approximations of the correct target concept. For in-

stance, for circle and not blue (Figure 4-9(a)) the model initially learns circle; for there ex-

ists a smaller blue object the model first learns to pick out objects of size 3, the maximum

139



size, then picks out objects that have a smaller object in the set, and finally it converges on

the correct answer. Such learning patterns demonstrate that “errors” subjects make in the

experiment may be rational: the ideal learner does not immediately jump to there exists a

smaller blue object when shown only two examples. Instead, simpler and thus more likely

a priori hypotheses must be eliminated first.

These plots also illustrate the fact that for any given set of data, there are relatively few

hypotheses relevant at any given time. Nearly all the probability mass in the model is split

between at most the top 10 hypotheses. This is fortunate for a theory of concept learning

based in such an unrestricted space, because it means that humans would only need to

consider in depth a handful of relevant hypotheses at any given stage of learning. It is also

fortunate for performing inference in this model: the full distribution on hypotheses can be

approximated reasonably well using the top 10 or 100 hypotheses at each point in time.

Figure 4-9(d) shows an interesting concept that is not easily expressed in the repre-

sentation language FOL. Expressing exactly one other... requires two quantifiers in FOL

and this intuitively should take a considerable amount of data to justify. Indeed, with this

amount of data the model does not learn the correct concept, but comes to there exists an-

other object of the same color. This shows that the representation language chosen may

substantially influence what concepts are easily learnable. In the next section, we formalize

a Bayesian data analysis method for taking these types of learning curves and predicting

human response patterns in the experiment. This will allow us to compare different repre-

sentation languages, and make inferences about unknown parameters in the model.

4.5 Inferring the language of thought

The learning model described in the previous section specifies a probability of any ex-

pression, given some set of labeled data. This is intended as our psychological theory of

how human learners react to evidence, given the assumed structure of the model, choice of

grammar, and choice of parameter values. However, we are really interested in the right

representational system—what grammar G and grammar parameters D∗∗ are most likely,

given people’s learning curves. We structure this problem as a Bayesian data analysis prob-
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lem (A. Gelman et al., 2004).

4.5.1 Inference for data analysis

For each item in each set (for a given concept and list in the experiment) we observe a

number of counts of how often subjects respond true and f alse. Let rn(x) be the number

of subjects who labeled set sn with the set of labels x, and R the set of all human responses.

In analyzing the data, we are interested in scoring the probability of any particular set of

parameters given the subject responses. By Bayes rule, the probability

P(G,D∗∗,α,γ,β | R,~sn,~ln) ∝ P(R | G,D∗∗,α,γ,β,~sn,~ln)P(G,D∗∗,α,γ,β). (4.16)

The first term here is the likelihood of the human responses for any given setting of the pa-

rameters. Under the assumption that subjects choose labelings according to the predictions

of the learning model, this term is a multinomial likelihood,

P(R | G,D∗∗,α,γ,β,~sn,~ln) =
n

∏
i=1

∏
x

[
P(li = x |~si−1,~li−1,G,D∗∗,α,γ,β)

]ri(x)
(4.17)

where product over x runs over all possible labelings x of si (all values of li). Equation (4.17)

says that the probability of all responses according to the learning model is a product over

all sets observed, and for each set a product over all possible labelings raised to the number

of times that labeling is observed in subjects. The key term of (4.17) is the probability

of any labeling given all previous data, P(li = x | ~si−1,~li−1,G,D∗∗,α,γ,β), since this is

the model’s predicted distribution of responses to set i. This term is important because

it characterizes the model predictions: the model works well if it generalizes like people

do, labeling new data from typically ambiguous evidence in the same way as our study

participants. The target expression h does not appear here because the right h is not known

to participants; however, it can be computed using the previously defined prior (4.12) and
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likelihood (4.14):

P(li = x |~si−1,~li−1,G,D∗∗,α,γ,β)= ∑
h∈G

P(ln = x | h,si,α,γ,β)P(h |~sn−1,~ln−1,G,D∗∗,α,γ,β).

(4.18)

Intuitively, subjects’ distribution of guesses at ln is given by the probability of ln given each

hypothesis h, times the probability that h is correct according to all previously labeled data.

The second term in Equation (4.16) is the prior on parameters. We choose these priors

to have a very simple form: D∗∗ is chosen according to a gamma(1,2) prior and the priors

on α, β, and γ are taken to be uniform. In practice, the amount of data the model is fit to

makes these priors largely irrelevant.

Together, these parts of Equation (4.16) specify a probabilistic data analysis model

that allows us to use the learning model to infer a distribution on unknown parameters

that characterize the grammar and the likelihood. Until this point, we have presented this

model as though there is only one concept and list; this was for notational convenience since

otherwise all variables would have to be indexed by a concept (and potentially a list). Very

importantly, however, the main parameters of interest—D∗∗, α, γ, β, and most importantly

G—are psychological variables that are true across concepts. Most of the power of our

analysis comes from finding parameters that work for a wide variety of concepts. So in

reality, (4.17) involves a product over concepts10.

4.5.2 Data analysis algorithm

Full Bayesian model comparison would compute P(G | R), the probability of any grammar

given all responses, marginalizing over all the unknown parameters; this is unfortunately

an intractable integral. We therefore use two other standard measures: first, we compute

the Bayesian Information Criterion (BIC), which scores how likely the data is according

to the model, penalizing for the number of free parameters (Schwarz, 1978)11. The BIC is

convenient because it relies only on the maximum-likelihood fits of parameters. If PML is

10And so~sn and~ln must also be indexed by concept and list correspondingly.
11BIC is similar to Akaike Information Criterion (Akaike, 1974), except that it more strongly penalizes

free parameters and has a Bayesian justification.
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the probability of the responses fitting D∗∗, α, γ, and β, then, the BIC is given by

BIC(G) =−2logPML + k logn, (4.19)

where k is the number of free parameters, and n is the total number of data points. This is

essentially the probability that the best fitting parameters assign to the data, penalized by

the number of free parameters.

The second measure is more direct: the likelihood of held-out data. We only train the

model (fit the parameters) on one of the two lists for each concept. The held-out scores

represent the ability of the model to predict human learning curves on entire sequences of

data that it has received no training on. This does not directly penalize free parameters

since over-fitting will result in poor held-out performance. We note that the two lists of

sets for each concept are generated at random, meaning that training on one list provides

no information about the other list, other than the parameter values in the grammar and

likelihood. This therefore provides a strong test of each model or grammar’s performance

and is the primary method we use for model comparison.

This still leaves the issue of how to fit the model parameters. In the data analysis al-

gorithm, this is a doubly intractable problem, with an infinite search over hypothesized

expressions in the grammar for each of an infinite number of choices of the parameter

values. We approximate a solution to this problem by first constructing a finite space of hy-

potheses to approximate the infinite one, and then using this finite space in our data analysis

algorithm. To make the finite space, we run 100,000 Markov Chain Monte Carlo (MCMC)

steps on each concept, list, and amount of data, using a version of the Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970; MacKay, 2003). These MCMC runs

search over expressions using typical values of the likelihood parameters and D∗∗ = 1,

and produce a finite sample of hypotheses. Any hypothesis that occurs in the top 100 hy-

potheses for any amount of data on a particular concept and list is stored and added to the

finite hypothesis space for the model. Thus, the finite space includes a large number of

hypotheses that are high-probability at some point throughout the experiment. This is jus-

tified because the learning results above (Figure 4-9) shows most hypotheses are very low
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probability at each amount of data, so the top 100 form a reasonable approximation to the

infinite space.

Given this finite space of hypotheses we then do MCMC to approximately fit the pa-

rameters α, β, γ, and D∗∗. To do this, we run 6000 iterations, each alternating between 10

MCMC steps over the likelihood parameters, and 10 MCMC steps over the prior param-

eters. In trial runs, most of the “burn in” time was used increasing the prior temperature

parameter, which we initialize to a higher value of 3.5. This, along with hand-tuned pro-

posal distributions, means that the model mixes within several hundred of the outer-loops,

or several thousand total MCMC steps. Because we do inference over the prior but our

finite space was constructed with a particular prior, we also update the finite hypotheses by,

every 5 steps, sampling 10,000 times from the prior and adding the top 25 hypotheses to the

finite space. This keeps the finite approximation “current” to the inferred prior parameters,

and generally gives replicable results across multiple inference runs.

