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Abstract

This paper studies the acquisition of quantifier meanings as a case study
of function word learnability. We suggest that learners construct semantic
representations of quantifiers and other function words using a compositional
statistical learning mechanism that operates over a small set of domain-
general cognitive primitives. We present a simple cross-situational learning
model that provably solves key learning problems in this domain, using a
developmentally-plausible amount of data. We additionally evaluate the
utility of proposed constraints on quantifier meaning, and show that learning
in an unrestricted space of meanings is not substantially more difficult than
learning in highly-constrained frameworks.

Introduction

In acquiring language, children discover remarkable representations that enable com-
plex communication. They do this from seemingly impoverished evidence, to arrive at a
linguistic system that goes far beyond what is directly observable in their input. This ca-
pacity is especially striking in children’s acquisition of function words like “the,” “both,”
and “and.” Content words—which map onto objects, actions, and properties—are plausi-
bly learned through tracking co-occurrences between words and features of the world as in
cross-situational word learning models (Siskind, 1996; Vogt & Smith, 2005; Smith, Smith,
Blythe, & Vogt, 2006; Yu & Ballard, 2007; Yu & Smith, 2007; Frank, Goodman, & Tenen-
baum, 2007). But function words do not correspond to any plainly observable perceptual
phenomena and so must be learned by other means. Function words express their meaning
through semantic composition and thus embody two of the most interesting challenges of
language acquisition: abstractness and compositionality.

In general, function words are a striking gap in most theories of language learning,
with little to no attention from statistical approaches, and relatively incomplete and non-
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computational (non-implemented) nativist theories. Even for a maximally nativist theory
under which all function word meanings are innately specified, children still face a problem
of mapping them to their corresponding phonetic forms. As we show, this is a substantial
challenge.

Here, we study quantifiers, a subset of function words, with the aim of showing how
techniques for structural statistical learning can explain learners’ capacity to arrive at these
representations. Informally, quantifiers specify “how much” or “how many” in utterances;
formally, they are typically taken as denoting relations between sets (see also Montague,
1973; Barwise & Cooper, 1981; Keenan & Stavi, 1986; Keenan & Westerst̊ahl, 1997). A
sentence such as “most accordionists are sailors” is true if the set of accordionists who are
sailors has more elements than the set of accordionists who are not. Semantically, “most”
then would denote a function on these two sets: “most A are B” iff |A ∩ B| > |A \ B|,
where ∩ is set-intersection, \ is set-difference and | · | is set-cardinality. Quantifiers may also
bring presuppositional assumptions to utterances. In a sentence like “Both accordionists
are sailors,” the word “both” asserts that the accordionists who are sailors has cardinality
two and assumes that there are exactly two relevant accordionists.

These multiple aspects of abstract (non-referential) meaning present a substantial
learning challenge. However, we show that these problems can be solved by the right kind
of statistical learner—one that uses Bayesian statistical inference to determine the likely
representations in adults’ heads that generate the observed data. The learning model we
present takes naturalistic positive evidence in the form of uttered words in world contexts
and infers the likely representations for each word’s meaning. Our approach builds on a con-
siderable amount of work developing rational probabilistic modeling in a language of thought
(LOT) (Katz, Goodman, Kersting, Kemp, & Tenenbaum, 2008; Goodman, Tenenbaum,
Feldman, & Griffiths, 2008; Kemp, Goodman, & Tenenbaum, 2008; Goodman, Ullman, &
Tenenbaum, 2009; Ullman, Goodman, & Tenenbaum, 2010; Piantadosi, 2011; Piantadosi,
Tenenbaum, & Goodman, 2012), in which learners create new conceptual systems by com-
posing elements from a smaller set of primitive functions. Here, we posit that learners have
access to primitive set operations like set-intersection (∩) and set-difference (\) and, when
given data, learn how to compose these kinds of operations to express quantifier meanings.
Learners thus might discover that a good representation for “most” is |A ∩ B| > |A \ B|,
instead of any other composition of set operations.

There are several specific motivations for applying a compositional LOT model here.
First, semanticists often express word meanings using a structured, compositional represen-
tation system (e.g., Montague, 1973; Heim & Kratzer, 1998; Steedman, 2000), because doing
so allows complex word meanings to be formalized precisely in terms of simple and well-
defined logical operations. Second, as we show, a compositional representation system pro-
vides a compelling account of learning: learning consists of appropriately combining (com-
posing) simpler logical capacities. This type of approach has been applied to several areas
of language research, including lexical semantics (Siskind, 1996), number-word acquisition
(Piantadosi, Tenenbaum, & Goodman, 2011), and compositional semantics (Zettlemoyer
& Collins, 2005; Kwiatkowski, Goldwater, & Steedman, 2009; Piantadosi, Goodman, Ellis,
& Tenenbaum, 2008). Such compositional learning is not necessarily language specific—
language of thought models have also been applied to explain learning and development in
other domains, including kinship relations (Katz et al., 2008), abstract relational concepts
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(Kemp et al., 2008), boolean rule-based concepts (Goodman et al., 2008), intuitive notions
of causality (Goodman et al., 2009), and magnetism (Ullman et al., 2010). Thus, the LOT
approach is able to explain quantifier learning using only inferential and representational
tools that have been independently motivated in other domains.

In all cases statistical learning over compositional hypothesis spaces provides a pow-
erful framework for learners. We show that this kind of model is capable of learning the
literal aspects of meaning and presuppositions, from positive evidence: no explicit feedback
is required. This contrasts strongly with Gold-style (Gold, 1967) approaches to language
learning. The key difference between our approach and Gold’s is that we—like others (e.g.
Horning, 1969; Chater & Vitányi, 2007; Hsu, Chater, & Vitányi, 2011)—assume utterances
are drawn from the true generative distribution, not from an antagonistic teacher. Impor-
tantly, we show that an implemented version of the model is an effective learner, able to
acquire quantifier meanings in several hundred to a few thousand observed utterances.

The outline of this paper is as follows: in the next section, we review previous theo-
ries of quantifier learning. We then describe what we consider to be one of the key logical
challenges in learning quantifiers and other function words, the subset problem. Our results
require a fully explicit model, so we then formalize aspects of meaning which we intend to
learn—including literal and presuppositional content. We then describe the probabilistic
model which can take observed utterances and discover the correct meanings in the represen-
tation system. We prove that this learning model always recovers the correct meanings and
explain in detail how it solves the subset problem. We conclude with simulations showing
that the learning model is computationally tractable and requires only a developmentally-
plausible amount of data. The simulations also allow us to compare the utility of proposed
constraints on the space of quantifier meanings.

Learnability and quantification

Quantifier learnability has previously been studied by associating natural language
quantifiers with abstract devices from computability theory (van Benthem, 1984, 1986;
M. Mostowski, 1998; Tiede, 1999; Florêncio, 2002; Gierasimczuk, 2007). van Benthem
(1984), noted that some quantifier meanings can be computed by finite-state automata (for
extensions up the automata hierarchy, see M. Mostowski, 1998). For instance, the meaning
of “every” can be captured by a finite-state machine like that shown in Figure 1(a). Here,
a language user wishing to check if “every A is B” would start in the double-circled state
true and proceed to look at elements of A. Each element a ∈ A is processed and if it is an
element of B, a 1 link is followed; if it is not, a 0 link is followed. Thus, as long as every
element in A is in B, the learner will stay in the true state; otherwise they will permanently
fall into the false state. A similar example for “some” is shown in Figure 1(b), where one
positive example is enough to change the automaton permanently to an accepting state.

