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Abstract Many studies rely on estimation of Weber ratios
(W ) in order to quantify the acuity an individual’s approxi-
mate number system. This paper discusses several problems
encountered in estimating W using the standard methods,
most notably low power and inefficiency. Through simu-
lation, this work shows that W can best be estimated in a
Bayesian framework that uses an inverse (1/W ) prior. This
beneficially balances a bias/variance trade-off and, when
used with MAP estimation is extremely simple to imple-
ment. Use of this scheme substantially improves statistical
power in examining correlates of W .

Keywords Numerical cognition · Statistical estimation ·
Weber ratio · Bayesian statistics

A common task in the study of numerical cognition is
estimating the acuity of the approximate number system
(Dehaene, 1997). This system is active in representing
and comparing numerical magnitudes that are too large to
exactly count. A typical kind of stimulus is shown in Fig. 1,
where participants might be asked to determine if there are
more red or black dots, but the total area, minimum, and
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maximum sizes of these colored dots are equal, encour-
aging participants to use number rather than these other
correlated dimensions to complete the comparison.1 In this
domain, human performance follows Weber’s law, a more
general psychophysical finding that the just noticeable dif-
ference between stimuli scales with their magnitude. Higher
intensity stimuli—here, higher numbers—appear to be rep-
resented with lower absolute fidelity, but constant fidelity
relative to their magnitude. Since Fechner (1860), some
have characterized the psychological scaling of numbers
as logarithmic, with the effective psychological distance
between representations of numbers n and m scaling as
n/m (Dehaene, 1997; Masin et al., 2009; Nieder et al.,
2002; Nieder and Miller, 2004; Nieder & Merten, 2007;
Nieder & Dehaene, 2009; Portugal & Svaiter, 2011; Sun
et al., 2012). Alternatively, others have characterized numer-
ical representations with a close but distinct alternative: a
linear scale with linearly increasing error (standard devi-
ation) on the representations, known as scale variability
(Gibbon, 1977; Meck & Church, 1983; Whalen et al., 1999;
Gallistel & Gelman, 1992). This latter formalization moti-
vates characterizing an individual’s behavior by fitting a
single parameter, W , which determines how the standard
deviation of a representation scales with its magnitude: each
numerosity n is represented with a standard deviation of W ·
n. In tasks where subjects must compare two magnitudes,

1Unfortunately, it is impossible to simultaneously control all other
variables correlated with number. In this example, for instance, the
mean dot size also varies.
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Fig. 1 An example stimulus for an approximate number task where
participants must rapidly decide if there are more black or red dots.
The areas, minimum sizes, and maximum sizes between the dots are
controlled, and the dots are intermixed in order to discourage strategies
based on spatial extent

n1 and n2, this psychophysics can be formalized (Halberda
& Feigenson, 2008) by fitting W to their observed accuracy
via,

P(correct | W,n1, n2) = �

⎡
⎢⎣ |n1 − n2|

W ·
√

n21 + n22

⎤
⎥⎦ . (1)

In this equation, � is the cumulative normal distribution
function. The value in Eq. 1 gives the probability that a sam-
ple from a normal distribution centered at n1 with standard
deviation W · n1 will be larger than a sample from a dis-
tribution centered at n2 with standard deviation W · n2 (for
n1 > n2). The values n1 and n2 are fixed by the experimen-
tal design; the observed probability of answering accurately
is measured behaviorally; and W is treated as a free variable
that characterizes the acuity of the psychophysical system.
As W → 0, the standard deviation of each representation
goes to 0, and so accuracy will increase. AsW gets large, the
denominator in Eq. 1 goes to zero and accuracy approaches
the chance rate of 50 %.

The precise value of W for an individual is often treated
as a core measurement of the approximate system’s acuity
(Gilmore et al., 2011), and is compellingly related to other
domains: for instance, it correlates with exact symbolic
math performance (Halberda & Feigenson, 2008; Mussolin
et al., 2012; Bonny & Lourenco, 2013), its value changes
over development and age (Halberda & Feigenson, 2008;
Halberda et al., 2012), and is shared among human groups
(Pica et al., 2004; Dehaene et al., 2008; Frank et al., 2008).

Despite the importance of W as a psychophysical quan-
tity, little work has examined the most efficient practices
for estimating it from behavioral data. The present paper

evaluates several different techniques for estimating W in
order to determine which are most efficient. Since the prob-
lem of determining W is at its core a statistical inference
problem—one of determining a psychophysical variable
that is not directly observable—our approach is framed in
terms of Bayesian inference. This work draws on Bayesian
tools and ways of thinking that have increasingly become
popular in psychology (Kruschke 2010a, b, c). In the con-
text of the approximate number system, the first work to
infer Weber ratios through Bayesian data analysis was Lee
and Sarnecka (2010, 2011), who showed that children’s
performance in number tasks is better described by dis-
crete and exact knower-level theories than ones based in the
approximate number system.

