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Abstract

Studies of infant looking times over the past 50 years have provided profound insights about cognitive development, but their
dependent measures and analytic techniques are quite limited. In the context of infants’ attention to discrete sequential events,
we show how a Bayesian data analysis approach can be combined with a rational cognitive model to create a rich data analysis
framework for infant looking times. We formalize (i) a statistical learning model, (ii) a parametric linking between the learning
model’s beliefs and infants’ looking behavior, and (iii) a data analysis approach and model that infers parameters of the
cognitive model and linking function for groups and individuals. Using this approach, we show that recent findings from Kidd,
Piantadosi and Aslin (2012) of a U-shaped relationship between look-away probability and stimulus complexity even holds
within infants and is not due to averaging subjects with different types of behavior. Our results indicate that individual infants
prefer stimuli of intermediate complexity, reserving attention for events that are moderately predictable given their probabilistic
expectations about the world.

Introduction

The ‘blooming buzzing confusion’ (James, 1890) of early
childhood provides a substantial challenge to young
learners. Not only must infants learn much about the
structure and properties of the world, but before such
learning can begin, infants must first attend to the right
subset of experience – they must discover which informa-
tion sources are useful. In particular, children must ignore
both environmental noise, and stimuli from which they
have nothing more to learn. Kidd et al. (2012; henceforth
KPA) suggested that infants solve this problem by
building implicit statistical models of observed stimuli,
and directing attention according to the information-
theoretic properties of these cognitive representations.
Their work showed that infants stop attending to a
stimulus that is either too predictable, or too unpredict-
able, according to an idealized model of infants’ implicit
beliefs. Predictable stimuli leave very little left to learn,
and unpredictable stimuli are potentially either noise or
the result of incomprehensible complexity. In either case,
cognitive effort is best spent elsewhere.

KPA showed this by presenting infants with controlled
sequences of discrete events – objects appearing from
behind boxes much like the game Whac-a-mole except
that infants did not interact with the objects. Figure 1(a)
shows one of their displays, in which three objects were
each occluded behind a box.1 In the experiment, a single
object would appear from behind each box (an ‘event’)
in some sequential order. If the three events are denoted
{A, B, C}, an example event sequence would be
ABACAABAABA…, corresponding to box A’s object
appearing from behind box A, then box B’s object
appearing from behind B, then box A’s object again, etc.
Overall, there were 32 event sequences each 30 elements
long, which were fixed across infants, but presented in
random orders. This design allowed for collection of a
substantial quantity of data on infants’ probability of
looking away at each event in each sequence. The
sequences were designed by KPA to vary in their
predictability and information-theoretic properties.
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1 Box locations and the objects pairings were randomized across trials.
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Building off studies demonstrating that infants have
rich capabilities for statistical learning and inference
(Saffran, Aslin & Newport, 1996; Saffran, Newport &
Aslin, 1996; Saffran, Johnson, Aslin & Newport, 1999;
Fiser & Aslin, 2002; Xu & Garcia, 2008; Xu & Denison,
2009; Dewar & Xu, 2010; T�egl�as, Vul, Girotto, Gonz-
alez, Tenebaum & Bonatti, 2011; L. Smith & Yu, 2008),
KPA constructed an ideal observer model of these
stimuli that quantified the degree to which infants should
expect any particular event to appear next in the
sequence. For instance, the sequence ABACAABAABA
would lead infants to expect A as a relatively likely next
event. Conversely, C is relatively unlikely since it has not
appeared frequently in the past.
Infants watched these displays on a Tobii eye tracker,

and the critical dependent measure was the specific event
in each sequence when infants terminated their attention
to the displays and directed attention away from the
screen (e.g. to the room, their feet, their parent, etc.).
KPA showed that infants’ look-aways during these
sequences were influenced by the predictability of each
outcome according to their model of the previous events.
Infants were significantly more likely to look away on
events that were either highly surprising or highly non-
surprising according to the idealized model. ‘Surprise’
was measured according to the negative log probability
(see Shannon, 1948) of an event according to the
statistical model. Negative log probability can be viewed
as a measure of complexity on the scale of bits of
information, corresponding to how many bits would be
required for an ideal learner to store or process the
current event. Figure 1(b) shows KPA’s primary result:
probability of looking away (y-axis) has a U-shaped
relationship with the negative log probability of an event
(x-axis). This plot shows binned raw data, and a smooth

line for a Generalized Additive Model (Hastie &
Tibshirani, 1990) with binomial link function, although
KPA’s primary data analysis tested significance using a
kind of regression, a survival analysis, more suited to the
experimental framework (Hosmer, Lemeshow & May,
2008; Klein & Moeschberger, 2003). In general, these
results are suggestive that infant attentional mechanisms
form an efficient gateway to other learning mechanisms,
filtering stimuli using infants’ own predictive expecta-
tions to primarily attend to learnable stimuli (Gerken,
Balcomb & Minton, 2011). KPA’s work therefore
provides a formal quantification (see also Civan, Teller
& Palmer, 2005; Kaldy, Blaser & Leslie, 2006) and test of
the long informally-hypothesized theory that infants
prefer intermediate stimulus complexity (Dember &
Earl, 1957; Hunter & Ames, 1988; Kinney & Kagan,
1976; Roder, Bushnell & Sasseville, 2000; Rose, Gott-
fried, Melloy-Carminar & Bridger, 1982; Sokolov, 1963;
Wagner & Sakovits, 1986).
KPA’s model is rational in that the statistical model

infants are hypothesized to create represents a good
solution to the problem of determining the true distribu-
tion of experimental stimuli they observed (see Anderson
& Schooler, 1991; Chater & Oaksford, 1999; Geisler,
2003). Further, KPA’s model is a kind of ‘pure’ rational
model which did not attempt to capture any limitations of
learners such as memory decay, or individual variability.
Such models are useful in part because both agreement
with and deviations from the predictions of these models
are substantially informative. Agreement reveals congru-
ence with the expectations of an idealized view of
learning; deviations likely reveal nontrivial cognitive
limitations. However, downsides of ‘pure’ rational models
are also clear: it is almost certain that infants do not have
perfect memory for previous events, and that individuals