This type of formalization is the basis for much previous work on quantifier learn-
ability. Clark (1996) presents a detailed account of quantifier acquisition, providing similar
automata for even more complex meanings, such as “none,” “at least two,” and “an even
number of” (see also Clark, 2010). By formalizing meanings as finite-state automata, Clark
is able to apply learnability results for regular languages (Angluin, 1987) to show that first-
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Figure 1. The representation of “every” or “all” (a) and “some“ (b) in Clark (1998)’s learning
model.

order quantifiers1 can be learned jointly using positive and negative evidence. These results
were extended by Tiede (1999), who showed that first-order left increasing monotonic quan-
tifiers are identifiable in the limit (i.e. Gold-learnable) from positive evidence alone2. Not
all first-order quantifiers are identifiable in the limit from positive evidence: Tiede shows
that quantifiers that are left decreasing monotonic (e.g., “few”), right increasing monotonic
(e.g., “several”), or right decreasing monotonic (e.g., “no”) do not come with guarantees of
learnability3. Florêncio (2002) extends these results to what he argues are psychologically
plausible restrictions on learning algorithms, such as algorithms that do not care about the
order of sets or only change hypotheses when they are incorrect.

While these results have mapped out the space of learnability for some quantifiers
in a mathematically sophisticated way, the approach is incomplete. First, these learning
theories only apply to subsets of natural language quantifiers (for instance, the left-upward-
monotonic ones). A complete learning theory should handle at least everything observed
in natural language. Notably lacking are theories of quantifiers which cannot be expressed
in first order logic, such as “most”—what is the hypothesis space for these kinds of mean-
ings and how does the learner navigate it? In addition, it is not clear how these learning
frameworks might be extended to handle noisy evidence. In the case of quantifiers, this
means perhaps incorrectly identifying the relevant sets, or occasionally hearing quantified
expressions which are false. These learning theories are not implemented, meaning that it is
unclear if the amount of data required is at all plausible. These theories only capture literal
meanings and to our knowledge have not been extended to other aspects of meaning, such
as presupposition. This is likely because they use representations which are wholly unlike
anything else used in semantics and it is not exactly clear how to relate finite state ma-

1Those which can be expressed in first-order logic; not, e.g., “most.”
2Left increasing monotonic quantifiers are those quantifiers Q such that (QAB) → (QA′ B) where

A ⊆ A′. In other words, quantifiers that, if true, can generalize to any more inclusive first set. For instance,
“several” is left-upward-monotonic since if “several angry lawyers are fools” is true, then “several lawyers are
fools”: by increasing the size of the first set from “angry lawyers” to “lawyers,” we do not make the sentence
false. Note that this is not true for “few”: “few angry lawyers are fools” does not imply “few lawyers are
fools.”

3Tiede also shows how all quantifiers with a certain form in Presburger arithmetic are learnable in the
limit.
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chines to more standard machinery in compositional semantics. Indeed, the choice of these
representations seems to be primarily for mathematical convenience, rather than linguistic
plausibility. Perhaps most importantly, these approaches typically do not explicitly address
or solve what we see as one of the most interesting and challenging aspects of learning from
positive evidence: the subset problem.

The subset problem in semantics

The subset problem is that learners may mistakenly infer (hypothesize) an under-
restrictive semantic representation for a word. If this happens, it is not obvious how positive
evidence could convince them they have made a mistake. As an example, SOME is logically
weaker than EVERY: whenever “Every accordion is heavy,” it is also true that “Some
accordion is heavy,” assuming there is one accordion present. If a child incorrectly guesses
that “every” has the denotation of SOME, they would never receive an error signal of
observing “every” used in an unexpected situation (such as where it is false). In other
words, under a simple picture of learning where children only change representations when
their hypothesized meaning is observed to be false, a child who thinks that “every” meant
SOME will never be wrong and so may in such a framework never change their mind.

The subset problem appears in many areas of language acquisition including syntax
(Wexler & Manzini, 1987; Berwick, 1985), phonology (Smolensky, 1996; Hale & Reiss, 2003),
and learning compositional sentences structures (Crain, Ni, & Conway, 1994). One proposed
solution is the subset principle, which proposes that learners have a strong innate bias for
logically stronger hypotheses (Wexler & Manzini, 1987; Berwick, 1985; Smolensky, 1996;
Crain, 1992, 1993; Crain & Philip, 1993; Gualmini & Schwarz, 2009; Crain & Thornton,
2000; Crain et al., 1994; Musolino, 2006). Positive evidence then compels learners to move
to logically weaker hypotheses. In the case of “every” and “some,” learners’ initial state
would be to innately prefer the meaning EVERY for both words, and then uses in other
context would eventually show them that “some” has a logically weaker meaning.

The subset principle requires learners to have a very specific initial state with mean-
ings or hypotheses ordered by logical strength. Unfortunately, there are several problems
with accounts based on the subset principle. Even within quantifiers, it is not always pos-
sible to order hypotheses by logical strength, as with “most” and “many.” Additionally, an
innate subset principle seems much less plausible when one considers that the subset prob-
lem is faced more generally in lexical acquisition. It is hard to imagine that learners have
an innate specification that pushing is more specific than touching, greyhound is more
specific than dog, etc. Even worse, the subset principle appears unable to handle noisy
input because it implicitly formalizes an irreversible process. Once learners come to think
that a word means some, no (positive) evidence can ever convince them that it really meant
every. A related problem, the “triggering problem” (Borer & Wexler, 1987), is that the
subset-principle accounts fail to explain the fact that learners do not immediately change
hypothesized meanings when given contrary evidence, as many subset-principle accounts
seem to assume. Though one can imagine versions of the subset principle to solve both of
these problems—perhaps learners have some threshold for the amount of evidence required
to change their meaning—to our knowledge such a system has never been formalized or
shown to learn correctly.

The subset principle also appears to make incorrect predictions about learning tra-



LEARNING QUANTIFIERS 6

jectories. Musolino (2006) reviews predictions of the semantic subset principle that fail
in behavioral tests. He presents examples involving compositional sentences structures, in
which an ambiguous sentence has multiple interpretations that stand in subset relation-
ships, but children do not make the most specific generalization possible early in learning4.
Similarly, in word learning, Xu and Tenenbaum (2007) showed that children’s generalization
of word labels is not maximally specific, but instead follows the predictions of a Bayesian
statistical learner.

In sum, there are compelling problems with the subset principle in language acquisi-
tion. The subset principle requires a complex set of language-specific hypotheses and com-
putations, is not clearly able to handle noisy data or all quantifier meanings and appears to
make already falsified predictions. Moreover no implemented models exist demonstrating
the computational tractability and theoretical soundness of these proposals. Despite these
problems, the subset principle does capture the appealing intuition that more specific hy-
potheses should be preferred when they are right. A learner should disprefer for “every”
to mean some because it makes the incorrect, broad prediction that “every” should be a
possible option in all situations where some is.

We formalize this intuition in a probabilistic model, drawing on domain general mech-
anisms of correct statistical inference to solve the subset problem. We expect that the
approach to the subset problem taken here is considerably more general and applicable
to subset problems in areas like syntax and phonology as well. In the next section, we
first describe the space of quantifier meanings we consider and then describe the statistical
learning model.

Aspects of quantifier meaning

We begin our approach to quantifier learning by describing the types of representa-
tions that learners must eventually acquire. We are motivated by contemporary semantic
theories since these constitute our “best guess” for adults’ knowledge of quantifier meanings.
However, our implementation is a simplification that is intended primarily to address the
interesting challenge of learning both literal meaning and presupposition for a realistic set
of quantifiers. After discussing these aspects of meaning, we present the target meanings
and hypothesis space for learners.