With a Bayesian framing, we are interested in P(W | D),
the probability that any value for W is the true one, given
some observed behavioral data D. By Bayes rule, this can
be found via P(W | D) ∝ P(D | W) · P(W), where
P(D | W) is the likelihood of the data given a partic-
ular W and P(W) is a prior expectation about what W

are likely. In fact, P(D | W) is already well established
in the literature: the likelihood W assigns to the data can
be found with Eq. 1, which quantifies the probability that
a subject would answer correctly on each given trial for
any choice of W .2 The key additional part to the Bayesian
setting is therefore the prior P(W), which is classically a
quantification of our expectations about W before any data
is observed.

The choice of P(W) presents a clear challenge. There
are many qualitatively different priors that one might choose
and, in this case, no clear theoretical reasons for preferring
one over another. These types of priors include those that
are invariant to re-parameterization (e.g., Jeffreys’ priors),
priors that allow the data to have the strongest influence
on the posterior (reference priors), and those that could
capture any knowledge we have about likely values of W

(informative priors). Or, we might choose P(W) ∝ 1, cor-
responding to “flat” expectations about the value of W , in
which case the prior does not affect our inferences. This
naturally raises the question of which prior is best; can cor-
rectly calibrating our expectations about W lead to better
inferences, and thus better quality in studies that depend
on W?

2So the probability of an entire set of data D can be found by taking
multiplying together P (correct | W, n1, n2) for each item the subject
answered correctly, and 1−P (correct | W, n1, n2) for each item they
answered incorrectly. For numerical precision, these multiplications
should be done in log space (i.e. on log probabilities as additions).
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Fig. 2 (a) Values of W estimated from single simulated subjects at
various true values of W , running 50 steps of a 2-up-1-down staircase
design. Points show posterior mean (black) and maximum likelihood
(red) fits to the data. Error bars show 95 % highest posterior density
intervals. The dotted lines represent y = x, corresponding to perfect
estimation of W . (b) The same data on a proportional scale to show

the relative error of estimate at each W . (c) The likelihood given by
Eq. 1 on a simple data set, showing that high values of W all make
the data approximately equally likely. There is little hope of accurately
estimating high W . (d) This can be corrected by introduction of a weak
prior exhibiting a clear maximum (here, a MAP value). Whether this
maximum is inferentially useful is the topic of the next section

To be clear, the question of which prior is “best” is a lit-
tle unusual from the viewpoint of Bayesian inference, since
the prior is usually assumed from the start. However, there
are criteria through which priors can be judged. Some recent
work in psychology has argued through simulation that pri-
ors should not be tuned to real-world frequencies, since
inferences with more entropic priors tend to yield more
accurate posterior distributions (Feldman, 2013). In applied
work on Bayesian estimators, the performance of different
priors is often compared through simulations that quan-
tify, for instance, the error between a simulated value and

its estimated posterior value under each prior (Tibshirani,
1996; Park & Casella, 2008; Hans, 2011; Bhattacharya
et al., 2012; Armagan et al., 2013; Pati et al., 2014).3 Here,
we follow the same basic approach by simulating behav-
ioral data and comparing priors to see which creates an
inferential setup that best recovers the true generating value

3Much of this work examines Lp regularization schemes in order
to determine which priors provide the best sparsity pressures in
high-dimensional inference.
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of W , under various assumptions about the best properties
for an estimate to have. The primary result is that W can
be better estimated than Eq. 1 by incorporating a prior—in
particular, a 1/W prior—and using a simple MAP (maxi-
mum a posteriori) estimate of the posterior mode. As such,
this domain provides one place for Bayesian ideas to find
simple, immediate, and nearly effortless, improvements in
scientific practice.

The basic problem with W

The essential challenge in estimating W in the psy-
chophysics of number is that W plays roughly the same role
as a standard deviation. As such, the range of possible W

is bounded (W ≥ 0) and typical human adults are near the
“low” end of this scale, considerably less than 1. A result of
this is that the reliability of an estimate of W will depend
on its value, a situation that violates the assumptions of
essentially all standard statistical analyses (e.g., t tests,
ANOVA, regression, correlation, factor analysis, etc.)

Figure 2a illustrates the problem. The x-axis here shows
a true value of W which was used to simulate a human’s
performance in a task with 50 responses in a 2-up-1-down
staircased design with n2 always set to n1 + 1. This simula-
tion is used for all results in the paper, however the results
presented are robust to other designs and situations, includ-
ing exhaustive testing of numerosities (see Appendix A) and
situations where additional noise factors decrease accuracy
at random (see Appendix B). In Fig. 2, a posterior mean
estimated W is shown by black dots using a uniform prior,4

and the 95 % highest posterior density region (specifying
the region where the estimation puts 95 % of its confidence
mass) is shown by the black error bars. This range shows the
set of values we should consider to be reasonably likely for
each subject, over and above the posterior point estimate in
black. For comparison, a ML fit—using just (1)—is shown
in red.