(a) (b)

Figure 1 1(a): An example display from KPA showing three boxes and an object (a bottle) appearing from behind one. 1(b): KPA’s
U-shaped relationship between look-away probability (y-axis), and log probability (x-axis), with raw binned data (red line) and a
Generalized Additive Model (Hastie & Tibshirani 1990), both collapsing over subjects. [Reprinted with permission from Kidd,
Piantadosi, & Aslin, (2012), distributed under the Creative Commons Attribution License].
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may vary in their response patterns. Greater statistical
power and accuracy is gained by modeling these compo-
nents. More importantly, as we discuss in detail later, the
U-shape KPA observe could be due to collapsing across
two types of infants (for an example, see McMurray &
Aslin, 2005) – some who prefer low complexity and some
who prefer high. This would substantially change the
interpretation of KPA’s results.

Our primary goal in this paper is to develop richer
methods for rational modelling in infant cognition –
methods that can capture effects such as memory decay
and individual subject variation and formalize an explicit
linking function between infants’ beliefs and behavior
(Aslin, 2007; Yurovsky, Hidaka & Wu, 2012). We aim to
demonstrate how rich modeling of data can be combined
with formalized cognitive theories, to the benefit of both.
Our analysis incorporates both an idealized statistical
learning model posited to exist in infant cognition and a
behavioral model of the responses collected in an
experiment. The behavioral model uses as input the state
of the ideal observer model: infants’ actions at each time
depend on their implicit beliefs about the world. The
ideal observer model, in turn, uses as input the observed
experimental stimuli. Both of these statistical models are
formalized as Bayesian models (for tutorials, see Chater,
Tenenbaum & Yuille, 2006; Griffiths & Yuille, 2008;
Perfors, Tenenbaum, Griffiths & Xu, 2011). The power
of this approach is that by combining cognitive modeling
with sophisticated data analysis, we are able to make
strong inferences about the components of infants’
learning systems and distinguish a theoretically impor-
tant range of possible hypotheses (see also Yurovsky
et al., 2012; Piantadosi, Tenenbaum & Goodman, 2009;
Piantadosi, 2011). For instance, this method is capable of
discovering the (prior) assumptions of infants’ own
inferential models: KPA’s model used a prior parameter,
a, which controlled the degree to which learners expect
previously observed events to be repeated. While KPA
assumed a fixed value of a = 1 in their rational analysis
– corresponding to largely unbiased learners – it is much
more interesting to determine what values of a ‘best’
explain infants’ behavior. Do infants expect that previ-
ously observed events are more likely to re-occur (a � 1)
or do infants expect that all events are always equally
likely to be seen (a � 1)? Alternatively, infants might
possess an even stronger form of unbiased rationality,
perhaps bringing prior expectations to learning that are
as unbiasing as possible (a = 0.5) with respect to
the probabilistic setup (Jeffreys, 1961). These are not the
types of questions that are traditionally considered in
the domain of infant cognition since they require both
formalized models and sophisticated ways to relate
models to behavior.

The approach we use is centered around Bayesian data
analysis (Gelman, Carlin, Stern & Rubin, 2004), which
has become increasingly popular in psychology (Kru-
schke, 2010a, 2010b). The advantages of Bayesian
methods for data analysis are numerous (see Jaynes,
2003; Gelman et al., 2004; Kruschke, 2010a, 2010b) and
include, most notably, an advantageous conceptualiza-
tion of scientific inference.2 Bayesian techniques have
been applied most notably in the developmental litera-
ture by Lee and Sarnecka (Lee & Sarnecka, 2010a,
2010b; Sarnecka & Lee, 2009), who provide a Bayesian
data analysis method for testing ‘knower-levels’ in
number knowledge, while controlling for other factors
like subject effects and an individual baseline distribu-
tion of responses. Their work formalized a much richer
hypothesis space than previous studies of these develop-
mental stages, and allowed for powerful inferences and
theory comparisons. In the infant literature, Yurovsky
et al. (2012) present a novel Bayesian analysis of
looking-time data, as well as simulations showing that
their approach can recover ‘true’ parameters with very
high accuracy.

For our purposes, the important feature of Bayesian
data analysis is its power: we are able to specify an
arbitrarily complex probabilistic model of behavior, and
make inferences about the parameters of that model
using observed behavioral data. The outline of the
present paper is as follows: the next section describes
KPA’s experiment and the Dirichlet-Multinomial (DM)
models used by KPA. We describe modifications of
KPA’s model, including memory decay, and formalize a
space of linking functions between the properties of the
DM and look-away behavior. We then describe the
Bayesian data analysis model, and present results show-
ing that the U-shaped relationship reported by KPA is
observed even in individual infants. Each step in the
formalization of this model requires making assumptions
about the mathematical form of the model and its
statistical form. In general, we make these choices to
conform to prior literature on this type of modeling. As
many of the choices made in prior literature are
motivated by conceptual or mathematical simplicity,
these properties carry forward to our model. Our
presentation focuses on providing an intuitive under-
standing of the techniques, with the hope that this work
illustrates how cognitive modeling can be combined with
state-of-the-art data analysis to produce fully probabi-
listic models that are capable of distinguishing critically
different hypotheses.