Literal meaning

We follow Heim and Kratzer (1998) in supposing that to a first approximation, the
literal meaning of quantifiers can be captured with generalized quantifiers, logical operations
that denote relations between sets (see also Montague, 1973; Barwise & Cooper, 1981;
Keenan & Stavi, 1986; Keenan & Westerst̊ahl, 1997). For instance, the sentence “Some
reporter is a liar” might be mapped to a logical representation,

(nonempty? (intersection reporters liars)). (1)

4For instance, sentences such as “Every student can’t afford a new car.” could mean either (i) for each
student s, s cannot afford a new card, or (ii) it is not the case that every study can afford a new car. Since
(i) implies (ii), the subset principle implies early learners should interpret the sentences as (i), not (ii); but,
the opposite is true (Musolino, Crain, & Thornton, 2000).
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Throughout this paper we use prefix notation, meaning that a function f applied to an
argument x is written (f x ). Expression (1) is an expression that says that the intersection
of the set of reporters and liars is not empty. It is built using two logical operations:
intersection computes the set-intersection of its arguments, and nonempty? checks if a set
is not empty5. This expression refers to two sets, the set of reporters and the set of liars
(each in the relevant context). To arrive at this representation, comprehenders would use
their compositional semantics, composing the individual meanings of words in the sentence.
Simple formalized systems for this type of language processing can be found in Blackburn
and Bos (2005); detailed linguistic accounts can be found in Heim and Kratzer (1998) and
Steedman (2000)6. To a first approximation, most systems would map “reporters” to the
set of reporters, “liar” would map to the set of liars, and “some” would have a special
denotation, a function of two sets:

λ A B . (nonempty? (intersection A B)). (2)

This notation, lambda calculus, provides a convenient formalism for expressing functions.
Here, “λ A B .” denotes that the expression (??) is a function of the variables A and
B which gives a return value consisting of everything after the “.”. The compositional
semantics of English would have to pass reporter for “reporter” as the argument A and lied
as the argument B in order to arrive at (1). Many quantifier meanings can be written down
as lambda expressions like this that take two sets and return a truth value. For instance,
“every” might be denoted

λ A B . (subset? A B) (3)

where subset is a function which is true if the first set is a subset of the second. “No” (or
“none of the”) might be written as

λ A B . (empty? (intersection A B)). (4)

We note that we could have written down each of the above quantifiers in first-order logic,
using ∀ and ∃. The use of set-theoretic operations is motivated by other quantifiers mean-
ings which provably cannot be expressed in first-order logic (A. Mostowski, 1957; Barwise
& Cooper, 1981). For instance “most” cannot be written down using ∃ and ∀, intuitively
because “most” requires comparing potentially arbitrarily large cardinalities, which is im-
possible in first order logic. However, “most” can be expressed in our notation by assuming
operations for cardinality comparison:

λ A B . (card> (intersection A B) (set-difference A B)). (5)

Here, “card>” is a function that compares the cardinality of its first argument to the
cardinality of its second. Note that for “most” and all the other quantifiers studied here,
there are many equivalent ways of writing their meanings. Alternative formalizations, when

5In standard set-theoretic notation this would be reporters ∩ liars 6= ∅; in first-order logical notation it
might be written ∃x.reporter(x) ∧ lied(x). We use prefix notation keeping in line with previous work (e.g
Piantadosi et al., 2011; Piantadosi, Tenenbaum, & Goodman, 2009).

6Here, we will focus only on the meaning of the quantifier and not how it compositionally combines with
other words, though see Piantadosi et al. (2008) and Zettlemoyer and Collins (2005) for theories of learning
compositional structures.
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treated as explicit theories of the computational processes underlying these word meanings
have been argued to give rise to different behavioral hallmarks (Hackl, 2009; Pietroski, Lidz,
Hunter, & Halberda, 2009), but these distinctions will not be addressed in this work.

Presupposition

The second aspect of quantifier meaning is presupposition, which captures the as-
sumptions that are required for a statement to receive a truth value (see Heim & Kratzer,
1998, section 6.7, for an overview). Our primary representational choices build off proposals
in semantics and philosophy of language dating back to Russell (1905, 1957) and Strawson
(1950)7, who argued about the correct way to handle presuppositions in the definite deter-
miner, “the.” Russell argued that the meaning of sentences like “The A is B” asserts that
A is true of exactly one element and that element is in B. In other words “The accordionist
is cooking” is true if and only if there is exactly one accordionist and that accordionist is
cooking. This proposal captures the notion that “the” can only be used in situations where
there is a unique referent. However, as argued by Strawson (1950), this account is lacking in
that it seems to assign truth values to sentences which intuitively may not even have truth
values. Strawson’s sentence, “The present king of France is bald” would be strictly false
under Russell’s account, since it is not true that there is exactly one present king of France.
Strawson argues that our intuitions really say this sentence does not have a truth value (see
also Russell, 1957; Von Fintel, 2004). Strawson argues that sentences like “The present
king of France ... ” presuppose the existence of a king of France, rather than assert it. In
order for such sentences to be true or false, there must exist a king of France. If there is no
king of France, the sentence is neither true nor false. Indeed, violations of such background
assumptions appear to have different behavioral hallmarks than truth-value violations of
asserting something false (Langford & Holmes, 1979).

Presuppositions are an important aspect to quantifier meanings. For instance, in a
situation where there is exactly one sailor, it is bizarre to assert

“Both sailors are happy.” (6)

regardless of whether the one sailor is happy. Intuitively, sentence (6) requires as part of its
background assumption that there are exactly two sailors and it is difficult to say whether
it is strictly true or false if this assumption is not satisfied.

We capture presuppositional aspects of meaning by assuming that semantic represen-
tations have two parts: the presupposed content and the asserted content (see Karttunen
& Peters, 1979; Heim, 1991). For instance, “both” would presuppose exactly two elements
in A and assert that A is a subset of B :

Presupposed λ A B . (doubleton? A)
Asserted λ A B . (subset A B)

7We do not wish to get bogged down in the details of the semantic analyses of these words, or the
large philosophical and linguistic literature devoted to more thoroughly developing theories of semantics,
reference, and presupposition; for a detailed description, see (see Ludlow & Neale, 2008).
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Word Presupposition Literal meaning

the λ A B . (singleton? A) λ A B . (nonempty? (intersection A B))
a/some λ A B . TRUE λ A B . (nonempty? (intersection A B))
one λ A B . (nonempty? A) λ A B . (singleton? (intersection A B))
two λ A B . (nonempty? A) λ A B . (doubleton? (intersection A B))
three λ A B . (nonempty? A) λ A B . (tripleton? (intersection A B))
both λ A B . (doubleton? A) λ A B . (doubleton? (intersection A B))
either λ A B . (doubleton? A) λ A B . (singleton? (intersection A B))
neither λ A B . (doubleton? A) λ A B . (empty? (intersection A B))
every λ A B . (nonempty? A) λ A B . (subset? A B)
most λ A B . (nonempty? A) λ A B . (card> (intersection A B) (set-difference A B))

none/no λ A B . (nonempty? A) λ A B . (empty? (intersection A B))

Figure 2. Target quantifier meanings for the learning model.

Here, doubleton? is a function which is true if given a set of size two. In principle these two
aspects of meaning could be combined within one single representation:

λ A B . (presup (doubleton? A) (subset A B), (7)

where presup is a function which returns undefined if its first argument is false and it returns
its second argument if the first argument is true.

The learning setup

Given the above aspects of meaning, we can define a lexicon to be a mapping from
words to literal meanings and presuppositions. In order to provide data for the learning
model, we must define the adult “target” lexicon for learning. This target lexicon is shown
in Figure 2. The particular meanings in this lexicon are not meant to provide an exact
(and uncontroversial) account of what these words mean in English—that is one as-of-yet
unaccomplished goal of modern semantics. Instead, these particular meanings are meant
only to capture some interesting aspects of English quantifier semantics and present an
approximation to the task that learners of English face, for the purposes of implementing a
learning model.

The target lexicon is used to label sets of objects with words that an adult would be
likely to say. The learning situation is schematically shown in Figure 3. Here there is a
collection of objects which are shown in a Venn diagram with the sets A and B . The adult
speaker has the correct target lexicon (Figure 2) in their head and uses it to generate a
word label in the context of an observed instance of objects, following a pragmatic model
we describe later. If all the As are Bs, for instance, the adult may be likely to utter “every.”
From the learner’s perspective, all that is available is the uttered word “every” and the sets
in the context. Their job is to take a collection of these sets and noisy adult labels and
infer the meaning of each word. Thus, the meanings in the target lexicon are not directly
provided to the learner—the learner must infer them from observed usage in context.

From the learner’s point of view, the space of possible representations is much larger
than those in Figure 2. To formalize a plausible space of meanings, we first suppose that the
learner considers all possible quantifiers that can be generated from a context-free grammar
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of concepts (Goodman et al., 2008). The intuitive appeal of a grammar is that it requires
very little specific knowledge to be “built in”—it requires learners to know only the primitive
functions and how to compose them. From that, learners can build a vast set of possible
representations, potentially ones of considerable computational power (see Piantadosi et al.,
2012).