To summarize, we have defined two statistical models. The first captures the behavior

of an ideal learner over the space of lambda expressions, showing how for any particular

choice of its prior and parameter values, one can compute predicted learning curves. To do

this, we formalized a prior probability on lambda expressions, and a likelihood measuring

how well each lambda expression explains previously observed labels on sets. By trading

rationally between the prior and likelihood, we construct an idealized learning model on

lambda expressions. In this section, we showed how to take the output of the learning model

and predict the distribution of human responses. We can use this ability to predict human

responses to compare representation languages: for each language G we can compute a

BIC score and a held-out likelihood score, corresponding to performance on trained and

untrained data. This ability to assign each potential LOT a number representing how well

it predicts human learning will allow us to work backwards from human responses to see

which representational systems best explain human learning curves. In the next section, we

first apply this to simple Boolean representation languages, before moving on to languages

with quantification.
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4.6 Boolean concept analysis

The Boolean concepts studied here are shown by the green lines in Figures 4-2 to 4-4.

These target concepts involved simple conjunctions and disjunctions of features, as well

as concepts that most naturally involve other logical connectives. We analyze Boolean

concepts first because they present a simple test case with several intuitively implausible

bases that we show can be ruled out using our data analysis method. We first describe the

Boolean languages compared here.

4.6.1 Boolean languages

First, we include the two grammars discussed earlier, SIMPLEBOOLEAN and NAND. The

SIMPLEBOOLEAN grammar was the one used by (Feldman, 2000) and in addition corre-

sponds naturally to the way that these logical words are used in natural language. The

NAND basis is natural because it corresponds to a minimal set of logical operations12. A

cognitive scientist who had strong expectations that the set of cognitive primitives was

small, simple, and non-redundant might find this the most plausible basis. The NOR

grammar, including only the operation not-or is similarly minimal and is also included

for comparison. There are several natural extensions of SIMPLEBOOLEAN to consider.

First, we might add logical operations such implication (implies or ⇒) or the biconditional

(iff or ⇔). These operations are redundant in that they can be written using primitives in

SIMPLEBOOLEAN: implies is λ x y . (or (not x) y), and iff is λ x y . (or (and x y) (and (not

x) (not y))). The “claim” of a representational system including these primitives is that they

are so simple for learners, they must be cognitive primitives rather than compositionally

derived from other connectives. We include three additional languages, shown in Table

4.1: IMPLIES adds implies, BICONDITIONAL adds iff , and FULLBOOLEAN adds both.

All these languages allow for free-form recombination of logical connectives in that

there are no restrictions on the compositional structure. However, there are ways of writing

Boolean expressions that force everything into a normal form. Figure 4-10(a) shows one

example: a DNF grammar for disjunctive normal form, in which all concepts are written as

12NAND is equivalent to a system expressed using only the Sheffer stroke (Sheffer, 1904).
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Language Description
SIMPLEBOOLEAN and, or, not, used in any composition.
IMPLICATION Same as SIMPLEBOOLEAN, but with log-

ical implication (⇒).
BICONDITIONAL Same as SIMPLEBOOLEAN, but a bicon-

ditional operation (⇔).
FULLBOOLEAN Same as SIMPLEBOOLEAN, but with log-

ical implication (⇒) and biconditional
(⇔).

HORNCLAUSE Expressions must be conjunctions of
Horn clauses (e.g., (implies (and (and a
b) c) d)).

DNF Expressions are in disjunctive normal
form (disjunctions of conjunctions).

CNF Expressions are in conjunctive normal
form (conjunctions of disjunctions).

NAND The only primitive is NAND (not-and).
NOR The only primitive is NOR (not-or).
ONLYFEATURES No logical connectives; the only hypothe-

ses are primitive features (red?, circle?,
etc).

RESPONSEBIASED Learners only infer a response bias on
true / f alse.

Table 4.1: Summary of Boolean languages compared here.

disjunctions of conjunctions. This might be natural if people paid attention to conjunctions

of features, and preferentially stated concepts in terms of these conjunctions; indeed, this

system was the representation language used by Goodman et al. (2008). Similarly, we can

also consider a CNF grammar that expresses concepts as conjunctions of disjunctions.

Next, Figure 4-10(b) shows a grammar for conjunctions of Horn clauses (Horn, 1951;

McKinsey, 1943), which generate expressions of the form x1 ∧ x2 ∧ . . .∧ xk → y. Horn

clauses are often used in artificial intelligence systems due to their desirable computa-

tional properties (e.g., Hodges, 1993; Makowsky, 1987; S. Russell & Norvig, 2009, sec-

tion 7.5.3). In particular, they support efficient algorithms for inference and satisfiability

(Dowling & Gallier, 1984; S. Russell & Norvig, 2009), and thus provide a plausible basis

for Boolean reasoning in any computational system. Indeed, recent cognitive models have

assumed the plausibility of Horn clauses in human learning of theories about the world

(Katz et al., 2008; Kemp et al., 2008a).
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DNF

START → λ x . DISJ
DISJ → CONJ

(or CONJ DISJ)
CONJ → BOOL

(and BOOL CONJ)
BOOL → (F OBJECT)

(not (F OBJECT))
OBJECT → x
F → COLOR

SHAPE
SIZE

COLOR → blue?
green?
yellow?

SHAPE → circle?
rectangle?
triangle?

SIZE → size1?
size2?
size3?
(a)

HORN CLAUSE

START → λ x . CONJ
CONJ → CLAUSE

(and HORN-CLAUSE CONJ)
CLAUSE → (implies CONJ PRIM)
CLAUSE → (implies CONJ f alse)
PRIM → (F OBJECT)
OBJECT → x
F → COLOR

SHAPE
SIZE

COLOR → blue?
green?
yellow?

SHAPE → circle?
rectangle?
triangle?

SIZE → size1?
size2?
size3?

(b)

Figure 4-10: Two additional bases for Boolean logic. The DNF grammar expresses con-
cepts as disjunctions of conjunctions; the HORNCLAUSE grammar expresses concepts as
conjunctions of Horn clauses.
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For baseline measures, we include ONLYFEATURES which corresponds to learners with

no logical connectives, but only access to primitive features. Poor performance of this

would indicate Boolean compositional abilities, as opposed to an ability to just select fea-

ture values. An even simpler base, RESPONSEBIASED corresponds to learners who only

try to learn the correct response bias, which is equivalent here to a representation language

who only expressions are true and f alse.

Finally, we evaluate several other types of models, described in the Appendix. First,

an EXEMPLAR model measures each set’s similarity to all previously observed sets and

attempts to generalized previous labels based on this similarity. There is a LOGISTIC model

that performs a simple logistic regression within each concept and list, providing a type

of “psychophysicist’s baseline”: if we can predict learning curves better than a freely fit

logistic curve, then that provides good evidence for a real representational theory13. We

also include a version of the model that incorporates no prior: the UNIFORM model has an

improper, flat prior on expressions, corresponding to no prior bias for simplicity. As with

the LOT models, the free parameters (e.g., the distance metric for the EXEMPLAR model)

are fit using Bayesian data analysis.

4.6.2 Model comparison results

Table 4.2 shows a model comparison of these representation languages in predicting human

responses. This table shows the held-out likelihood score (H.O.LL) and BIC, described

above. Better model fit on the held-out likelihood corresponds to numbers closer to posi-

tive infinity; better model fit on BIC corresponds to lower numbers. The main measure we

use for evaluating languages is held-out likelihood, since this quantifies generalization per-

formance and does not require any additional assumptions about the models being tested.