2 For discussion of Bayesian epistemology of science, see Godfrey-
Smith (2003).
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A rational model: Whac-a-mole

It is useful to first consider the behavior of an individual
subject in KPA’s task. In the general framework of a
DM model used by KPA, the learner observes each event
(A, B or C) some number of times, and uses this to infer
an overall distribution of events.3 For instance, in the
sequence ABABCCAA, the learner will have observed
four As, two Bs, and two Cs, meaning that they should
expect that it is more likely the next event is an A than a
B or a C. The DM model allows one to take this set of
counts and compute the expected probability that each
event will occur in the future.4 As mentioned above, the
DM formalization we use has a single free parameter,
a, that controls the degree to which the model expects a
uniform distribution on events (large a, making all events
equally likely), versus expecting future events to be
exactly like previously observed ones (small a, primarily
the data drives expectations). A simple way to interpret a
is to imagine that a is the number of counts which are
assumed by the learner to already have been observed on
each event. For instance, if a = 1, then the model acts as
though it had observed A, B, and C each a = 1 times
more than were actually observed, exactly as in ‘add one’
smoothing (Chen & Goodman, 1999). A convenient
feature of a DMmodel is that the expected probability of
each event can be found by dividing the number of
counts (observed and assumed) for an event, by the total
number of counts. Thus, if we had observed a sequence
like ABBBABAA and a = 1, the expected probability of
observing A next would be 4 + 1 = 5, the observed plus
assumed counts of A, divided by the total counts, 9 + 3
(9 observed events plus 3a = 3 assumed counts, corre-
sponding to a assumed counts for each of three event
types), giving a probability of 5/12 � 0.42. Alternatively,
if we increase a, the distribution is pulled towards the
uniform probability of ⅓. So if a = 10, then the
probability of A is (4 + 10)/(9 + 3�10) � 0.36.
Conversely, decreasing a moves the distribution towards
the empirically observed distribution of 4/9As: when a =
0.1, the probability of A is (4 + 0.1)/(9 + 3�0.1) � 0.44.

While the DM setup looks simple, it is actually quite
powerful. In the above example, even though C has not
been observed, the parameter a performs a ‘smoothing’
role and assigns C a nonzero probability of (0 + 1)/12. As
the number of data points gets large, the choice of a
matters less and less: in the limit of data, the expected
distribution is the empirically observed one, a desirable
feature of a good learner. Also, the degree of strength of
belief in uniformity depends on the magnitude of a. As
noted earlier, if a = 10, then all probabilities are pulled
closer to 1/3, the uniform distribution andwhen a� 1, the
distribution tends strongly towards the observed counts.
A priori, we may not know what a plausible value for an
individual’s a is, although reasonable choices exist such as
a = 1, corresponding to flat (unbiased) expectations
about the distribution of events. Much better, though,
would be to infer a from infants’ behavior, and thus
discover what assumptions their statistical model of the
world makes.
In its standard form, the DM assumes that the events

are independent and distributed according to some
unknown multinomial distribution. But in the cognitive
realization of such a model, it is likely that not all events
are treated equally. In particular, learners likely have
better memory for more recent events, a finding dating
back to Ebbinghaus (1913).5 As in adult work on
rational statistical modeling with memory decays (Good-
man, Mansinghka & Tenenbaum, 2007; Piantadosi,
2011; Piantadosi et al., 2009), we assume a power law
decay in memory (Anderson & Schooler, 1991). Here, an
event i items back is given an effective count of (i + 1)�k.
This is less than the count of 1 that it would receive with
no memory decay. For instance, if k = 1, the previous
event (i = 1) will have an effective count of ½, the event
before will have an effective count of ⅓, etc. One way to
visualize the influence of these parameters it to consider
a simple example, such as the model’s inferences after
observing the sequence AB. Figure 2 shows the DM
model’s predicted distribution of events after observing
AB, for various values of a and k. In the sequence AB,
both A and B have occurred once, but A occurred one
item further back in the sequence, meaning that the
difference between the probability of A and the proba-
bility of B represents effects of memory decay, param-
eterized by k. In this ‘AB’ sequence C has not been
observed, so comparing the probability of C to A and B
shows how much smoothing is provided by a, relative to
the memory-decayed counts of A and B. Thus, when a is

3 We note that KPA also tested a transitional model which learned
dependencies between transitions of events, such as A being likely to
follow B. This model showed stronger patterns than the non-
transitional model which assumed independence between events, but
is more complex. For simplicity, we focus here on the non-transitional
model and leave transitional modeling for future work.
4 Much neater, the DM model actually allows one to compute the
probability that any hypothesized distribution on events is the correct
generating one. For simplicity, here we discuss only the expectation of
this full distribution, given some set of counts.

5 It is also in principle possible to include a primacy bias, but this
substantially complicates the model and our sense in watching the
stimuli is that the early events are easily forgotten.
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small (top row of Figure 2), the model assigns the
unobserved event C very little probability unless the
memory decay is very strong (e.g. k = 8). When
the memory decay is so strong, the model essentially
‘forgets’ all the data and expects all events to be equally
likely. Similarly, when a is large (relative to the decay
provided by k), as on the bottom row, the smoothing
term dominates the model’s inferences, pushing predic-
tions towards equal probabilities for the three events.

Linking the DM model to behaviour

The key finding from KPA is that infants’ probability of
looking away has a U-shaped (quadratic) relationship
with the information provided by each event, given the
previously observed events in the sequence. Following
Shannon (1948), KPA measured information as the
negative log probability of each event according to the
infants’ current model of the world. So for instance, if
the event Awas predicted to occur with probability ⅓ by
the DM, this event would convey �log2 ⅓ = 1.6 bits of
information. This is a measure of the amount of
information processing an idealized infant would have

to do in order to access (i.e. encode or remember) the
event. KPA found that this information measure6 has a
quadratic relationship with infants’ look-away probabil-
ity, meaning that infants were significantly more likely to
look away from an event sequence when the current
event was either very high or very low in information.