The specific grammar we use for learner’s hypotheses is shown in Figure 4. The gram-
mar includes a number of primitive operations that manipulate sets (union, intersection,
set-difference), small-set cardinalities (singleton? , doubleton? , tripleton? ), and which can
relate properties of sets to truth values (subset? , empty? , nonempty? , exhaustive? ). We
also include the ability to form trivial expressions such as λ A B . true. We note that while
this grammar includes primitives which are not strictly logically necessary for our model,
we aim to describe a set of general conceptual resources that are also useful in other areas
of learning, where we have used similar grammars (Piantadosi et al., 2012).

To see how the grammar could generate an expression such as,

λ A B . (singleton? (union A B)), (8)

we first begin with the START symbol. We then recursively expand nonterminals according
to the possible rules in Figure 4 until no more nonterminals remain. The only possible way
to expand START is to λ A B . BOOL, meaning we always will generate an expression
representing a function of two arguments, A and B . This function returns a boolean (BOOL)
since BOOL only expands to functions which return boolean values. For instance, a BOOL
can expand to (singleton? SET ), yielding the expression λ A B . (singleton? SET ). Next,
we may expand SET to (union SET SET ), yielding λ A B. (singleton? (union SET SET )).

adult learner

A B

some

every

...

Figure 3. The learning setup for the model. The learner observes two sets A and B, and hears
the parent utter a word. The word is generated according to the correct adult lexicon. The learner
must use observed word usages in context to infer likely word meanings.
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Nonterminal Expansion Gloss

START → λ A B . BOOL Function of A and B
BOOL → true Always true

→ false Always false
→ (card> SET SET ) Compare cardinalities (>)
→ (card= SET SET ) Check if cardinalities are equal
→ (subset? SET SET ) Is a subset?
→ (empty? SET ) Is a set empty?
→ (nonempty? SET ) Is a set not empty?
→ (exhaustive? SET ) Is the set the entire set in the context?
→ (singleton? SET ) Contains 1 element?
→ (doubleton? SET ) Contains 2 elements?
→ (tripleton? SET ) Contains 3 elements?

SET → (union SET SET ) Union of sets
→ (intersection SET SET ) Intersection of sets
→ (set-difference SET SET ) Difference of sets
→ A Argument A
→ B Argument B

Figure 4. A grammar that generates quantifier meanings.

If we then expand the first SET to A and the second set to B , we will generate expression
(8).

Of course, one can also generate all of the hypotheses shown in Figure 2. In general,
there are a vast number of potential hypotheses that can be generated according to this
grammar. Some of these are relatively complex. For instance,

λ A B . (nonempty? (union (set-difference B A) (set-difference A B))) (9)

is a quantifier literal meaning or presupposition which could be expressed in this language.
This is true iff there are As that are not Bs, or there are Bs that are not As. The challenge
for the learner, then, is to take data (words in context) generated according to the target
meaning in Figure 2 and find likely hypotheses generated by this grammar for each word
meaning.

The probabilistic model

We have described a learning setup where adults have a target set of meanings and
they utter words in the context of two sets. The learner has a grammar for generating
hypotheses and must take the observations (sets and words) and infer the likely meaning
in adults’ heads that generated the observed data. The goal of the probabilistic model is
to solve this problem: determine the best representation (generated from the grammar)
given some observations of adult utterances in context (Figure 3). The probabilistic model
we present can handle all the challenges we have described—noisy evidence, subset rela-
tionship, complex meanings with literal and presuppositional content, and a large space
of logically possible hypotheses. While we present the model specifically in the context
of quantifier acquisition, it is actually considerably more general to learning semantic or
syntactic structures.

Let w1, w2, . . . , wk be the words that the learner is trying to discover meanings
for. We denote the meaning of word wi by mi, and the collection of all meanings as
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m = (m1,m2, . . . ,mk). In the case of quantifiers, m5 might be the literal meaning and
presupposition for the word w5 = “every”8. It turns out to be important that we simulta-
neously learn sets of words, rather than only individual ones: we will show that the solution
to the subset problem requires learners to at least implicitly consider alternatives that the
speaker could have uttered.

Assume that the learner hears a sequence of uttered words u1, u2, . . . , un (with ui ∈
{w1, w2, . . . , wk}) each in a corresponding context c1, c2, . . . , cn. For the purposes of quan-
tifiers, we will take each ci as specifying all information about the relevant sets. So if a par-
ent says, “most crocodiles are hungry,” we can consider ci = “ crocodiles are hungry”,
where the learner knows that in this context, the first set A is the set of crocodiles and the
second set B is the set of things that are hungry. Learning this semantic compositional-
ity of English is an interesting challenge, but it is not tackled here. Instead, we focus on
how learners figure out the set relations, given knowledge of the relevant contextual and
syntactic information.

We are interested in computing P (m | u1, . . . , un, c1, . . . , cn), the probability of a set
of meanings m, given observed contexts and utterances. By Bayes rule,

P (m | u1, . . . , un, c1, . . . , cn) ∝ P (u1, . . . , un | m, c1, . . . , cn) · P (m). (10)

The left hand side of this equation, P (m | u1, . . . , un, c1, . . . , cn) is what a learner figures
out—given some utterances u1, . . . , un in contexts c1, . . . , cn, what is the probability of any
particular hypothesized set of meanings m. By Bayes rule, this is written as the product
of two terms. First, P (m) is a prior probability on meanings, which we construct by
converting the grammar in Figure 4 into a probabilistic context free grammar that biases
learners to prefer simple (short) expressions in their LOT. The second term, P (u1, . . . , un |
m, ci, . . . , cn), is the likelihood. The likelihood measures the probability that u1, . . . , un
would be produced in their corresponding contexts if m was the correct meaning. This
is the probability that in the contexts c1, . . . , cn, an adult would have uttered u1, . . . , un
if they had m as their meaning. This term is essentially the learner’s view of language
production—given a hypothetical set of meanings and observed world contexts, how likely
would the adult have been to utter each meaning.

In the likelihood, it makes sense to assume that each utterance ui depends on m and
ci, and is independent of the other utterances and contexts once m and ci are known: what
you say (ui) depends only on your set of meanings m and the current context (ci). This
means that the likelihood can be rewritten as

P (u1, . . . , un | m, ci, . . . , cn) =
n∏

i=1

P (ui | m, ci). (11)

There is some subtlety in constructing a likelihood that is statistically valid and leads
to effective learning. In particular, when there are both presuppositions and assertions, both
of these parts of the utterance must affect production. Our implementation is Gricean: it
assumes primarily that speakers tend to say things which are true and relevant to the
current context (Grice, 1975).

8The meanings need not necessarily be semantic—they could also include pieces of syntactic structure as
in, for instance, Combinatory Categorial Grammar (Steedman, 2000).
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Formally, we will assume that each utterance (word) u has a “weight” (unnormalized
production probability) w(u) which depends on the utterance’s informativeness. In partic-
ular, we assume that in choosing among relevant and true words, speakers prefer to utter
ones which are true less often since they provide more specific information. This is why, for
instance, it is infelicitous to say “a” in a context where “the” is also true9. Recent compu-
tational pragmatics modeling along these lines can be found in (Frank & Goodman, 2012;
Bergen, Goodman, & Levy, 2012; Goodman & Stuhlmüller, 2012). Formally, we assume
that in a context ci, an utterance ui has a “weight” w(ui) given by,

w(ui) =
1

ν + pt(ui)
, (12)

where pt(ui) is the probability that ui is true in an a typical (average) context and ν = 0.1 is
a constant “smoothing” term that prevents the weights from becoming too large. The form
of this equation is only for convenience and is meant only to capture the fact utterances
which are more rarely true (high pt(ui)) should be more likely to be uttered when they are
true.