The next column gives the model’s number of free parameters, counting the several

parameters in the likelihood and the D∗∗ parameters of the grammar. The last two columns

of Table 4.2 give two intuitive measures of the model’s performance. R2
response gives the

model’s overall R2 value to individual responses, quantifying the amount of variation in

proportion of people who select true for each single response that can be explained by the
13Note that this procedure cannot generalize to new, held-out lists or concepts.
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Grammar H.O. LL BIC FP R2
response R2

mean
FULLBOOLEAN -16296.84 33758.22 27 0.88 0.60
BICONDITIONAL -16305.13 33653.88 26 0.88 0.64
CNF -16332.39 34094.68 26 0.89 0.69
DNF -16343.87 33595.98 26 0.89 0.66
SIMPLEBOOLEAN -16426.91 34050.60 25 0.87 0.70
IMPLIES -16441.29 34030.89 26 0.87 0.70
HORNCLAUSE -16481.90 33989.62 27 0.87 0.65
NAND -16815.60 35082.25 24 0.84 0.61
NOR -16859.75 35415.95 24 0.85 0.58
UNIFORM -19121.65 39168.89 4 0.77 0.06
EXEMPLAR -23634.46 46605.23 5 0.55 0.15
ONLYFEATURES -31670.71 64519.83 19 0.54 0.14
RESPONSE-BIASED -37912.52 75930.60 4 0.03 0.04

Table 4.2: Model comparison results on all Boolean concepts.

model. R2
mean gives the model’s ability to predict each concept’s average difficulty, across

all concepts. These correlation measures provide a more intuitive way of understanding the

relative performance of each model and are computed only on held-out data.

Table 4.2 shows grammars sorted by the main measure, held-out likelihood. The

worst performing models and grammars are ones that lack structured representation: the

EXEMPLAR model, ONLYFEATURES grammar, and RESPONSE-BIASED grammar. The

best of these, the EXEMPLAR model, can explain only around half of the variance in human

responses. The failure of these models provides evidence that such unstructured approaches

miss fundamental facts about people’s patterns of generalization. The next worst model is

the UNIFORM model that has no simplicity bias14. Again, this provides strong evidence for

a simplicity bias in concept learning, in line with Feldman (2003c, among others).

Next, we have the NAND and NOR grammars. These fare poorest of the real rep-

resentation languages, providing some validation for this approach since we can rule out

languages with the wrong inductive bias, even if they have the necessary computational

power. In some cases the R2 measures for these poor performers are substantial. NOR

for instance has an R2
response that is only 0.03 away from the best grammar, even though its

held-out likelihood is several hundred points worse. This is likely because R2 is not as sen-

14The language used in this model was the best-performing language, FULLBOOLEAN.
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sitive a measure as the likelihood scores, and the R2 of the best grammars is upper-bounded

by the noise of the responses. Additionally, many simple functions like λ x . (red? x) can be

directly expressed in NAND and NOR grammars, and others like λ x . (not (red? x)) can

be relatively easily expressed: λ x. (nand true (red? x)). If people spend much of their time

considering these very simple concepts, then most of their responses will not distinguish

NAND from, say, FULLBOOLEAN.

Next, we have the HORNCLAUSE, which provides a relatively poor model of people’s

inductive bias in this task. This indicates that this common representation for AI and ma-

chine learning research does not accurately capture human inductive biases. The next

best languages are IMPLIES and SIMPLEBOOLEAN. SIMPLEBOOLEAN allows for free-

form combination of and, or, and not; IMPLIES additionally includes logical implication.

The fact that SIMPLEBOOLEAN performs worse than languages with more primitives like

FULLBOOLEAN and BICONDITIONAL means that people likely have a richer set of logi-

cal connectives than just and, or, and not. In particular, the grammars that perform best

according to Table 4.2 are the grammars that add iff to SIMPLEBOOLEAN, as well as the

normal-form grammars, DNF and CNF. The largest differences between languages with

an without iff appears to be in concepts that require exclusive-or (XOR), such as red XOR

circle15. Even for those concepts, differences in learning curves for languages with and

without iff are not very large, resulting in very close BIC and held-out likelihood scores.

The best grammar, FULLBOOLEAN, scores about 8 points better on held-out likelihood

than its closest competitor, BICONDITIONAL, and about 160 points worse than the best

language in terms of BIC, DNF. This indicates that the choice of “best” grammar depends

somewhat on the measure chosen; here we choose held-out likelihood since it makes the

fewest assumptions. However, the convergence of scores for these top grammars indicates

that the data set does not have sufficient resolution to distinguish among the best performing

grammars.

In some sense, we may take the held-out data scores as “final” measures of how well

each grammar performs. However, we might also wonder if these differences between the

15This indicates, concepts with XOR will be important for future work testing different representational
bases.
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top grammars are statistically significant—after all, we tested only finitely many concepts

out of an infinity of possible concepts. Also, our inference algorithms make several approx-

imations, and it would be good to know if these approximations are good enough to main-

tain sensitivity to 8 point differences in likelihood. First, we computed a Wilcoxon signed-

rank test, a nonparametric paired comparison, on the likelihood that each pair of models as-

signed to each held-out data point. With Bonferroni correction for multiple comparisons16,

this reveals no difference between the FULLBOOLEAN language and BICONDITIONAL,

CNF, DNF, or SIMPLEBOOLEAN. However, it does show that FULLBOOLEAN per-

forms significantly better than the others (p < 0.05, corrected)—in particular, IMPLIES,

HORNCLAUSE, NAND, and NOR. We also ran the inference algorithms multiple times

on the set of Boolean concepts17. This revealed some variation in the order of the top four

grammars, but consistency in ranking these four better than the rest, typically with either

DNF, BICONDITIONAL, or FULLBOOLEAN ranked first. Though this shows that the res-

olution of the present data set cannot distinguish between the top four grammars, it does

indicate that FULLBOOLEAN, CNF, DNF, and BICONDITIONAL are better than the other

languages for capturing people’s inductive bias.

We note that the best grammars can explain an impressive amount of variation in the

individual subject responses. This is especially compelling because this correlation is com-

puted only on held-out data: with no parameters fit to the held-out data, the learning model

described above can explain 88% of the variation in subjects’ response patterns. This is

further demonstrated by Figure 4-11, which shows FULLBOOLEAN’s probability of re-

sponding true compared to participants in the experiment. This shows substantial noise in

the individual object (in a particular set, list, and concept) responses, shown in gray. The

binned data for which we have much less measurement error shows a strong and almost

perfectly linear relationship between model predictions and human responses. This holds

across both training and held-out data suggesting no over-fitting in the model. This rela-

tionship is noisiest in the middle of the range—where humans and models respond true and

16It is not clear what the best statistical testing procedure is to use here, since we are selecting the main
comparison grammar, FULLBOOLEAN by good performance, and it should be more difficult to find statistical
differences between the top performing grammars. Bonferroni correction here is likely highly conservative.

17A single “run” takes about 50 processor-days of CPU time, making gathering a large sample of runs
impractical.
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Figure 4-11: Relationship between model predicted probability of responding true (x-axis)
and participants’ probability (y-axis). The gray background represents unbinned data, cor-
responding to raw responses on each object in each set, list, and concept, of the experiment.
Black points are binned training data and blue are binned held-out data.

f alse with roughly equal proportion—and it is not clear if this variability is due to non-

human characteristics of the model, or simply the increased variance of binomial outcomes

when p ≈ 0.5. The other well-performing grammars appear similar when plotted in this

manner.

4.6.3 Learning Curves

Importantly, the model is capable of capturing many of the qualitative phenomena that

learners exhibit. In particular, learners in the experiment tended to make systematic patterns

of errors (see Figure 4-5). Because we have implemented a full learning model, we can see

if the model makes similar errors. Figure 4-12 shows six typical learning curves. The x-

axis here shows the response number for List 2 in the experiment, the held-out data. The

y-axis shows human subjects’ proportion correct at this object, and the model’s proportion
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Figure 4-12: Human (black) versus predicted learning curves on four example concepts.
The numbers in the lower right give R2s between FULLBOOLEAN’s predicted accuracies
and humans’ observed accuracies. Note the human data for these sequences of data were
held-out from training all models.

correct. Thus, each y value represents the accuracy of learners and the model, conditioning

on having seen the correct labels for all previous sets. The dotted blue line here represents

the base rate of the concept. This figure shows that through the experiment, both learners

and the model make systematic patterns of errors, corresponding to dips in accuracy for

the black and red lines. Figures 4-12(a) to 4-12(d) show concepts where the agreement of

the model and people is quite close, and Figures 4-12(e) to 4-12(f) show cases where the

agreement is less good. The fact that the model and people tend to agree indicates that

what people are doing is largely rational, generalizing in a way that is similar to our model

based on previous labeled examples. In this sense, their “errors” are not really mistakes,

but only cases where previous data has led them to hypotheses that give answers different
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from what the target concept says. Even in cases where the model predictions differ from

human participants, many of the differences tend to be in the magnitude of an error and not

presence or absence of an error. For instance, many of the model “dips” in 4-12(f) line up

with places where people do have an increased rate of errors, they just do not make errors

as often as the model. It is important to emphasize that these model curves are not fit to

this data. There is no parameter of the models, for instance, that makes the learning curves

dip around item 20 of 4-12(a). This dip is caused by the model’s learned prior (D∗∗) on

independent training data, combined with the fact that at this particular item the observed

data leads both models and people to make an incorrect generalization.