As in KPA, we are interested in testing for the U-shape
and so we must potentially allow for a broader range of
relationships. Unlike KPA, our model and analysis
focuses on the behavior of individual infants, rather than
group-means. We assume that each individual infant’s
probability of looking away at each item in the event
sequence is a parameterized function of the negative log
probability (complexity) of each event:

Pðlook-away at event iÞ ¼ expðb0 þ b2ðx� b1Þ
þ b3ðx� b1Þ2Þ; ð1Þ

where x is the information (negative log probability) of
event i, and b0, b1, b2, and b3 are parameters that
characterize the relationship between information and
look-away.7 Here ‘exp’ is the exponential function exp(y)
= ey. The information value, x, in (1) is what relates this
equation to the statistical learning model: the DM model
specifies the x value (information content) of each
observed event, conditioned on all the previously-
observed data. Equation (1) converts this idealized
measure of information to a measure of behavior, giving
infants’ look-away probability as a function of the
‘surprisingness’ of the data. This equation says that
infants’ probability of looking away is an exponential of
the sum of a baseline probability b0, a linear term
b2(x � b1) and a quadratic term b3(x � b1)

2. The
exponential is used because it is a standard linking
function in the survival analysis used by KPA (e.g. Cox
& Oakes, 1984; Klein, 1992; Hougaard, 2000; Ibrahim,
Chen & Sinha, 2005); indeed, our model can be viewed
as Bayesian framework very similar in spirit to KPA’s
original survival analysis, but one that makes several
simplifying (and parametric) assumptions. The summing
operation allows multiple influences (constant, linear,
quadratic) to all simultaneously influence the outcome.
While we think of this equation as specifying look-aways,
it is important to point out that it also specifies non-
look-aways when it predicts a probability of looking
away close to 0. Thus, the data analysis model’s
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Figure 2 Pie charts illustrating the relative influence of a and
k on the DM model’s inferences. Each pie represents the
learner’s expected distribution on events after observing the
sequence AB. The center plot corresponds to a = 0.1, k = 4,
the approximate values found for infants in the experiment (see
results). This shows a moderate amount of decay and
substantial smoothing.

6 In their formulation, this was computed by integrating over the
distribution of events, not taking the expected value. These are closely
related and using the expected value is a simplifying computational
assumption here.
7 We also upper bound the probability returned by this linking function
at 1.0
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inferences take into account both the places where
infants do look away and the places where they do not.
Equation (1) formalizes a range of different linking

functions as the Βi are allowed to vary.8 Figure 3(a)
illustrates several possible relationships between infor-
mation and look-aways that our analysis could discover
with this setup. b0 characterizes the baseline look-away
probability distribution: ignoring effects of information
(i.e. b1 = b3 = 0), b0 determines the raw probability of
looking away at each time point. The green line in
Figure 3(a) shows one line with no influence of infor-
mation, with look-away probability constant over a wide
range of information values. Next, b2 and b3, respec-
tively, determine the linear and quadratic influence that
information has on (log) look-away probability and Β1

shifts the curves left (b1 > 0) and right (b1 < 0). The
black line in Figure 3(a) shows a linear influence of
information (note the y-axis is logarithmically scaled).
This would correspond to a subject who had a very high
probability of looking away on high information events,
and very low probability on low information events. An
analogous line could give the opposite, a preference to
look away on low information events compared to high
information. The red line shows a quadratic influence
with no linear influence: this would be a preference to
look away on either highly surprising or highly non-
surprising events. The purple line shows another possible
relationship. Over the whole x-axis, this would be a
parabola, but in the scale of information values in the
plot (0 to 3), this curve gives a strongly asymmetric
relationship that prefers only to look away on high
information events. Analogously, one could choose the
bis to prefer to look away on low information events. The
point illustrated by Figure 3(a) is therefore that the
model allows many possible relationships in the data to
be revealed by the analysis.
Figure 3(b) illustrates an important problem: by

averaging the purple curve and its ‘flip’ – preferences
for low and high information, respectively – one could

observe a U-shape in the subject average (red dashed line
in 3(b)). This means that the average-level U-shape found
by KPA is not necessarily due to individual subjects
preferring a particular information level. It could be that
some subjects only look away to high information events,
and some to low, and that in aggregate their behavior
looks like a U. Teasing apart this possibility from a
U-shaped relationship for individual infants is a major
goal of the present paper.

Summary of variables

We have so far described several variables that are likely
to influence each individual:
• a controls the learner’s prior expectations that future

events will look like previously observed ones.
• k controls the learner’s memory decay, the degree to

which earlier events are discounted in predicting
future events.

• b0 controls the baseline probability of looking away
at each event, or equally, the y (vertical) location of
the U or linear curve.

• b1 controls the x-offset, shifting the U curve or line
horizontally.

• b2 controls the linear influence of information on
look-away probability.

• b3 controls the quadratic influence of information on
look-away probability.

It is important to note here that these variables are of
very different types, in terms of cognitive theorizing. a
controls the assumptions of the rational model posited to
be in infants’ mental representations – how much they
think future events will be like past ones. k controls the
limitations of the rational model9 – the degree to which
imperfect memory for events influences their expecta-
tions about future events. Finally, the bis control the
linking between the rational model and behaviour – they
parameterize the shape of each individual’s response to
events, whether they ignore information, prefer high or
low information, or potentially show a quadratic rela-
tionship. It is also important to emphasize the difference
between the structural assumptions of the model, and
the parts of the model which are inferred from data. The
model assumes that infants use a DM with some prior
parameter a and memory decay k, but infers their values
from the behavioral data. The model also assumes that
look-aways are some constant, linear, or quadratic
function of the negative log probability of an event

8 We note that Equation 1 is a nonstandard quadratic parameterization
in that it contains more free parameters than are mathematically
necessary. We could have chosen to fit equations of the form
b0 + b1x + b2x

2. We use Equation 1 because in it, similarity in
coefficients corresponds directly to similarity in U-shape since the
parameters (b0, b1) give the location of the bottom of the U and its
shape (b3). Without the extra parameters, similarities in U-shapes
correspond to less obvious relationships between parameters since the
location of the U depends on multiple parameters. Additionally, we
have observed that the parameterization in (1) allows for more efficient
inference (Markov Chain Monte Carlo), although we have not
evaluated this quantitatively. However, our results-in particular the
U-shapes observed in individuals-do not depend on which parameter-
ization we use.

9 At least to the degree in which imperfect memory can be considered a
limitation—see Anderson and Schooler (1991).
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according to this model, but leaves the specific function
(specified by the bi) to be determined from the data. The
model is therefore constrained to make inferences about
a class of DM models linked to look-away probability,
but is free within that general class of models to discover
different kinds of linking functions, priors, and memory
decays.