The full likelihood model works as follows: we suppose that speakers first choose with
some probability αp whether or not to say a presuppositionally-valid utterance. Assuming
they do, they choose from the literally true (and presuppositionally-valid) utterances with
some probability αt and some random presuppositionally-valid utterance otherwise. In each
case, once a speaker has decided the truth- and presuppositional-value of the utterance
they say, they sample from the appropriate words with a probability given by (12) above.
Thus, if αp and αt are high, this model essentially assumes that speakers will tend to
say true, presuppositionally-valid utterances and sample them according to a measure of
informativeness. The amount of noise in the data is characterized by αp and αt, with the
former quantifying how often speakers make pragmatic violations and the latter specifying
how often they make truth-value violations10.

Note that for each utterance, learners are not told whether the utterances was true
and/or presuppositionally-valid. Instead, they only know that each utterance was generated
by a speaker who cared about both literal truth and presuppposition. Because of this, the
learner’s estimate of the probability of an utterance, P (ui, | m, ci), must take into account
all of the ways that it could have been generated (i.e. either as a true and pragmatically-
felicitous utterance, a false and pragmatically-felicitous utterance, or as a pragmatically-
infelicitous utterance). If ui is true and presuppositionally valid in context ci, then

P (ui | m, ci) =
αp · αt · w(ui)

Wp∧t(ci)
+

αp · (1− αt) · w(ui)
Wp(ci)

+
(1− αp) · w(ui)

W (ci)
. (13)

Here, w(ui) is the weight of the quantifier ui, given by (12). Wp∧t(ci) is the sum of the
weights of all true and presuppositionally valid words for ci, Wp(ci) is the sum of all weights

9Closely related linguistic accounts can be found in Heim (1991), who proposed explaining these
intuitions—and others that are unrelated to quantification—with a pragmatic principle, maximize presup-
position: all else being equal, speakers should prefer utterances with the strongest presuppositions (see also
Sauerland, 2003; Schlenker, 2006; Singh, 2009).

10A key here is that presuppositional violations and truth-value violations lead to different utterance
probabilities. Without this condition, learners would not be able to separate the presuppositional and literal
aspects of meaning.
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of presuppositionally valid words for ci, and W (ci) is the sum of weights of all words. So, for
instance, the second term is included because a word could have been generated by choosing
a word at random from the presuppositionally valid words, ignoring truth values. This hap-
pens with probability αp · (1−αt) and generates the word ui with probability w(ui)/Wp(ci).
To score the probability of words which are either false or presuppositionally invalid, the
corresponding terms from (13) are dropped. For instance, if ui is not presuppositionally
valid, only the last term in (13) is included since the word could not have been generated
by choosing from presuppositionally valid words, or true words. This likelihood function is
meant only to capture the tendency to utter true and presuppositionally valid words; our
learnability results do not depend on its specific form, only on the fact that it specifies a
valid generative model.

Equation (13) implements the size principle (Tenenbaum, 1999), an important feature
of Bayesian statistical learning models that has support form theory and experiments (e.g.
Xu & Tenenbaum, 2007; Piantadosi et al., 2008; Frank et al., 2007; Piantadosi et al., 2011).
For us, the size principle holds that the probability that any particular word ui is used
in ci depends on the weight of the words which alternatively could have been uttered11.
This consideration of alternatives allows learners to solve the subset problem in quantifier
learning and language learning more generally.

How the size principle solves the subset problem

To illustrate how the size principle solves the subset problem, it is useful to consider
the example of “every” and “some,” and suppose that they are the only words in the
lexicon. For simplicity, in this section, we also assume that αp = αt = 1, so that the
only utterances under consideration are true and presuppositionally valid. In this case, the
likelihood P (ui | m, ci) is only the first term of (13), which reduces to

P (ui | m, ci) =
w(ui)

Wp∧t(ci)
. (14)

As above, the subset problem for these words is that learners might incorrectly believe that
“every” meant some and would never receive evidence contradicting this, since whenever
“every” is true, some is also true. In the size principle formulation, the key is to look at the
likelihood of observed instances of “some” when “every” means some, compared to when
“every” means every. If “every” meant every, then most of the time it would not be true
in a context where “some” was uttered, since “every” is logically stronger. This means that
it will typically be the case that

P (“some” | m, ci) =
w(“some”)

w(“some”)
= 1. (15)

since if “every” is not true, Wp∧t(ci) is only the weight of “some.”
In contrast, if “every” meant some both would be true in the same situations and

the denominator Wp∧t(ci) in (14) would increase, making the observed instances of “some”
less likely :

P (“some” | m, ci) =
w(“some”)

w(“some”) + w(“every”)
< 1. (16)

11This is why in (11), the probability of ui depends on m and not just mi.
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Letting “every” mean some decreases the likelihood of the observed instances of “some.”
The reason for this is intuitive: if “every” meant some, each instance of “some” would have
to have been sampled from two possible true utterances rather than just one. Analogously,
in a sequence of coin flips, ten heads in a row are more likely under a hypothesis of a
coin with heads on both sides, than a coin with heads on one side and tails on another.
Intuitively if both heads and tails were possible, the sequence of heads is less likely to
occur; if “every” and “some” could both be used in many contexts, the observed instances
of “some” would have to be less likely. Probability mass should not be held out for events
that don’t occur. This is an application of the size principle (Tenenbaum, 1999): hypotheses
can assign the observed utterances higher likelihood if they predict that fewer words are
true in each context.

The size principle is similar to the subset principle proposed previously in that it
prefers meanings which are logically strong, or true less often. However, it differs from the
subset principle in the root cause of this preference. The size principle prefers meanings
which are true less often because they can assign the observed utterances a higher likelihood,
all else being equal. In contrast, the subset principle puts the bias in the prior, assuming that
learner’s innate expectations lead them to prefer stronger logical meanings. The advantage
of putting the preference in the likelihood is that it falls out very naturally by positing that
learners think about how language is generated. Once learners realize is that utterances are
generated using a set of meanings, and that the total probability of all possible utterances
must sum to 1, they can gain in the likelihood by positing that fewer words are true in each
context12.

In the next section we show that this Bayesian framework is considerably more pow-
erful than only solving the subset problem: it can always learn the correct set of meanings.

The Bayesian model is provably learnable

This section is meant to introduce a simple proof of the learnability of meanings in a
Bayesian framework. The proof is not novel—it is well-known that in the limit, the data will
support the correct model if the correct model is in the hypothesis space (see Li and Vitányi
(2008) for a more detailed theory and Hsu et al. (2011) for related proofs). We present it here
because we hope to refine the debate on learnability, moving away from questions of what
is in principle learnable, to questions of what can be learned by plausible computational
models on realistic data. To show learnability with this setup, we will consider the Bayes
factor, a measurement which quantifies the strength of belief an ideal learner should have
for one model over another (Jeffreys, 1961). The Bayes factor is defined to be the log ratio
of the posterior probabilities of two statistical models. In this case, one statistical model
will be data generated with the correct set of meanings, m̂. The alternative model will be
any other set of meanings, m. The Bayes factor in favor of m̂ is then given by

BF = log
P (m̂ | u1, . . . , un, c1, . . . , cn)
P (m | u1, . . . , un, c1, . . . , cn)

. (17)

12In this sense, the size principle is a simple consequence of formalizing a fully generative statistical model.
One could imagine alternative models that, for instance, set P (ui | m, ci) = α if ui is true, and 1 − α if ui

is false. Such a model is intuitive in penalizing incorrect meanings, but doesn’t specify a valid probability
distribution and would fail to solve the subset problem.
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The Bayes factor ranges from negative infinity (definitive support of m) to positive infinity
(definitive support of m̂) and equals zero when m̂ and m have the same posterior probability
(the data favors neither). We will show that as the amount of data gets large, the Bayes
factor in support of the correct model over any alternative goes to infinity with probability 1.
Thus, with enough positive examples, learners will accumulate an arbitrarily large amount
of evidence supporting the correct set of meanings.