4.6.4 The inferred grammar

A more detailed picture of the grammars inferred from the experimental results is shown

in Figure 4-13. This shows the D∗∗ parameters found by the data analysis model for

FULLBOOLEAN. The red points correspond to MAP estimates of the parameters, and the

intervals are highest-posterior density ranges, using the Chen and Shao (1999) algorithm

from the R package boa (Smith, 2007). These numbers can, roughly, be interpreted by re-

normalizing for each nonterminal type to yield a PCFG. Thus, COLOR expands to yellow?

and green? with approximately equal probability. blue? is much more salient—it is more

likely to be used in a concept. Similarly, for SHAPE expansions, subjects are roughly twice

as likely to expand to circle? as the others, indicating a bias in the prior for concepts using

circular shapes. The (unnormalized) magnitude of these numbers shows the role of re-use

in an expression: roughly, each time a rule is used in creating an expression, its parameter

value is increased by 1 for later expansions in the same expression, and the nonterminals

are re-normalized. For example, F is equally likely to expand to a SIZE, SHAPE or COLOR

since all of these have equal magnitudes (≈ 2.0). Roughly, once F is expanded one way

once—say to SHAPE—in an expression, SHAPE is preferentially re-used with probability

(2.0+ 1)/(2.0+ 1+ 2.0+ 2.0) = 0.43 next time a F expansion is followed. Here, since

SHAPE was used once, 1 has been added to its initially unnormalized probability of 2.0,

and the expansions re-normalized. Thus, as the magnitude of these parameters gets large,
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BOOL to (and BOOL BOOL)

BOOL to (F OBJECT)

BOOL to (iff BOOL BOOL)

BOOL to (implies BOOL BOOL)

BOOL to (not BOOL)

BOOL to (or BOOL BOOL)

COLOR to blue?

COLOR to green?

COLOR to yellow?

F to COLOR

F to SHAPE

F to SIZE

OBJECT to x

SHAPE to circle?

SHAPE to rectangle?

SHAPE to triangle?

SIZE to size1?

SIZE to size2?

SIZE to size3?

START to (lambda S x BOOL)

START to (lambda S x false)

START to (lambda S x true)

Dirichlet parameter

0 1 2 3 4 5
Figure 4-13: Posterior parameters D∗∗ found by the inference algorithm for the
FULLBOOLEAN grammar. The red dots are MAP grammar parameters and the intervals
are 95% HPD intervals computed using the Chen & Shao (1999) algorithm.

re-use of rules is less preferred; the general low values of these parameters indicate that

re-use is likely preferred by learners, consistent with Goodman et al. (2008).

Figure 4-13 reveals several interesting trends. First, the START symbol is expanded

with very high probability to an expression involving BOOL instead of true or f alse hy-

potheses, indicating a prior bias against truth-functionally trivial expressions. Plausibly,

SIZE is preferentially expanded to the most salient sizes, size3? and size1?. Not sur-

prisingly, this grammar assigns substantial probability to iff , the primitive that only the

top two grammars, FULLBOOLEAN and BICONDITIONAL include. Lower probability is

assigned to implies. However, implies is not zero probability—otherwise these proba-

bilities for FULLBOOLEAN would essentially yield the grammar BICONDITIONAL. The

MAP probability of implies is about 0.001, so use of implies would yeild a prior about 7
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log points lower, requiring getting 10 to 15 additional example objects (not sets) correct

throughtout the experiment for typical values of α. Said another way, this difference in the

prior could easily be overcome in the likelihood with just a handful of examples; this is why

FULLBOOLEAN can outperform BICONDITIONAL despite the fact that the only primitive

FULLBOOLEAN additionally has (implies) is low probability.

Examination of grammars for CNF and DNF reveal trends of some preference for re-

use, especially of feature primitives. These grammars also tend to set probabilities to gen-

erate primarily conjunctive concepts, rather than disjunctive concepts, leading to a stronger

prior conjunction bias than FULLBOOLEAN18.

4.6.5 Boolean summary

These results showed that models that treat learning as inference in a rich representational

system can capture participants’ detailed patterns of errors (Figure 4-12) as well as their

patterns of graded generalizations (Figure 4-11). These best rule-like representations out-

perform other types of baselines, such as simple exemplar models, logistic curves, and

response-biased models (Table 4.2). Importantly, we are also able to provide evidence

against intuitively implausible representations bases, such as the NAND basis, and even

formalisms popular in AI like Horn clauses, although the amount of data at present does

not distinguish between the best grammars.

4.7 More complex languages

Building off of previous experimental and computational studies (Kemp, 2009; Piantadosi

et al., 2009), we extend the modeling results to the wider range of concepts from our ex-

periment that involve quantification and relational terms. To model these concepts, we

must consider spaces of representation languages that include these additional operations

such as existential and universal quantification, or cardinality operations. Ideally we might

write a set of primitives and construct a grammar either including or excluding each pos-

18This may be a hallmark of over-fitting, potentially explaining why CNF and DNF performed better on
training data but trended worse on held-out data.
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sible primitive. The problem with this approach is that the number of possible grammars

is exponential in the number of primitives we consider including or not. We might alter-

natively consider writing a large grammar including all of the primitives and positing that

low-probability primitives are likely not components of the LOT. The problem with this

is demonstrated by FULLBOOLEAN and SIMPLEBOOLEAN above, where low-probability

operations (iff and implies) nonetheless improve the model fit. It is difficult to tell from

the values of D∗∗ which primitives should be considered “in” the grammar. We therefore

take a middle road by constructing several plausible collections of primitives and either

including each or not. This gives a small family of grammars, and for each grammar, we

run inference to fit the D∗∗ parameters. Table 4.3 shows five different families of primitive

functions. The primitives in each family can be added or not to the best Boolean language,

FULLBOOLEAN, to form a new and more powerful language.

First we can consider adding first-order quantifiers, exists (∃) and forall (∀), as in

the FOL grammar. These primitives strictly increase the expressive power of any of the

Boolean representation languages, allowing for existential and universal quantification. We

allow each type of quantification to operate either over the entire set S, or over the elements

other than x in S, and the probabilities of each of these types of quantification are fit in the

PCFG.

As mentioned above, only adding exists and forall yields relatively impoverished quan-

tificational abilities. This is because the expansion of F is restricted to the primitive func-

tions shown in FULLBOOLEAN above (Table 4.1). Thus, we can only form expressions

like

λ x S . (exists red? S) (4.20)

for There exists a red object in S, or

λ x S . (exists circle? (non-Xes S)) (4.21)

for there exists a circle in the set S \ {x}. True quantification abilities would allow an

arbitrary predicate F to range over a set, not just the primitive features. This can be

accomplished by allowing F to expand to a new lambda expression using the rules in
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FOL

(exists F SET) There exists some x ∈ S such that (F x)
(forall F SET) For all x ∈ S, (F x)

LAMBDA-AND-RELATIONAL

(λ xi . BOOL) Lambda abstraction (also introduces a new bound
variable xi)

(equal? x y) x and y are the same object
(same-shape? x y) x and y are the same shape
(same-color? x y) x and y are the same color
(same-size? x y) x and y are the same size
(size> x y) x is larger than y
(size>= x y) x is large than or equal to y

ONE-OR-FEWER

(exists-one-or-fewer F SET) There exists one or zero x ∈ S such that (F x)

SMALL-CARDINALITIES

(exists-exactly-one F SET) There exists exactly one x ∈ S such that (F x)
(exists-exactly-two F SET) There exists exactly two x ∈ S such that (F x)
(exists-exactly-three F SET) There exists exactly three x ∈ S such that (F x)

SECOND-ORDER-QUANTIFIERS

(exists-shape P) There a shape predicate s ∈ { circle?, rectangle?,
triangle?} such that (P s)

(exists-color P) There a color predicate s ∈ { blue?, green?, yel-
low?} such that (P s)

(exists-size P) There a size predicate s ∈ { size1?, size2?, size3?}
such that (P s)

Table 4.3: Five sets of primitives which can each be independently included or not to form
a space of possible grammars. All grammars include expansions mapping SET → S and
SET → (non-Xes S), respectively the context set S and the set S\{x}.