Data analysis model: from individuals to groups

It is tempting to consider fitting the parameters sum-
marized in the previous section simply on a by-subject
basis. This approach is often used in psychophysics and
is simple and intuitive. However, it is well-known that
this type of analysis is not efficient since it does not share
or ‘pool’ any information between subjects (see Gelman
& Hill, 2007).10 Ideally, we should use estimates about
the group-level distribution of parameters to influence
our estimates of individual subject parameters. This
provides substantially better analysis, improving both the
subject-level parameter estimates and allowing better
inferences about the group-level parameters. In a simple
example, if we are attempting to predict a driver’s
probability of an accident from, say, their gender, the

best estimate will incorporate both information from the
driver’s previous driving record (observed data for the
subject) and the priors given by their gender group
average. This type of partial pooling is elegantly included
in mixed effect or hierarchical Bayesian regression
models (e.g. Gelman & Hill, 2007; Baayen, Davidson &
Bates, 2008), which have become common in experimen-
tal psychology (e.g. Baayen et al., 2008).

Partial pooling is cached out in Bayesian data analysis
by imagining that individual subject parameters are
chosen according to some (unobserved) overall group
distribution. The model is then hierarchical: the data
(responses) are informative about individual subject
parameters, and the individual subject parameters are
themselves informative about the group distribution. By
doing inference about the group distribution, such
models effectively combine information from subjects
and allow individual subject data to inform hypotheses
about the group average in a statistically ‘correct’ way.
Somewhat counter-intuitively, at the same time, the
hypothesized group mean is informative about individual
subjects and can improve our estimates of noisy
individual subjects’ parameters. So, with the statistical
model described in the previous section, individual
infants’ b3 (the quadratic effect) might be clustered
around a group mean, here denoted b̂3, that equals,
perhaps 0.5, with a standard deviation of 0.2. By doing
inference over the location of this group mean b̂3 (and
the group variance about this mean), we can test the
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Figure 3 Relation between information content and look-away probability for several types of hypothetical infants. In 3(a), the
green line (b0 = � 2, b1 = 0, b2 = 0, b3 = 0) shows no influence of information on look-aways, corresponding to b1 and b2 not
significantly different from zero. The black line (b0 = � 2, b1 = 1.5, b2 = 1.0, b3 = 0) corresponds to a linear relationship between
information and look-away log probability. This shows no quadratic effects. The red line, (b0 = � 2, b1 = 1.5, b2 = 1.0) shows a
quadratic influence. Finally, the purple line (b0 = � 2, b1 = 0.0, b2 = 0.3) shows a response that is asymmetric over the range of
value in the experiment, giving rise to primarily a preference to look away on high-information events. Averaging purple lines and
their reflection-individual subject preferences for high and low information-can give rise to a U-shaped subject average, the dotted
red line in (b).

10 Indeed, in exploratory work, analyses without pooling did not lead
to robust results, despite the fact that infants provided 32 trials each.
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statistical hypothesis that the group average quadratic
effect is significantly nonzero, while controlling for the
fact that individual infants may have different values for
b3. Formally, we use a scaled inverse-Wishart setup from
Gelman and Hill (2007), which also captures the subject-
wise variance and covariance between the bi. This setup
essentially fits a covariance matrix to individual subject
coefficients in the population allowing the model to
capture systematicities in individual subject parameters.
We chose this because in regression it is a better choice
than, for instance, assuming that each individual sub-
ject’s random parameters are independent (since they are
unlikely to be). Although we have not exhaustively
explored other options, it is likely that our results do not
depend strongly on this particular form of regression.
We also would like to bring the advantages of partial

pooling to a and k. Unlike the regression parameters bi,
a and k are both required to be non-negative, and so
treating them as normally- distributed (as with the bis) is
not appropriate. We instead assume that individual
values of a and k, here denoted as and ks, come from a
group-level gamma distribution. The gamma distribution
is a common distribution on non-negative real numbers
that can control both the size and variability of the
distribution of these parameters. In the full Bayesian
setup, the parameters of this group-level gamma distri-
bution require priors themselves. Since we do not know
what these should be, we choose a form of prior which
biases the model as little as possible, known as reference
priors (from Yang & Berger, 1996; Sun & Ye, 1996). Such
priors are – by definition – designed to allow the data to
have the largest possible influence on the model (Ber-
nardo, 1979; Berger, Bernardo & Sun, 2009), allowing us
to avoid the influence of the priors as much as possible.
We chose these over alternatives like an arbitrary
parametric form specifically because we did not have
strong expectations about these parameter values, so we
wanted to allow the data to ‘speak for itself’ as much as
possible. Effectively, what this means is that we ‘build in’
very few expectations about the group-level distribution
of a and k, and infer both the group distribution and the
individual subject values of these parameters.

Methods

We have so far described the setup of the probabilistic
model used in our data analysis. The logic of Bayesian
data analysis (for reference, see Gelman et al., 2004;
Kruschke, 2010a, 2010b) is that we specify a probabilistic
model, as above, and then do inference over the
unobserved parameters given the observed data
(behavioral responses). This inference will tell us what

parameter values are likely given the data we have
observed. Formally, Bayesian techniques provide a
posterior distribution on the model parameters, which
specifies how likely any particular parameter value is to
be the true one, given the observed data (see, e.g.
Griffiths & Yuille, 2008; MacKay, 2003; Kruschke,
2010b, for introductions). For instance, it will tell us
likely ranges for each individual’s bi, a, and k, as well as
the likely ranges of the group distribution.
In general, it is often a substantial challenge to take