Using Bayes rule (10), we can rewrite the Bayes factor as

log
P (m̂)P (u1, . . . , un | m̂, c1, . . . , cn)

P (m)P (u1, . . . , un | m, c1, . . . , cn)
. (18)

As above, we assume that each ui depends only on ci and is conditionally independent of
all other uj and cj (j 6= i). In other words, each utterance depends only on the context it
occurs in and not any other utterances or contexts. This means that we can factor (18), as

log

[
P (m̂)

P (m)

n∏
i=1

P (ui | m̂, ci)

P (ui | m, ci)

]
, (19)

which can be re-written to

log
P (m̂)

P (m)
+

n∑
i=1

log
P (ui | m̂, ci)

P (ui | m, ci)
. (20)

This says that the Bayes factor can be re-written as the sum of the log ratio between the
prior on m and m̂, a constant, plus the sum of the ratio between the likelihoods on each
data point. We are concerned with what happens for typical learners who get increasing
amounts of potentially noisy data generated from the correct target grammar (i.e. adult
speech). For this, we can compute the expected Bayes factor (20) after observing n data
points:

E
u1,u2,...
c1,c2,...

[
log

P (m̂)

P (m)
+

n∑
i=1

log
P (ui | m̂, ci)

P (ui | m, ci)

]
(21)

where the expectation is taken over all sequences of utterances ui and contexts ci. Equation
(21) can be simplified:

log
P (m̂)

P (m)
+ E

u1,u2,...
c1,c2,...

[
n∑

i=1

log
P (ui | m̂, ci)

P (ui | m, ci)

]

= log
P (m̂)

P (m)
+

n∑
i=1

E
ui,ci

[
log

P (ui | m̂, ci)

P (ui | m, ci)

]
= log

P (m̂)

P (m)
+ n · E

ui,ci

[
log

P (ui | m̂, ci)

P (ui | m, ci)

]
.

(22)

This implies that if

E
ui,ci

[
log

P (ui | m̂, ci)

P (ui | m, ci)

]
> 0, (23)
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the expected Bayes factor will increase without bound as n gets large—as more and more
data points are observed, the correct system m̂ will come to be favored over any alternative.
This will eventually overwhelm any effect of the prior log ratio log P (m̂)

P (m) , meaning that
learners will eventually assign m̂ the highest posterior probability.

To show that (23) holds, note that because we assume utterances are generated from
the correct adult grammar via P (ui | m̂, ci),

E
ui,ci

[
log

P (ui | m̂, ci)

P (ui | m, ci)

]
= E

ci

[∑
ui

P (ui | m̂, ci) log
P (ui | m̂, ci)

P (ui | m, ci)

]
. (24)

A standard theorem in information theory and probability, known as the Gibbs inequality,
holds that ∑

x

A(x) log
A(x)

B(x)
> 0 (25)

if A and B are different distributions on elements x. A proof of this is provided in Cover
and Thomas (2006, Theorem 2.6.3). This applies to (24), by letting A(ui) = P (ui | m̂, ci)

and B(ui) = P (ui | m, ci). Thus, for any ci the term
∑

ui
P (ui | m̂, ci) log

P (ui|m̂,ci)
P (ui|m,ci)

> 0

meaning that (24) must be greater than zero (i.e. 23 holds). Thus, (22) tends to infinity as
n increases. In expectation, an ideal learner will favor m̂ over any alternativem with enough
data, since each data provides, on average, evidence in favor of the correct meanings.

Note that we have made no assumptions about the form of P (ui | m, ci)—that is,
about how the set of meanings m give rise to utterances. We have not even assumed the
form we use in our implemented model (e.g. (13)). Under any such system, corresponding
to any linguistic system, the above argument will hold. Importantly, we have not assumed
that the learner hears negative evidence, or perfect data—these are not required for learning.
Rather, the Bayesian setup motivates an importantly different requirement: learners should
understand how adults would speak for any given set of semantic representations. It is then
possible for an ideal learner to figure out the word meanings using standard probabilistic
inference.

The implemented learning model

More important than establishing learnability in theory is showing that the correct
meanings are learnable with a developmentally-plausible amount of data. Here, we use an
implemented version of the model to study how many example utterances are necessary to
correctly learn the meanings in Figure 2.

Methods

Because naturalistic data consisting of quantifiers used by parents in the presence of
sets of objects is not available, we constructed simulated data by creating sets at random
and sampling adult meanings according to the likelihood process described above, with
αp = αt = 0.9. This means that the data is fairly noisy, with roughly 10% of the utterances
not satisfying presuppositions and of those that do, 10% are false. We generated sets at
random, each containing between 1 and 8 objects. Each object in a set was one of three
animals (mouse, pig, rabbit) that was one of three colors (white, brown, or pink). Here,
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the argument A was an animal and B was a color. For each set, we sampled utterances
according to the target grammar: for instance, for a set containing a pink mouse and two
brown rabbits, we might sample the quantifier “some” in the context “ mouse is pink.”

For the implemented model, the prior P (m) is defined by converting the grammar
in Figure 4 to a probabilistic context-free grammar (PCFG). We assume that each non-
terminal is equally likely to expand by any of its rules, except the rules that generate A
and B , the arguments to the function, are 10 times as likely than other rules. This proba-
bilistic grammar induces a probability distribution on expressions, assigning a probability
to an expression corresponding to how likely it is to sample the rules required to generate
the expression. This assigns short expressions higher prior probability, corresponding to
the intuition that simple (concise) representations should be preferred a-priori by rational
learners (Feldman, 2000; Chater & Vitányi, 2003; Goodman et al., 2008; Piantadosi et al.,
2011). This prior is similar to more sophisticated versions of rule-length priors developed
in other work (Goodman et al., 2008). The up-weighting of rules that generate A and B
is necessary to ensure that the grammar does not generate infinitely long expressions and
also to bias the learner to preferentially use the sets that are arguments to the function.

The model as described is a high-level computational theory of quantifier learning,
not an algorithmic one (Marr, 1982). We combine several algorithmic techniques from
probabilistic modeling to implement a working version of this model. This provides us with
learning curves as the amount of data for the model varies, which represent the learning
curves for an idealized statistical learner, operating over the space of meanings we describe.
In principle, learners should be able to consider any hypothesis generated by the grammar
in Figure 4. In practice, most of the hypotheses this grammar generates are very low prob-
ability, either by being long (small prior) or not explaining the data (low in the likelihood).
The first approximation that we make is that our algorithm looks only at hypotheses that
use 10 or fewer rule expansions13. We enumerate this space of hypotheses and, for computa-
tional tractability, collapse equivalent hypotheses. Thus, for instance, λ A B . (doubleton?
A) is not treated distinctly from λ A B . (singleton? (union A A)). This results in 79682
hypotheses (or equivalence classes of hypotheses) that represent distinct functions on sets.
This space was treated as a fixed, finite hypothesis space of expressions for purposes of
inference. We note that this still represents a huge effective hypothesis space for the learner
since the number of possible ways of assigning 12 word meanings to 79682 hypotheses is
7968212 ≈ 1058.

To search through lexicons, we first ran Gibbs sampling (Geman & Geman, 1984) for
varying amounts of data from 0 to 1500 sets. For each set size we ran 1000 separate Gibbs
sampling runs, storing 25 lexicons with highest posterior for each run at each amount of
data. This finite space of lexicons was treated as the finite hypothesis space for constructing
the learning curves and results here. Note that this method means that the target lexicon
had to be found at some amount of data by Gibbs sampling. However, once it is found by one
run, it will be included in the final finite hypothesis space of lexicons, allowing for better
statistical estimation. This is a form of selective model averaging (Madigan & Raftery,
1994), that we have used in other similar learning models (Piantadosi et al., 2011). This
technique amounts to using sampling techniques to search for high probability hypotheses

13Hypotheses which are excluded this way have a prior probability less than 1 in 10 million.
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Figure 5. Learning curves for αp = αt = 0.9, showing model proportion correct (y-axis) versus
amount of data (x-axis) for each aspect of meaning, literal (solid red) and presuppositional (dotted
blue).

(at each amount of data) and then using the high probability hypotheses as a finite space
for performing exact statistical inference.