LAMBDA-AND-RELATIONAL. This introduces a rule for defining new functions F:

F → λ xi . BOOL. (4.22)

This rule says that a nonterminal of type F can be expanded into a lambda expression λ xi

followed by an expansion of BOOL (for i = 1,2,3, . . .) . For instance, F could expand to

λ x2 . (or (red? x2) (blue? x2)). Quantifiers such as exists then can take this function and a

set:

λ x S . (exists (λ x2 . (or (red? x2) (blue? x2))) S). (4.23)

Here, exists returns true iff the function (λ x2 . (or (red? x2) (blue? x2))) is true for some
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element of S. As described above, creating a new function in this way requires introducing

a new bound variable—here x2—and we must therefore allow for these newly introduced

bound variables to be generated by the grammar. We suppose that each nonterminal that

could expand to a bound variable has a certain probability of doing so, but that this proba-

bility mass is split equally between all possible bound variables at the current depth. This

complication means that the grammars we use are not strictly probabilistic context-free

grammars. However, the expression minus the bound variables are context-free, and the

bound variables are uniformly generated from those that are possible at each depth.

The FOL operators correspond to those in classical logic. It has also been suggested,

though, that other types of quantification actually provide a better account of people’s in-

ductive learning. For instance, Kemp, Goodman, and Tenenbaum (2008b) introduces two

quantifiers, exists-exactly-one and exists-one-or-fewer. Both of these quantifiers are analo-

gous to exists, except that exists-exactly-one is true if there is only one element of the set

satisfying the predicate, and exists-one-or-fewer is true if there is at most one element of

the set satisfying the predicate. These quantifiers can be written using the more standard

exists and forall predicates. For instance, exists-exactly-one, is a function of a function F

and a set S, and can be written as,

λ F S . (exists (λ x1 . (and (F x1) (forall (λ x2 . (implies (F x2) (equal? x1 x2))) S))) S).

(4.24)

In other words (exists-exactly-one F S) is true if there is one element x1 in S satisfying

F, and for each x2 in S, if x2 satisfies F it must be x1. Importantly, these quantifiers are

quite complex to express using exists and forall, so including them as primitives substan-

tially changes the inductive bias of the model. More generally, we have argued elsewhere

(Piantadosi et al., submitted, in prep) that small-set cardinalities (1, 2, and 3) should also be

included as representation primitives, in line with very young children’s abilities to manip-

ulate small sets (Wynn, 1992). These novel quantifiers are included as ONE-OR-FEWER

and SMALL-CARDINALITIES.

Finally, we also compare a simplified version of second-order quantification. In stan-

dard logic, second-order quantification allows for quantification over predicates, or equiv-

159



alently subsets of the domain of discourse. For instance, a typical second-order expression

is ∃P∀x.P(x), which is true if there exists a predicate P such that P(x) for all x. Here, it is

difficult to allow for quantification over all predicates, but we can allow quantification over

the primitive feature predicates, red?, blue?, triangle?, size1?, etc. This is not formally

powerful enough for capturing “real” second-order logic since this type of quantification

can be expressed in first-order logic, but it does capture an intuitive sense of quantifying

over predicates rather than objects (see also Kemp, 2009). Thus, an expression such as

λ x S . (exists-color (λ P . (forall (λ x2 . (P x2)) S))) (4.25)

says that there exists a color predicate P (e.g., a predicate in red?, green?, blue?) such that

(P x2) is true for all x2 in S. In other words, all of the elements of S are the same color, no

matter what that color happens to be. We note that—unlike second-order logic in general—

this could be written using only disjunctions of forall, although it would be substantially

more complex. Also, it is the case that these second-order predicates require an additional

bound variable to be interesting: concepts such as λ x S . (exists-color (λ P . (P x))) is true

for all objects.

To summarize, we have introduced several sets of primitive functions, each of which

may or may not be included in a hypothesized LOT. Because the learning model we devel-

oped is powerful enough to handle learning in any representation system, we can apply the

same methods as the previous Boolean section to see which combination of these primitives

best captures people’s learning curves.

4.8 Results

Grammars without the LAMBDA-AND-RELATIONAL operations generally performed poorly,

so all grammars compared here include these primitives. Thus, by including or excluding

each of 4 sets of primitives, we form a hypothesis space that encompasses a total of 24 = 16

different grammars. We additionally include the top-performing Boolean grammars on this

wider space of concepts to test whether people’s inductive machinery goes beyond these
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simple Boolean predicates.

4.8.1 Model comparison results
FO
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response R2

mean
X X · · -79023.25 160305.43 41 0.66 0.78
X X X · -79096.47 160468.65 44 0.66 0.78
X · · · -79329.61 160745.98 40 0.65 0.78
X X · X -79347.52 161385.44 46 0.65 0.77
· X · · -79463.06 161547.28 39 0.64 0.80
X · X · -79518.84 161772.87 43 0.65 0.77
· X X · -79863.95 162343.18 42 0.63 0.77
X · · X -79908.25 162201.60 45 0.64 0.78
X X X X -79997.35 162615.70 49 0.64 0.74
· X · X -80261.60 163076.90 44 0.63 0.77
X · X X -80366.78 162942.38 48 0.63 0.75
· · X · -80392.52 163807.06 41 0.63 0.72
· X X X -80435.33 164010.82 47 0.62 0.76
· · X X -80604.70 164353.55 46 0.63 0.71
BICONDITIONAL -81790.49 167998.05 26 0.59 0.72
FULLBOOLEAN -81844.53 168048.55 27 0.58 0.71

SIMPLEBOOLEAN -82134.87 168911.78 25 0.58 0.73
DNF -82380.87 168931.47 26 0.59 0.73
CNF -82597.55 169541.39 26 0.58 0.73

· · · X -82745.12 169779.55 43 0.56 0.72

Table 4.4: Model comparison results on all languages with quantifiers.

Table 4.4 shows the results of the model comparison on all languages. Beyond the

primitives in FULLBOOLEAN, the best grammar here includes only primitives from FOL

and ONE-OR-FEWER. This grammar performs substantially better than the Boolean lan-

guages, across all measures. Using a Wilcoxon signed rank test on held-out likelihoods, the

top grammar is significantly better than the second place grammar and all others, conserva-

tively correcting for 16 comparisons (p < 0.01, corrected). This provides strong evidence
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for quantification in the LOT, in line with Kemp (2009); the superiority of a grammar with

multiple types of quantifiers indicates that, like the Boolean results, quantificational opera-

tions in the LOT do not make use of a “minimal” basis of operations (such as just FOL).

These results suggest that SMALL-CARDINALITIES are potential primitives since the

second-place grammar includes them; note that the concepts studied here do not include

many operations on small cardinalities. Most concepts here required checking only for the

existence of single elements, which is a cardinality operation captured by FOL. Grammars

with these operations might do better if more of the target concepts require them.

These results provide strong evidence against SECOND-ORDER-QUANTIFIERS: for

every other choice of primitives, addition of SECOND-ORDER-QUANTIFIERS reduced the

model fit. Indeed addition of only SECOND-ORDER-QUANTIIFERS to FULLBOOLEAN

resulted in a language that performed worse than any of the Boolean languages. This

provides some evidence that people tend not to quantify over properties, consistent with

Kemp (2009). This result contrasts with SMALL-CARDINALITIES, which improves over

Boolean LOTs, though not as much as the inclusion of other quantifiers.

These results also provide evidence that the non-normal-form Boolean grammars (e.g.,

BICONDITIONAL, FULLBOOLEAN, SIMPLEBOOLEAN) better describe concept learning

in general, with these langauges performing better than CNF and DNF on this full set of

concepts.

The ability of the quantificational grammars here to predict human responses on all

the concepts is substantially worse than the previous analysis on solely Boolean concepts.