the assumptions and observed data, and precisely
determine the posterior distribution. Instead, a standard
technique in Bayesian inference is to generate samples
from the posterior distribution, which then can be used
to compute relevant values such as parameter means,
medians, and ranges. This technique, Markov-Chain
Monte-Carlo (MCMC) (see chapter 29 of MacKay,
2003, for an introduction) essentially takes a biased
random walk around the space of parameter values such
that in the limit, it draws samples from the correct
posterior distribution, P(variables | data), where the
variables are the ones described above and the data are
the observed behavioral look-away patterns. An intuitive
way to think of MCMC is as a hill-climbing algorithm
that tries to ‘fit’ the variables to best explain the data,
except that sometimes the algorithm ‘climbs’ downhill
(e.g. moving towards worse-fitting parameters) in order
to more completely explore the space of parameter
values. In fact, it achieves a perfect balance of uphill and
downhill climbs such that in the long-term average, it
correctly samples from the distribution. Thus, through
MCMC, we are able to discover the range of likely
parameter values under the assumption that the formal
model we constructed is (at least close to) correct. A full
review of this technique and the associated mathematics
is beyond the scope of the present paper, so we refer
readers to primary sources (e.g. MacKay, 2003; Andrieu,
De Freitas, Doucet & Jordan, 2003; Gelman et al., 2004;
Griffiths & Yuille, 2008). We use a programming package
for Bayesian inference called PyMC (Patil, Huard &
Fonnesbeck, 2010), which is similar to BUGS (Gilks,
Thomas & Spiegelhalter, 1994; Lunn, Thomas, Best &
Spiegelhalter, 2000), but substantially more powerful.11

Using PyMC, we ran MCMC for 100,000 steps of burn-
in, and 150,000 steps of samples, drawing a sample every
100 steps. We assessed convergence using eight multiple
chains, and confirming that each gave similar results
despite starting from different initial conditions. This
took approximately 48 hours on a 2.6 GHz computer. In
order to prevent having to compute negative log prob-

11 Running code is available from the first author.
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ability values for every real-valued sample of as and ks,
we discretized these variables by steps of 0.2 from 0.0 to
20.0 for as and 0.1 from 0.0 to 10.0 for ks. Inference was
run over the discrete versions of these parameters, as an
approximation to the full continuous model.

MCMC produces samples of the parameter values
from the data analysis model’s posterior distribution.
These samples tell us where we should believe the true
parameter values lie, given the observed data. The
samples can be used to compute quantities such as the
expectation of parameter values, range and distribution,
and quantiles of the posterior distribution. That is, the
output of the model gives the distribution of likely
parameter values, given the behavioral data we see. When
samples of individual parameters are examined, they
correspond to marginal estimates of parameters, mean-
ing that they integrate out the uncertainty in other
parameters. This means that the model’s samples for
each parameter automatically (and optimally) account
for uncertainty in the rest of the model. In particular, by
marginalizing over the unknown cognitive parameters
like as and ks, we are able to make inferences about the
other parameters (the bi) while correctly controlling for
the cognitive parameters’ values even though we do not
know them exactly.

In the analysis, we primarily focus on the mean of each
parameter’s posterior distribution – a good guess for its
value – and each variable’s 95% highest posterior density
(HPD) interval, which quantifies the range and precision
of our parameter estimate.

Results and discussion

Figure 4 shows individual-level response curves for each
infant, the primary result of the present paper. Here, the
y-axis shows each infant’s probability of looking away on
an item of a given information content (x-axis). Since
individual differences in as and ks lead to different
information content ranges for each infant, each curve is
plotted for the infant’s information content range as
determined by their estimated median as and ks. Thus,
the x-axes differ slightly for each infant because each
individual has a different as and ks, giving a different
range of information content. Most individuals demon-
strate a clear U-shaped relationship between information
and look-aways.12 The prevalence of U-shapes here
indicates that the effect found by KPAwas not an artifact

of some infants preferring predictable events and some
preferring unpredictable events. In that case, we would
expect to observe primarily increasing- and decreasing-
curves within individuals, not U-shapes. The group-level
tendency towards U-shaped relationships can best be
statistically evaluated by examining the posterior distri-
bution of group-level coefficients, b̂0, b̂1, b̂2, b̂3 shown in
Figure 5(a). This posterior distribution shows how
much belief we should place in any particular estimate
of these values, showing the range of plausible linking
function parameters given infants’ data. For our pur-
poses, the most important of these coefficients is
b̂3, which gives the quadratic influence of information
content on look-away probability. This variable’s 95%
highest posterior density intervals are well away from 0,
indicating that the quadratic group trend is statistically
significant. The other variables have interesting distri-
butions: the linear term b̂2 is substantially negative,
indicating a strong decreasing tendency in the model,
but which is offset by the intercept term b̂0 and the
quadratic term b̂3. The interaction of these four
variables can more easily be visualized by showing the
group average linking function that they imply. Fig-
ure 5(b) shows a clear U-shaped tendency for look-
aways centered on information content values near 1.
We note that this shows a stronger pattern than reported
in KPA. This is because, unlike KPA’s analysis which
collapsed over individuals, Figure 5(b) essentially sub-
tracts out noise due to individual differences by fitting
individual parameters. This leads to a more robust and
clear estimation of the group curve.

In addition, the plots in Figure 4 have been colored if
the left increase of the U-shape is more than 2 times
higher than the right (red); none had the right more than
2 times the left. Only two of the 41 infants show this
pattern, indicating that overall the trend is towards
relatively symmetric U-shapes.

Note, though, that these individual curves cannot be
estimated very reliably: the area between the dotted lines
denotes the 95% posterior probability mass bounds for
these curves, giving an estimate of our confidence in
each. However, we should expect that if we had a more
complete picture of infants’ experience – both in the
experiment and in real life – our ability to model
individual curves might be substantially enhanced. Put
another way, the uncertainty inherent in these curves
may be due to the fact that our cognitive model is an
extremely simple approximation of much more complex
cognitive processing.