Idealized learnability of quantifiers

Figure 5 shows learning curves for each of the words, on simulated data. For varying
amounts of data (x-axis), these plots show the model’s probability of learning the correct
representation for literal meaning (red solid) and presupposition (dotted blue). The x-axis
in this plot represents not the number of times that each of these words is heard, but the
total number of labeled sets, only some of which are labeled with the corresponding word.

This figure shows that all of the words are learned at least 50% of the time for ideal
learners who observe 2000 labeled sets. Note that the growth trend of words not near
ceiling after 2000 data points indicates that with 1000 to 2000 more, they will be near
ceiling. To put this total amount of data in perspective, determiners or quantifiers are used
in Adam’s section of the Brown corpus in CHILDES (MacWhinney, 2000) over 8000 times



LEARNING QUANTIFIERS 20

and that corpus represents only a small subset of the data Adam heard. This quantity of
data would be enough for an ideal learner to discover all aspects of meaning studied here,
even assuming that only a quarter of instances have clear and known referents. Moreover,
for the model, αt = αp = 0.9, meaning that only only 0.92 = 81% of the data is perfectly
“correct”—the rest is corrupted by noise. Learning through noise is possible because the
model aggregates evidence from multiple contexts. Doing so is likely very important for
function word learning (potentially in contrast to lexical item learning) since most function
word meanings are never unambiguously conveyed in a single context.

In principle, we would like to be able to compare the model’s acquisition patterns to
children’s, which have been studied experimentally to some degree (Karmiloff-Smith, 1981;
Hanlon, 1987, 1988; Barner, Chow, & Yang, 2009; Geurts, Katsos, Cummins, Moons, &
Noordman, 2010). Indeed, the broad factors which influence our model have already been
hypothesized in developmental studies to affect children’s learning. In one of the primary
developmental studies on quantifiers, Hanlon (1987) argues that the time-frame of quanti-
fier learning can be understood by considering general principles of cognitive development.
She argues, for instance, that semantic complexity is a major determinant of acquisition, as
is generality, with more specific terms acquired earlier. Both of these are also predictions
of our model. In our case, semantic complexity is captured by the representation language
and the model is—like a good rational learner—biased to prefer simpler hypotheses14. Sim-
ilarly, the generality predictions can be explained by the model: all else being equal, the
model will learn more specific meanings more quickly because there will be fewer competitor
meanings to weed out. Hanlon also notes that in her corpus studies, frequency of usage
is a major predictor of acquisition: word frequency is rank-order correlated at 0.77 with
acquisition order. These frequency findings are not surprising from the perspective of a
rational statistical learner, which are almost unavoidably sensitive to frequency.

In general, the model’s patterns of acquisition are determined by the interaction of
several factors, including the input words and frequencies (the data), the compositional
representation system (the prior), and the pragmatics model (the likelihood). If all of these
components were independently known, it would be possible to make detailed predictions
about learning, including the relative acquisition rates for words and common acquisition
errors. Unfortunately, the precise form of these components are not known: we do not
know, for instance, how often children hear quantifiers in the context of different set sizes
(e.g. Figure 3), or exactly what pragmatic inferences children are capable of. The learning
trajectory exhibited by the model is sensitive to these components; for instance, an earlier
version of this model (Piantadosi, 2011) exhibited a different learning trajectory and pre-
dicted some of children’s mistakes in learning “the” (Maratsos, 1974, 1976; Warden, 1974,
1976; Karmiloff-Smith, 1981; Modyanova & Wexler, 2007; Ko, Ionin, & Wexler, 2006; Ko,
Perovic, Ionin, & Wexler, 2008) and “every” (Philip, 1991, 1992, 1995; Takahashi, 1991;
Philip, 1995, 1998; Kang, 1999; Philip, 2003; Fiorin, 2010; Seymour, Roeper, & De Villiers,
2003; Roeper, Strauss, & Pearson, 2004). That model used a somewhat different pragmatic
setup, where word “weights” were simply memorized, instead of the Gricean setup used here.
That model predicted different learning curves in part because its pragmatic assumptions

14We note, however, that the details of our complexity measure differs from Hanlon’s, in that she argues
a determinant of complexity is whether or not the reference set of a quantifier is identical to the presuppo-
sitional set. This could be incorporated into our type of framework with alterations to the grammar.
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led to a different distribution of input frequencies—ones which could be fit to English word
frequencies. However, we believe that the current pragmatics model is more plausible and
principled, although in its current form it predicts different detailed patterns of acquisition.
We therefore do not take the contribution of this work to be in making specific behavioral
predictions, since the details depend on unknown factors. Instead, we see our model as pro-
viding a framework for understanding how learning with linguistically plausible semantic
representations might be possible at all. As the details of children’s representations, input
data, and pragmatic inferences are clarified by future work, our framework will be able to
produce more detailed behavioral predictions.

Constraints on quantifier meanings

Our unrestricted grammar for quantifier meanings differs from many contemporary
semantic theories, which posit that potential quantifier meanings are inherently constrained
by human cognitive and linguistic systems. One primary hypothesized constraint is con-
servativity (Keenan & Stavi, 1986; Barwise & Cooper, 1981): in our notation, a quantifier
is conservative if it depends only on the elements of A, the first argument to the function.
Thus, “Most men are happy” can be checked by looking only at the set of men15. Keenan
and Stavi (1986) argue that conservativity provides a useful constraint for language learners.
In a simple example involving sets of two individuals, they count 65, 536 possible quantifiers,
only 512 of which are conservative. Intuitively, learners should benefit by narrowing down
the space of possible meanings by a factor of 128. On the other hand, it may be the case
that most of the quantifiers that are ruled out with a conservativity constraint are already
low-probability, or that a factor of 128—7 bits of information—is not overwhelmingly useful.

Figure 6 shows a model-based analysis of how much conservativity helps under the
assumptions of the idealized learning model. The black line shows correct learning (literal
and presupposition together) in the unrestricted model and the blue dashed line shows
a learner who only considers conservative hypotheses16. This plot shows that on average
conservativity is not a useful constraint for this ideal learner—acquisition speed is essentially
the same for the constrained and unconstrained models. We note that mathematically a
smaller hypothesis space must help a learner since there are fewer hypotheses to consider;
this shows, however, that the degree of help for conservativity is minimal. While there is
behavioral evidence that children prefer to learn conservative quantifiers (Hunter & Conroy,
2009), this bias should not be posited for reasons of learnability (Keenan & Stavi, 1986).

This raises the question of whether any constraints on quantifier meanings could sub-
stantially aid learning. Figure 6 also shows a red dotted line, corresponding to what might
be considered the most constrained learner possible—one who only considered expressions
necessary for the literal meanings or presuppositions in Figure 2 as possible hypotheses.
Such a learner might innately have a small collection of possible word meanings and their
main challenge would be determining which word has which meaning—which of the mean-
ings in Figure 2 meaning does “the” map to? Thus, this is the minimal amount of learning

15Conservativity is perhaps best understood by a potential counter-example to it, “only.” “Only men are
happy” depends on the set of things which are not men, violating conservativity. However, “only” is often
argued not to be a quantifier due to the fact that it patterns differently in some syntactic constructions.

16For computational tractability, conservativity was evaluated “empirically” by evaluating the quantifier
on a large collection of sets.
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Figure 6. Learning curves for the basic unrestricted model (black), conservative quantifiers (dashed,
blue), and the maximally restricted model (dotted, red). The y-axis shows probability of correct
acquisition of all aspects of meanings (literal, presupposition, production probability).

that must occur, even under the most extreme nativist theories. The red dotted line in Fig-
ure 6 shows that this constrained space substantially aids the more difficult quantifiers like
“both” and “some,” but does comparatively little for quantifiers which are quickly learned.
This indicates that in many cases, learning in the unrestricted space is not much harder
than learning in the maximally restricted space. Likely, the unrestricted space has many
hypotheses which are so implausible, they can be ignored quickly and do not affect learning.
The hard part of learning, may be choosing between the plausible competitor meanings, not
in weeding out a large space of potential meanings. An alternative way to formulate these
findings is that even a maximally nativist learner who already had all and only the correct
quantifier concepts, still faces a difficult acquisition problem of determining which words
map to which meanings—a challenge that is on par with learning in the full unrestricted
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space. Not much is gained by positing strongly innate concepts, but the capacity to learn
in either system is gained by positing children have sophisticated inferential mechanisms.