The R2
response values show that the grammars explain around 66% of the variance, com-

pared to the capability of the Boolean grammars to explain around 88% of the variance for

Boolean concepts. This could indicate that the representation languages we consider here

do not as accurately model people’s conception of quantificational concepts, or it could

be that people give more variable responses on such complex concepts. Interestingly, the

ability of the model to predict each concept’s mean difficulty (R2
mean) is actually higher,

around 78% of the variance compared with 60-70% on Boolean concepts. This is poten-

tially due to greater and more systematic variance in the concept mean difficulties. As with

the Boolean concepts we can plot the model-predicted performance versus the subjects’
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Figure 4-14: Relationship between model predicted probability of responding true (x-axis)
and participants’ probability (y-axis). The gray background represents unbinned data, cor-
responding to raw responses on each object in each set, list, and concept, of the experiment.
Black points are binned training data and blue are binned held-out data.

actual performance, collapsing across all concepts. Figure 4-14 shows this relationship and

demonstrates the model’s ability to predict fine gradations in human response probabilities.

4.8.2 Learning curves

Again, like the Boolean analysis, the quantificational model is capable of predicting de-

tailed patterns of human learning curves. Figure 4-15 shows eight different learning curves:

4-15(a)-4-15(f) show well-fit concepts and 4-15(g)-4-15(h) show relatively poorly fit con-

cepts. Some plots show concepts in which the best grammar with quantifiers and other oper-

ations is substantially better than FULLBOOLEAN. In 4-15(a), for instance, FULLBOOLEAN

is incapable of expressing exists another object with the same color, yet people learn this

relatively quickly. Interestingly, on this concept both grammars fit equally well for the

first few sets, during which people would not have observed enough data to justify using
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quantifiers and so therefore would respond with simple Boolean expressions. Once enough

data has been seen to cause people to learn the concept (around 20-40 sets), the predictions

of the quantifier language and the Boolean one diverge substantially. This is exactly the

type of concept for which we find strong quantitative evidence in favor of a representation

language that is capable of quantification. However, these types of clear and intuitive cases

are relatively uncommon; most of the target quantifier concepts are difficult for people to

learn. Importantly, 4-15(c) demonstrates that for the Boolean concepts, both grammars are

capable of performing equally well, here with an R2 of about .91. By adding quantifiers,

we do not decrease the model’s ability to fit simpler concepts.

Figures 4-15(e) to 4-15(f) show two concepts that are not simple Boolean predicates,

but for which the qualitative fits for the Boolean and quantificational grammars are ap-

proximately the same. Indeed, most of the concepts studied here are like this, and do not

strongly distinguish between these types of grammars. The reason is likely that in these

concepts people do not appear to learn the target concept, as evidenced by the fact that

they make systematic patterns of mistakes even near the end of the experiment. The fact

that FULLBOOLEAN can capture these mistake patterns indicates that people learn Boolean

concepts that are similar to the target concepts, but incorrect. That is, people do not learn

the targets, instead inferring some simpler Boolean expression. For instance, in 4-15(e)

([exists an object with the same shape] and blue) they might learn the concept blue since

it will often be the case that there is an object of the same shape, and so blue provides a

good approximation to the target. In 4-15(f) (same shape as another object which is [blue

or green]), people may eventually learn same shape as another object, which can only be

expressed as quantifiers. Using people’s response patterns to infer what concept they may

have learned is an important future direction of this work.

The curves shown in 4-15(g)-4-15(h) are particularly poor fits for the model. Both

grammars seem to mischaracterize learning late in 4-15(g), yielding low correlations. Even

though the correlation is high for 4-15(h), both grammars predict patterns of mistakes later

that are not observed in human subjects. This latter example suggests potential for im-

provement in how the model handles uniqueness and small cardinalities.
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Figure 4-15: Human (black) versus predicted learning curves according to the best gram-
mar in Figure 4.4 and FULLBOOLEAN.The numbers in the lower right give R2s between
each language’s predicted accuracies and humans’ observed accuracies. Note the human
data for these sequences of data were held-out from training all models.

4.8.3 The inferred grammar

A better understanding of the grammar that is inferred with quantifiers is provided by the

probabilistic version for the grammar that is parameterized by D∗∗. As with the Boolean

grammar, the relative size of each of these parameters characterizes the probability of using
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BOOL to (and BOOL BOOL)
BOOL to (exists F SET)

BOOL to (exists−one−or−fewer F SET)
BOOL to (F OBJECT)

BOOL to (forall F SET)
BOOL to (iff BOOL BOOL)

BOOL to (implies BOOL BOOL)
BOOL to (not BOOL)

BOOL to (or BOOL BOOL)
BOOL to (RELN OBJECT OBJECT)

COLOR to blue?
COLOR to green?
COLOR to yellow?

F to COLOR
F to (lambda x_i BOOL)

F to SHAPE
F to SIZE

OBJECT to BV
OBJECT to x

RELN to eqv−color?
RELN to eqv−object?
RELN to eqv−shape?

RELN to eqv−size?
RELN to size>=?

RELN to size>?
SET to (non−Xes S)

SET to S
SHAPE to circle?

SHAPE to rectangle?
SHAPE to triangle?

SIZE to size1?
SIZE to size2?
SIZE to size3?

START to (lambda S x BOOL)
START to (lambda S x false)
START to (lambda S x true)

Dirichlet parameter

0 1 2 3 4 5
Figure 4-16: Posterior parameters D∗∗ found by the inference algorithm for the best gram-
mar in Figure 4.4, including only FOL operations. The red dots are MAP grammar pa-
rameters and the intervals are 95% HPD intervals computed using the Chen & Shao (1999)
algorithm.

each primitive, and the magnitude of these values inversely relates to the degree that re-use

is preferred.

Figure 4-16 shows the D∗∗ parameters for the full data set and illustrates similar pat-

terns to Figure 4-13: for instance, size2? is a low-probability operation, F is about equally

likely to expand to SIZE, SHAPE and COLOR. Unlike the Boolean results, this shows that

and is higher probability than or, agreeing with concept learning asymmetries between

conjunctive and disjunctive concepts.

Most interestingly, however, are the probabilities assigned to the more complex primi-

tives. For instance, the quantifiers exists and forall are given relatively low probability, and

the low magnitude of all expansions of BOOL in general indicate a stronger preference for
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re-use. The relational terms in LAMBDA-AND-RELATIONAL vary substantially in proba-

bility, indicating preferences to compare equality of shapes, colors, and objects, not sizes.

As with implies in the FULLBOOLEAN above, the primitive exists-one-or-fewer is given a

MAP probability of 0.013, which is low in the prior, but easily overcome with a few exam-

ples, allowing it to improve model fit. Additionally, SETs are more likely to be expanded

to (non-Xes S) than S, indicating that quantification tends to occur over all other objects in

the set; this makes it more natural to express concepts such as exists another object with the

same color and less natural to express everything iff there is a triangle in the set, concepts

which people find easy and hard respectively.

4.9 Discussion

These results have begun to elaborate the representational systems that support rule-based

concept learning. We have shown that it is possible to take people’s learning curves and

“work backwards” to infer likely representational systems, both for simple Boolean con-

cepts and for concepts that extend Boolean logic with richer types of quantification. Our

method was based on the idea that learners prefer concepts that are representationally sim-

ple, and that representation systems give different measures of simplicity even if they have

the same expressive capability. This allowed several theory-internal comparisons to deter-

mine which LOTs best capture human learning curves. We found that systems with rich

sets of Boolean connectives and quantifiers best described human learning. Importantly, we

also showed that the same analysis can distinguish across levels of computational ability,

building on Boolean logic to include first-order operations. We were able to rule out intu-

itively implausible bases like the NAND-basis, and provide quantitative evidence support-

ing more reasonable representations systems. We believe this represents progress towards

narrowing down the range of psychologically plausible, rule-based theories.

Our approach gained much of its power by aggregating results across concepts—the

probability of a primitive such as and should be found by seeing how well grammars per-

forms on all concepts as the probability of and is varied. We could imagine simpler “pair-

wise” comparisons for instance comparing average learning rates on concepts like red and
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circle and red or circle. The difficulty with this approach is that it seems difficult or im-

possible to control other variables like the competing hypotheses and the informativeness

of the data with respect to the target concept. However, by implementing a full model, we

are able to construct a plausible learning theory (Figure 4-9) and test its quantitative pre-

dictions. The learning model allowed different representational systems to be “plugged in”

without requiring any modification. We then could recover a single score corresponding to

how well the best-fitting parameters of the model generalized to unseen human response

patterns. This provides a quantitative standard and allows for an effective comparison of

representations that cannot be directly observed in behavior. In general, this approach can

be extended to any type of representational system or learning task, although we note that

in many cases—such as for the top Boolean grammars—it appears difficult to achieve the

necessary resolution to distinguish the best representational theories.