Using the model, we can also investigate the individ-
ual subject parameters for memory decays (ks) and
priors (as). Figure 6 shows one row for each subject,
with their estimated values for these two parameters,

12 Note the location of the bottom of the U differs from KPA’s results.
This is because here we fit memory decay and alpha parameters, each of
which alters the numeric range of information content values.
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Figure 4 Individual linking functions recovered by the data analysis model relating information content (x-axis) to probability of
look-away (y-axis) for each infant (log scale). The area between the dotted error bars denotes 95% of the posterior probability mass
for these curves. Red boxes show primarily decreasing curves, where the left upturn is more than 2x the right; no infants showed the
reverse pattern of a right upturn more than 2x the left.
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and 95% highest-posterior density ranges (horizontal
lines). This figure shows that infants tend to have values
of the prior parameters, as, around 0.1, with a range in
uncertainty of this estimate from close to 0.0 up to
about 0.4. These numbers are only interpretable relative
to the number of ‘counts’ provided by the actual data,
which is determined by the memory decay parameters
ks, also shown in Figure 6. ks values average about 4,
with a range of about 2.5 to 5.5. As above, one simple
way to visualize the effect of these parameter values is
to imagine that a learner had observed the sequence AB
and was then attempting to predict the next element.
Following the range of values in Figure 6, we assume a
= 0.1 and k = 4. These parameter values correspond
to the center pie plot of Figure 2, and so can be
understood intuitively by comparing the center plot to
the others in Figure 2. Thus, in the example sequence
AB, A would receive an effective count of (2 + 1)�4 �
0.01, B would receive an effective count of (1 + 1)�4 �
0.06, and C would have a count of 0 since it does not
occur. These would then be ‘smoothed’ by a = 0.1.
Event A then has a probability proportional to (0.01 +
a), or equal to 0.30. Event B has a probability
proportional to (0.06 + a), or equal to 0.43. The
unobserved event C would have a probability propor-
tional to (0 + a), or equal to 0.27. These probabilities
indicate both a substantial amount of memory decay

(a) (b)

Figure 5 (a): Group-level coeffi_cients for each of the parameters of the linking function, b̂0, b̂1, b̂2, and b̂3. This shows the model’s
posterior estimates for these parameters, corresponding to how confident we should be in the group-level effects given the
experimental data. The (red) dotted lines show 95% highest posterior density (HPD) intervals for each coefficient. (b): mean group-
level curve relating information content to look-away probability, using the (full joint) distribution of the coefficients that are plotted
in (a). The dotted line shows a 95% HPD interval for this line at each x location.

Figure 6 This shows each subject’s mean posterior estimate
for the DM prior as (x-axis) and each subjects’ mean posterior
estimate for their memory decay parameter, ks. There is
relatively little variation in individuals’ estimated as and ks, but
considerable uncertainty in the individual estimates. The
numerical values of these variables results in a moderate range
of prior beliefs and memory decay (see text).
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(the probability of A is not very different from C) and a
moderate amount of smoothing (C has probability close
to ⅓ even though it is unobserved). These are reason-
able expectations and accord with our intuitive sense of
which inferences in Figure 2 are most plausible: infants
likely have difficulty remembering past events and so
base inferences more strongly on recent events. Infants
may smooth these distributions substantially because
they observe multiple trials where objects appear
from behind each of the boxes, and so may learn that
as-of-yet unobserved events will eventually be seen. It
will be important for future work to examine how these
kinds of parameters may change over the course of
development, and how this interacts with later (or
earlier) stages of learning.
Importantly, these results provide strong evidence for

infants’ learning. There are several ways in which the data
analysis model could have discovered that infants do not
learn throughout the course of these sequences. For
instance, if infants really did not form predictive expec-
tations about the stimuli, the ‘best’ model parameters
might have high as, making all events appear to have equal
information content, or very high ks, making infants’
inferences ignore essentially all data. Similarly, the ‘best’
linking functions for infants might have been flat (Fig-
ure 3(a)), indicating no relationship between information
and look-aways. The fact that the model does not tend
towards these parameter settings is indicative of regular-
ities in infants’ responses that would be expected by
KPA’s theory – statistical learning of sequences com-
bined with a quadratic linking function between infor-
mation and look-away. In Appendix A we simulate data
and show that when given bimodal data (some infants
prefer predictable events, some prefer unpredictable), the
same data analysis model is able to recover these two
kinds of infants and their corresponding increasing and
decreasing curves. This suggests that the U-shapes
recovered here are not artifacts of the analysis method,
but represent actual learning and attentional effects in
individual infants.
This finding broadly suggests that statistical learning

and inference mechanisms themselves may play an
active role in selecting which data should be subject to
deeper processing. If correct, this paints a starkly
different picture of statistical learning mechanisms than
might be expected by application of the most common
Bayesian models. In typical models, the data are simply
provided ‘as-is’, usually through observation or an
experimental protocol. Such models often well-explain a
wide range of developmental phenomena (see Perfors
et al., 2011). However, real-world statistical learning
may have a somewhat different nature, where learners
actively select which data points should be ignored, and

which should be studied in more depth (see Bardhan,
Aslin & Tanenhaus, 2010; Gureckis & Markant, 2012,
for recent examples of active sampling without instruc-
tion). This is a reasonable strategy for learners with
constrained processing mechanisms (e.g. limited work-
ing memory, etc.) or limited memory. It is even
plausible that the simple statistical learning paradigms
studied in the lab may only scale to real-world sized
data sets (e.g. learning an entire vocabulary) with
inclusion of some kind of attentional selection mecha-
nisms (Turk-Browne, Jung�e & Scholl, 2005; Toro,
Sinnett & Soto-Faraco, 2005; Creel, Newport & Aslin,
2004). As suggested by our findings, statistical learning
mechanisms themselves may help decide which data
points are most useful, leading to an interesting
circularity. We believe that it is an important direction
for future modeling work – especially related to very
early development – to explore how such individual
data selection might influence the trajectory and out-
come of idealized statistical inference.
The method we have developed connects an idealized

cognitive model with an idealized data analysis model,
providing, in some sense, the best of both worlds. This
technique allows us to specify a number of extraneous
factors that we think might matter – like memory decay –
and perform optimal statistical inferences about an
aspect of infants’ representational system given their
behavior. The primary advantage of this is not just in
avoiding possible pitfalls of null hypothesis significance
testing (Edwards, Lindman & Savage, 1963; Cohen,
1994; Lee & Wagenmakers, 2005; Wagenmakers, 2007;
Kruschke, 2010a, 2011), but that it provides a tractable
way for formalized models to make contact with
behavioral data, an important emerging trend that will
be critical for working out precise scientific theories of
learning and development. Importantly, our general
approach is much more broadly applicable than just
KPA’s original experiment. Indeed, we expect that as
modeling and experimental approaches converge, this
type of method will be able to help resolve key issues
relating to individual differences, such as distinctions
between fast and slow habituators (McCall & Melson,
1969; McCall & Kagan, 1970; McCall, Hogarty, Ham-
ilton & Vincent, 1973; DeLoache, 1976; Baillargeon,
1987).