Discussion

An idealized statistical learner is capable of discovering multiple unobserved aspects of
semantic meaning from noisy positive evidence—word utterances in the context of sets. Our
approach contrasts with previous learnability studies on quantifiers, which either require
positive and negative evidence, or only provably work for a subset of meanings. We have
instead approach the problem by first formalizing a space of meanings which is linguistically
plausible, and then we constructed an idealized statistical learning model over that space.
The learning model elegantly solves the subset problem, deals with the fact that many
words have highly overlapping meanings, and handles imperfect data. Our hope is that the
specific implementation we present here is not taken as a single, unitary model of quantifier
acquisition. More detailed data about children’s input and stages of knowledge will allow
different particular implementations to be compared and empirically evaluated. The present
work is a step towards developing a general framework for understanding how words like
quantifiers might be acquired—by combining rich capacities for conceptual structure with
genuine inductive learning.

The conceptual foundations of this approach draw heavily on work by Chater and
Vitányi (2007). They proved that language learning can succeed in principle from unre-
stricted hypothesis spaces (consisting of all computable functions), contrasting with Gold-
style (Gold, 1967) analyses. The assumptions of their approach differ from Gold’s in several
ways: rather than a worst-case analysis, Chater and Vitányi (2007) present average-case
learnability results, and their setup characterizes the goal of the learner to be modeling the
data instead of identification in the limit. Their proof works by assuming that learners at-
tempt to find what are essentially short bit strings describing computer programs to explain
the data they see. We take their results as providing the definitive theoretical argument
that language is learnable from an unrestricted hypothesis space in principle, and their
key ideas in their work have been used in behavioral predictions (see Hsu & Chater, 2010;
Hsu et al., 2011). Our work complements Chater and Vitányi (2007) by constructing an
example of how learning might proceed in a highly-studied linguistic domain of quantifier
semantics. In contrast to their more idealized analyses, we use previously-hypothesized lin-
guistic representations—functions that manipulate sets. Our results focus on learning such
unobserved semantic structures, addressing what we see as one of the primary acquisition
puzzles of how children learn productive linguistic constructs that do not have real-world
referents. Unlike (Chater & Vitányi, 2007), we cache out computation in explicitly cognitive
terms: we suppose that semantic structures are expressed in a cognitive representation lan-
guage, and that the task of learners is to induce the right representation in this language for
explaining adults’ usage of these words. In this framework, learning is essentially a problem
of program induction—discovering the unobserved computational process that creates the
observed data (Koza, 1992)—but program induction over cognitively-plausible primitives.
Our results show that this type of acquisition from a compositional space of primitives can
“really work” in explaining acquisition, and we expect that compositional learning models
can be generalized to learning other types of semantic and syntactic operations (for a simple
example, see Piantadosi et al., 2008).
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The view of “learning as program induction” is appealing because it provides an ap-
pealing compromise between nativist and empiricist theories. The model is nativist in that
it “builds in” a hypothesis space of potential meanings. But hypotheses for the model need
not all be explicitly represented by learners. Instead, they can be generated stochastically
from the above grammar for concepts. In the best case, only two hypotheses (to be com-
pared) must be represented simultaneously by the model—our inference algorithms have
this characteristic. This amount of nativism is, in some sense, a necessity for any learning
model that can arrive at the correct set of meanings—even models which do not have ex-
plicit representations build in spaces of hypotheses (see Griffiths, Chater, Kemp, Perfors,
& Tenenbaum, 2010). However, language-specific—or, more precisely, semantics-specific—
constraints and learning procedures are not necessary for learning. Indeed, semantic repre-
sentations like quantifiers can be learned using very general principles of statistical inference
like the Bayesian setup and the size principle.

As we described, the inference algorithm searches a space of around 1058 different
possible hypotheses. A perhaps surprising fact about statistical learning algorithms is that
a model which can be run in a few hours on a desktop computer, observing only a few
thousand data points, can pinpoint a single hypothesis in this massive space. This is pos-
sible because the inference algorithm we used—Markov Chain Monte Carlo—stochastically
“climbs” towards high probability regions of this space. So even though there are so many
logically possible hypotheses for learners, nearly all of them have close to zero probability
and so need not be explicitly represented. Many aren’t explicitly considered by the learning
algorithm because they “share” parts of other bad hypotheses—for instance, once the learn-
ing algorithm determines that “the” isn’t likely to mean λ A B. (tripleton (set-difference
A B)), it needn’t search through the 7968211 = 1053 lexica with this meaning. We suspect
that something similar is true for real child language acquisition: there are many possible
grammars or semantic representations that learners could consider, but most of them are
very low probability and are effectively “ignored” by learning mechanisms unless the data
suggests that they should be considered. Our results illustrate that idealized statistical
learners can be extremely powerful in resolving a basic mystery of language learning—how
it is possible at all.

One interesting feature of the learning model is that it appears in many cases to be
very easy for the model to discover the word meanings—typically within hundreds to a few
thousand labeled sets. In some cases, words that are very hard for children like “the” are
not substantially delayed for the model. We have made several simplifications that likely
lead to the model’s comparatively rapid acquisition. First, in determining each meaning λ A
B . (. . . ), we have assumed that the sets A and B are known. If learners are simultaneously
learning nouns, then this would introduce more uncertainty, delaying acquisition. Second,
we have assumed that the syntactic and semantic compositionality of quantifiers is known—
that is, that they take two sets and assert something about their relationship. It is possible
that if this also must be learned simultaneously, it would substantially complicate learning
and slow acquisition. The model in its present form also has perfect memory of previous
data. This assumption is not necessary for this type of LOT statistical model, but also
leads to increased rates of acquisition. Finally, we have assumed relatively high rates for
αp and αt, which determine how rapidly the model learns. Because the values of these
parameters are not determined independently, the learning rate of the model is essentially
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a free parameter.

Indeed, the ease of learning for this idealized model may raise one interesting possibil-
ity for language acquisition. It may be the case that the key puzzle for language acquisition
is not the poverty of the stimulus, but the abundance of stimulus: why do some aspects of
language acquisition take so long, given that an idealized statistical learner would find them
so easy? Similarly, abstract syntactic principles may be learnable from surprisingly little
data (Perfors, Tenenbaum, & Regier, 2011). One answer is that children are non-ideal in
all sorts of ways, including memory limitations and imperfect observations. But it might be
the case that even given these, facts, idealized learners find it easier than children; in which
case maturational considerations—of language or other cognitive systems—might play a
role. Indeed, the abundance of the stimulus was argued by Babyonyshev, Ganger, Peset-
sky, and Wexler (2001) to support a maturational account of other syntactic phenomena,
such as A-chain formation, since children are substantially delayed with A-chains despite
their prevalence in the input. Addressing the abundance of stimulus problem is an interest-
ing challenge for statistical learning models—one that is the polar opposite of traditional
poverty arguments put forth against statistical learning. The abundance of stimuli paints a
different picture of acquisition, one where the environment is full of information sources, but
perhaps the hard part of language learning is using those information sources effectively.

Conclusion

This paper has studied learning problems in semantics as a case study of the logi-
cal problem of language acquisition, specifically as it applies to function words. We have
argued that learners of quantifier meanings face many of the complexities that make learn-
ing language daunting: non-obvious literal meanings, the subset problem, presuppositional
content, and variable word frequencies. The learning model we present posits that learners
have access to a compositional system for generating possible hypothesized semantic repre-
sentations, and that they use at least approximately optimal Bayesian inference to decide
between those hypotheses. This provably solves the subset problem and our implementa-
tion shows that it can learn these word meanings from an unrestricted hypotheses space,
in a developmentally-plausible amount of data. These general techniques could be applied
to other subset-problems in language, or areas where unseen abstract structure must be
inferred.
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