It may seem obvious that human conceptual systems involve quantification since we

are able to think thoughts with quantifiers—like “Some dog adored Lindsay.” But the ex-

periments and analysis here have tested a more subtle point of whether quantification is

a natural part of people’s inductive machinery. It could be the case that our mechanisms

of learning operate only over very simple representations like conjunctions of features or

continuous spaces. Or it might be that Bayes-optimal statistical reasoning is found only

in low-level cognition, for which evolution has had millions of years to optimize com-

putational processes. What we have shown here adds to a growing body of work that

demonstrates, either empirically or theoretically, that learning mimics ideal Bayesian in-

ference in rich representational systems (Siskind, 1996; Tenenbaum, 1999; Piantadosi et

al., 2008; Kemp et al., 2008b; Kemp & Tenenbaum, 2008; Perfors et al., 2011; Kemp,

2009; O’Donnell et al., 2009; Kemp, Tenenbaum, Niyogi, & Griffiths, 2010; Piantadosi

et al., submitted). People have a capacity for logical induction over rules of considerable

computational power.

Our results have also provided quantitative evidence in support of rule-based theories.

Indeed, even the worst rule-based theories have substantially higher correlations with hu-

man responses than alternatives like the exemplar model. The types of effects typically

offered in support of non-rule-based approaches may result from “averaging” over rules
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(Tenenbaum, 2000), a probabilistic rule-based system (Stuhlmüller, Tenenbaum, & Good-

man, 2010), or a model that incorporates both rule-like behavior and exemplar behavior

(Nosofsky, 1991). Indeed, subjects’ success with many of these rule-based concepts il-

lustrates that rule-learning may be a viable developmental theory both for word meanings

(Piantadosi et al., in prep) and syntax (Perfors et al., 2011)—and perhaps more generally for

conceptual theories (Kemp et al., 2008b; Ullman et al., 2010). This type of rule induction

is not extremely difficult for people or models: here we used a simple Monte-Carlo method

to search through concepts, and this was efficient enough to allow comparison of dozens of

potential grammars. It is unlikely that people use such simple search methods, but the fact

that they are successful on these spaces indicates that learning lambda expressions is not

intractably difficult.

The quantitative results in this paper motivate a challenge to the other paradigmatic

approaches to cognitive science—such as connectionism (e.g., Rumelhart & McClelland,

1986; Smolensky & Legendre, 2006) or cognitive architectures (e.g., Anderson, 1993;

Newell, 1994)—to provide a model that quantitatively out-performs theories based on near-

ideal statistics and explicit representations. We believe several design features of our ex-

periment make this especially difficult for, e.g., connectionist models: the concepts learned

are rule-like and relational, the set sizes are variable, and participants learn the concepts

from relatively little data. The important aspect of this challenge is that we have an explicit

and principled quantitative measure: performance on held-out data. Other fields such as

natural language processing find standardized data sets critical for comparing approaches.

This work provides one standardized data set that we hope will prove useful in refining de-

bates about what types of representations and architectures support the richness of human

cognitive capacities.

4.10 Conclusion

At its core, the human mind is a computational system capable of fluidly creating and

manipulating concepts. As in our experiment, these concepts are often induced—not

deduced—from data and can easily combine with existing other concepts. The question
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of what type of system supports these abilities is a fundamental one for cognitive sci-

ence. Here, we have argued that one plausible hypothesis is that learners have a composi-

tional representation system, combined with approximately ideal statistical inference mech-

anisms. When these two components are put together, we are able to model key phenomena

in a massive concept-learning experiment, including patterns of errors, graded responses,

and eventual learning of complex, compositional concepts. A compositional representa-

tional system models the course of learning and the eventual end-state of our participants,

providing a computational theory for how basic logical abilities might be elaborated into

complex systems of structured concepts throughout learning and development.
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4.11 Appendix

Here we describe several additional models compared in the Results sections:

UNIFORM This model assigns all hypotheses a uniform prior:

P(h) ∝ 1. (4.26)

This prior is also improper and is an interesting baseline that corresponds to no sub-

stantive expectations about the form of concepts.

RESPONSE-BIASED This model corresponds to a simple response-biased model which

uses labeled data to do inference over the proportion of time the hypothesis is true.

This can be interpreted as a special representation language where there are only two

possible expressions: one that is always true and one that is always false.

LOGISTIC This model provides another baseline which fits a logistic learning curve within

each concept. This model therefore has no interesting representational capacities or

predictive abilities, but comparison to it reveals the degree to which LOT models can

surpass how a statistician or psychophysicist might model performance in this task.

EXEMPLAR This is an exemplar model on the set-based stimuli. It is difficult to know

exactly how exemplar models might be applied to sets of objects, since such mod-

els are generally stated in terms of similarity of object features, not similarities of

collections of objects. Here, we begin by defining an object-wise distance metric:

d(x,y) = δshape(x)=shape(y) ·Wshape

+δcolor(x)=color(y) ·Wcolor

+δsize(x)=size(y) ·Wsize,

where shape, color, and size are functions that map objects to their shapes, colors,

and sizes, and Wshape, Wcolor, and Wsize are free parameters. Given two sets, we can

then consider all possible ways of aligning their objects. This is necessary because
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if the next set is similar to a previously observed set, we need to know how objects

in the current set correspond to objects in the previous one. Since their orders may

change, this can only be accomplished by finding an alignment between the sets. For

convenience, let d∗(s j,sk) be the total distance according to d of the best alignment

of elements of sets s j and sk. If the sets are different sizes, then some elements may

be dropped. Then we define a distance metric on sets by

D(s j,sk) = abs(|s j|− |sk|) ·Wlength +d∗(s j,sk). (4.27)

Intuitively, this says that sets are penalized Wlength for differences in cardinality, and

then according to the distance of their elements in the best alignment via d(x,y). D

is used to define the probability of generalizing labels from a previously labeled s j to

the next set, sn, according to the best alignment between the two. This log probability

is proportional to

−βn− j+1 · logD(s j,sn). (4.28)

Like the Bayesian models, this includes a power law memory-decay parameter, β.

172



Chapter 5

Afterword

This work has attempted to show how ideas about induction and representation can be

combined into a coherent picture of developmental change. The three papers in this thesis

have presented three slightly different versions of what is essentially the same model of

inductive learning. This approach formalizes the idea that learners bring a capacity for

conceptual combination to the problem of learning, and construct representations of the

world much as programmers write programs or scientists develop theories.

The specific representation languages used in these papers are similar but not identical.

All include logical operations, simple notions of sets and operations on sets, and the capac-

ity for structurally rich representations by using one structure-building operation: function

composition. Some differences in languages resulted from studying different aspects of

acquisition at different times in the development of this work. Other differences resulted

from the fact that the papers each study distinct types of conceptual systems, ranging from

word meanings formalized as relations on sets, to novel rules in propositional and first-

order logic, to recursive systems for counting. These different systems used distinct input

and output types, with representations in the first paper mapping sets to words, the second

mapping two sets to a truth value, and the third mapping sets to subsets. In principle, one

could express all of these operations with the same language. Developing and testing such

a model is an important direction for future work, though the predictions of a unified model

would not be substantially different from those presented if the additional primitives did not

create new, more concise ways of expressing any of the target concepts. For instance, in-
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cluding a recursion primitive L into the quantifier model would not substantially affect the

model’s predictions, so long as the target concepts can be expressed more concisely with-

out L. Alternatively, it may turn out that a single representation system does not capture the

expectations that learners bring to these tasks. For instance, in the concept-learning exper-

iment, adult participants may bring different types of expectations to the task than children

learning quantifiers, and these differences may be well captured by distinct representation

systems. Indeed real cognition may employ different kinds of structured representational

systems for different domains—for instance, in learning linguistic concepts like function-

word meanings as compared to learning Boolean concepts. A challenge, then, would be to

understand how such distinct systems interface. In general, though, this work has demon-

strated the plausibility of learning in these types of systems by showing that developmental

patterns and adult generalizations can be captured as rational statistical inferences over the

right kind of representations.