Conclusion

These results demonstrate that the U-shaped relationship
between information and look-away probability is likely
not due to two separate kinds of infants, some who prefer
low complexity and some who prefer high complexity.
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Instead, individual infants appear to show the trend
observed by KPA in group averages of a preference for
medial information rates. This lends support to KPA’s
interpretation that a ‘Goldilocks’ preference allows
individuals to learn in a complex environment, filtering
out information sources which are either too simple or
too complex.

The methods used in this paper illustrate that
cognitive modeling can be usefully combined with rich
data analysis. While it is compelling to build rational
models, it is even more powerful to build rational
models into analysis frameworks that allow for strong
tests of the assumptions and limitations of the rational
model, as well as its precise relation to behavior. From
infant data, we infer intuitively plausible ranges of
values for unobserved cognitive parameters, and per-
haps more importantly, our key result of theoretical
interest is confirmed while controlling for (marginaliz-
ing out) these unknown parameters. One important
aspect of this work is our ability to do inference over
the space of possible linking functions between hypoth-
esized beliefs and observed behavior. This was possible
by making plausible assumptions where absolutely
necessary, and allowing the data to have the greatest
influence on factors of theoretical interest. For instance,
we ‘build in’ to the analysis that infants have similar
linking functions and parameters, but allow substantial
variation in the shape of the group-level and
individual-level linking functions themselves. The
assumption of similar parameters across individuals
allows for partial pooling of information from each
infant. This general approach of leaving the key parts
of the model as unspecified as possible illustrates that
strong quantitative analysis can be fruitfully applied to
noisy infant data. We expect that even richer data
analysis methods can be developed for infant experi-
ments: for instance, one could apply functional mixed
effect models (Guo, 2002) or richer nonparametric
methods within individuals (e.g. N. Smith & Levy, 2008)
in this type of framework, perhaps also with an explicit
nonparametric Bayesian clustering model over individ-
uals (Yurovsky et al., 2012).

We believe that the combination of probabilistic
cognitive models with Bayesian data analysis is a
powerful tool. Bayesian cognitive models encourage
principled formalization of inferential theories, and
Bayesian data analysis allows for principled formaliza-
tion of statistical analysis. More generally, of course, one
could combine rich data analysis with any parameterized
cognitive model – not just Bayesian ones. However, our
approach is especially well suited to Bayesian cognitive
modeling: Bayesian cognitive models provide a superb
‘first approximation’ to any cognitive task because they

embody the statistically optimal solution to a problem
learners face.13 Critically, Bayesian data analysis allows
us to incorporate limitations into the rational model – in
our case, a memory decay – without having to make a
priori assumptions about how constraining or important
those limitations are. We do not, for instance, assume a
particular value of k. Bayesian data analysis then gives
the best of both worlds: a fully- formalized rational
model, and an inferentially- optimal scheme to illumi-
nate limitations to that rational model, given the
behavioral data. As future work requires building and
testing increasingly complex models, we believe that the
general framework presented in this paper provides a
powerful linking of theory, analysis, and experiment,
using probabilities all the way down.
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Appendix

Simulation results

To establish that the data analysis model presented here
would correctly recover a mixture of two kinds of subjects
– some who prefer high information content and some
who prefer low – we created simulated data with this
property and provided it to the data analysis model. For
each of 41 simulated subjects, we ‘ran’ the experiment
where each individual’s probability of looking away at
each point in the sequence was characterized by the four
parameters, b0 � Normal( � 2, 1), b1 � Normal
(1.0, 0.1), b2 � Normal(j � 6, 1.0), b3 = 0, where j = 1
for even numbered subjects and j = � 1 for odd. Each of
these parameters was sampled once for each individual,
and used to determine their look-away probability
throughout each sequence. The bimodal property of b2
implemented throughjmakes the even numbered subjects
prefer to maintain attention to predictable (low informa-
tion content) events, and the odd numbered subjects prefer
to maintain attention to unpredictable (high information
content) events. For the simulated data,we fix a = 0.1 and
k = 4.0, approximately the values observed in KPA’s

data. Note that, as with the real data, all of these
parameters must be estimated for each subject using the
behavioral measure of which item in the sequence led to
termination of attention.
The subject-wise curves recovered by the model are

shown in Figure A1. This illustrates that the data
analysis correctly recovers the increasing and decreasing
curves for even and odd numbered subjects, respectively,
with the exception of one subject (number 35). As in
Figure 4, the red plots indicate curves where the left
increase is more than 2 9 the right, and the green
indicate curves where the right is more than 2 9 the left
– 95% posterior probability curves are shown in dotted
lines.
The success of the model on this simulated data

indicates that the unimodal individual curves recovered
by our model on real data reflects true properties of the
data – the bimodality is not an artifact of the analysis
approach. In particular, it is not due to the partial
pooling of parameters implemented in our hierarchical
Bayesian analysis. More generally, this indicates that our
approach of recovering within-individual estimates of the
relationship between predictors and behavior is amena-
ble to discovering other population-level distributions of
linking functions.
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Figure A1 Individual linking functions recovered by the data analysis model relating information content (x-axis) to probability of
look-away (y-axis) for each infant (log scale), using simulated bimodal data. Green boxes indicate data biased for simplicity of
information content (positive slope) and red boxes biased for complexity (negative slope). Simulated subject 35 in the only one
misclassified in this analysis.
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