As such, this approach provides a compelling middle ground between nativist and em-

piricist theories of development and language acquisition. It is sometimes tempting to

view this work as “even more” nativist than contemporary nativist theories, since rather

than building in a few particular representations, we build in an effectively infinite num-

ber. There is some truth to this, as what we build is almost certainly more computationally

powerful than standard nativist theories. But there is an important difference too: we build

in only the capacity for representations, not particular representations themselves. Perhaps

counterintuitively, the amount of information required to specify an infinite space of con-

cepts (a capacity) can easily be considerably less than that required to specify a handful

of particular concepts. The situation is similar to Jorges Luis Borges’ Library of Babel

(Borges, 1941/1970) that consists of all possible books—all possible sequences of char-

acters printed on a page. The library contains essentially no information at all, since its

algorithmic complexity (Li & Vitányi, 2008) is close to zero1 (see also Quine, 1989, pp.

223–225). In the models we presented, all that would need to be, for instance, genetically

encoded is the grammar of concepts. Because the grammar is very concise, this amounts

1It must contain very little information since its entire content can be conveyed by saying it consists “of
all possible sequences of characters.”

174



to “building in” very little—a minimally nativist theory with explicit representation. This

theory has appropriate places for structure, early conceptual knowledge, and induction.

The results presented pose challenges for theories that lack any of these components. We

address each in turn.

First, it appears to be very difficult to capture the results of the adult concept learning

experiments with systems that lack structured representations. The exemplar model fared

poorly even compared to the worst representation languages. Though it may be possible to

construct better exemplar models, it is hard to imagine that any model that lacked structural

components could more compellingly capture the essence of functions that can operate on

sets of arbitrary size or the capacity for linguistic compositionality, as is needed to explain

quantifier learning2. The pattern of errors subjects made suggests a similar trend: sub-

jects clumped together into systematic patterns of behavior, apparently changing rules in

the face of new data. This systematicity and quick revision is more obviously consistent

with rule-like representations than graded representations in a continuous space. In the

number learning model, structured representations also appeared necessary to explain chil-

dren’s quick developmental change, since learning mechanisms based only on associations

would require increasing amounts of evidence to learn the higher, more infrequent, num-

ber cardinalities. Indeed, it does not seem possible to capture adult knowledge of natural

numbers—their structure and infinite cardinality—without positing some type of genera-

tive abstraction like the CP-knower lexicon that the model learns.

Second, the capacity for structure is not sufficient: learners must also have a mecha-

nism to infer “good” structures for explaining their observed data. This is most basically

an inductive problem, requiring learners to take their observed data and make strong pre-

dictions about unseen data. Much of the early work in rule-based concept learning treated

concept learning as a deductive sequential decision-making problem (Bruner et al., 1956),

or algorithmically as the problem of inferring what were essentially decision-tree represen-

2A second advantage of the types of explicit structural representations we provide is that it is intuitively
easy to manipulate these representations even lacking concrete examples of sets. I could tell you that “blark
A are B” if the the number of elements in A∩B is a power of 2. You immediately know that if “blark”
applies, so do a whole range of other quantifiers—an even number of, at least two, not exactly fifteen, etc.
It is difficult to know how such richly integrated knowledge of “blark” could be determined without having
seen any examples of its use, and from only hearing a verbal description of its meaning. This is not difficult
in principle for rule-like representations.
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tations of Boolean concepts (Hunt, Marin, & Stone, 1966). The contribution of the present

work has been to more fully develop the idea that concept learning is a statistically rational

inference problem, along the lines of Goodman et al. (2008). Induction is philosophically

troublesome (Hume, 1748/2000; Goodman, 1955), and squaring the philosophical problem

with its psychological realization has been a significant goal for—or perhaps achievement

of—modern cognitive science and machine learning (see, e.g., Chater & Vitányi, 2003;

Hayes, Heit, & Swendsen, 2010). Like most previous attempts to solve the problem of

induction in cognition, this work has argued that simplicity (Chater & Vitányi, 2003) is

the key bias that allows for human-like inductive inferences. This was argued for by the

fact that the model of Boolean concept learning that includes no simplicity bias performs

poorly, and indirectly by the number learning model that shows plausible developmental

patterns only when given the right simplicity bias. Many other approaches to learning

have failed to formally specify the necessary inductive machinery, including accounts of

number learning based on innate counting principles (R. Gelman & Gallistel, 1978) and

Carey’s bootstrapping account under which children make the CP-transition by analogy

(Carey, 2009). Theories of quantifier acquisition that use Gold-style learnability (Clark,

1996) also lack a real statistical inductive approach and generally appear incapable of solv-

ing the subset problem using solely positive evidence. The provable success of a rational

statistical model in solving these learning problems suggests that well-formulated statisti-

cal models provide a good starting point for developmental theories, much in the spirit of

rational analysis (Anderson & Milson, 1989; Chater & Oaksford, 1999).

The third aspect of this work was to formalize a place for early cognitive capacities. We

have talked about these primitives as though they are innate, but strictly speaking the prim-

itives could be learned very early. The key assumption required is that these operations are

“simple” enough for learner that they have a high probability of being used in new concep-

tual representations. It is easy to imagine why a cognitive system would make use of such

primitive functions: as in computer science (see, e.g., Abelson & Sussman, 1996) defini-

tion of primitives allows for abstraction, re-use, encapsulation, and compression. This type

of encapsulation of more complex operations is even attested in behavioral neuroscience,

with, for instance, single neurons in motor cortex coding for complex behaviors (Graziano,
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2006). Of course, one might imagine versions of these models that include only the min-

imal, logically necessary set of cognitive primitives. Just as logicians and mathematics

attempt to find minimal sets of axioms, here we might consider attempting to do as much

as possible with as few primitives as possible. For instance, “numbers” can be built out of

nothing more than the syntax of the lambda calculus, as Church numerals (Church, 1932):

“one” equal to λ f x . (f x), “two” equal to λ f x. (f (f x)), etc. In this there are no explicit

representations of sets, cardinalities, or set-theoretic functions, so we would not need to

posit primitives like singleton? and doubleton?. There are at least three challenges for this

kind of approach. The first is to explain infant abilities in—for instance—manipulating

and representing small set cardinalities (e.g., Wynn, 1992), including their competence and

their systematic patterns of errors, for instance, tracking three objects in a bucket, but not

four (Feigenson & Carey, 2005). A set of functional primitives provides a way to explain

these data by positing only small cardinalities are “built in.”3 Second, representations like

Church numerals still require a linking function to behavior to specify how to apply these

lambda expressions. With our setup, it is natural to assume that primitives like single-

ton? are evaluated directly by perceptual systems. In the case of Church numerals, it is

non-obvious how to relate them to perceptual systems in a plausible way. Finally, such

minimal systems likely give a “wrong” inductive bias for learners, under the assumption

of a preference for simplicity. The recursive form of “counting” in Church numerals is

very simple—in fact, just a function composition. So why would children first learn “two,”

“three,” and sometimes “four” before learning to count in Church numerals? The reason

provided by the number model is that these representations are simpler if small cardinal-

ity primitives are cheap and recursion is costly; it is not clear that a similar bias could be

constructed for a basis like Church numerals. These types of considerations equally ap-

ply to the quantifier model and the set-function model. Indeed, in the set-function model

we showed that representations with minimal sets of primitives (e.g., NAND) actually do

not capture people’s simplicity bias well, providing empirical evidence against this kind of

3Although, this is admittedly post-hoc since we posit representational primitives based on the experi-
mental results. What is not post-hoc, though, is the demonstration in our results that use of these primitives
as compositional elements in many cases can explain developmental patterns in other tasks like quantifier
learning or numerical acquisition.

177



minimalism.

In sum, these results support a view of cognitive development in which learning con-

sists of applying a compositional statistical model to a set of early conceptual primitives.

With this setup we have developed computational and empirical methods for studying the

interaction of learning and the language of thought. Further, we have argued that this ap-

proach can help bring clarity to several deep issues in the study of cognition, including

the cognitive problem of induction, questions of innateness and learnability, and the basic

puzzle of how complex representations may arise in cognition.
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