This figure illustrates several key features of estimating
W . First, the error in the estimate depends on the value of
W : higher W s not only have greater likely ranges but also
greater scatter of the mean (circle) about the line y = x.
This increasing variance is seen in both the mean (black)
andML fits, and Fig. 2b suggests even the relative error may
increase as W grows.

Because Bayesian inference represents optimal proba-
bilistic inference relative to its assumptions, we may take

4Uniform on [0, 3].

the error bars here as normative, reflecting the certainty
we should have about the value of W given the data. For
instance, in this figure, the error bars almost all overlap with
the line y = x, which would be a correct estimation of W .
From this viewpoint, the increasing error bars show that we
should have more uncertainty about W when it is large than
when it is small. The data is simply less informative about
high values of W when it is in this range. This is true in spite
of the fact that the same number of data points are gathered
for each simulated subject.

The reason for this increasing error of estimation is
very simple: Eq. 1 becomes very “flat” for high W due
to the fact that 1/W approaches zero for high values of
W . This is shown in Fig. 2c, giving the value of Eq. 1
for various W on a simple data set consisting of ten cor-
rect answers on (n1, n2) = (6, 7) and ten incorrect answers
on (7, 8). When W is high, it predicts correct answers at
the chance 50 % rate and it matters very little which high
value of W is chosen (e.g., W = 1.0 vs. W = 2.0), as
the line largely flattens out for high W . As such, choos-
ing W to optimize (1) is in the best case error-prone, and
the worst case meaningless for these high values. Figure 2d
shows what happens when a prior P(W) ∝ 1/W is intro-
duced. Now, we see a clear maximum because although
the likelihood is flat, the prior is decreasing, so the poste-
rior (shown) has a clear mode. The “optimal” (maximum)
value of the line in Fig. 2d might provide a good estimate of
the true W .

The next two sections address two concerns that Fig. 2a
should raise. First, one might wonder what type of inferen-
tial setup would best allow us to estimate W . In this figure,
the maximum likelihood estimation certainly looks better
than posterior mean estimation. The next section consid-
ers other types of estimation, different priors on W , and
different measures of the effectiveness of an estimate. The
final section examines the impact that improved estimation
has on finding correlates W , as well as the consequences
of the fact that our ability to estimate W changes with the
magnitude of W itself.

Efficient estimation of W

In general, use of the full Bayesian posterior on W provides
a full characterization of our beliefs, and should be used
for optimal inferences about the relationship between W

and other variables. However, most common statistical tools
do not handle posterior distributions on variables but rather
only handle single measurements (e.g., a point estimate of
W ). Here, we will assume that we summarize the posterior
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in W with a single point estimate since this is likely the way
the variable will be used in the literature. For each choice
of prior, we consider several different quantitative measures
of how “good” an estimate a point estimate is, using several
different point estimate summaries of the posterior (e.g., the
mean, median, and mode). The analysis compares each to
the standard ML fitting used by Eq. 1.

Figure 3 shows estimation of W for several priors and
point estimate summaries of the posterior, across four dif-
ferent measures of an estimate’s quality. Each subplot shows
the true W on the x-axis. The first column shows on the
mean estimated Ŵ for each W , across 1000 simulated sub-
jects, using the 2-up-1-down setup used in Fig. 2a. Recovery
of the true W here would correspond to all points lying on
the line y = x. The second column shows the relative esti-
mation, Ŵ/W at each value of W , providing a measure of
relative bias. The third column shows the variance in the
estimate of Ŵ , V ar[Ŵ | W ]. Lower values correspond
to more efficient estimators of W , meaning that they more
often have Ŵ close to W . The fourth column shows the dif-
ference between the estimate and the true value according
to an information-theoretic loss function. Assuming that a
person’s representation of a number n is Normal(n,Wn),
we may capture the effective quality of an estimate Ŵ

for the underlying psychological theory by looking at the
“distance” between the true distribution Normal(n,Wn)

and the estimated distribution Normal(n, Ŵn). One natu-
ral quantification of the distance between distributions is the
KL-divergence (Cover & Thomas, 2006). The fourth column
shows the KL-divergence5 (higher is worse), quantifying
in an information-theoretic sense, how much an estimated
Ŵ matters in terms of the psychological model thought to
underlie Weber ratios.

The rows in this figure correspond to four different sets
of priors P(W). The first row is a uniform prior P(W) ∝ 1
on the intervalW ∈ [0, 3]. Because this prior does not affect
the value of the posterior in this range, it has that P(W |
D) = P(D | W), meaning that estimation is essentially
the same as in ML fitting of Eq. 1. However, unlike (1), the
Bayesian setup still allows computation of the variability in
the estimated W , as well as posterior means (light blue),
and medians (dark blue), in addition to MAPs (green). For
comparison, each plot also shows the maximum likelihood
fit (1) in red.6

5The KL-divergence goes to infinity as Ŵ goes to zero, and some Ŵ

are estimated very close to zero. To robustly handle this issue for very
low W , means with 5 % tails trimmed are plotted in the figure.
6These are generally identical to MAP, except that the uniform prior
restricts to [0, 3], leading to decreased variance for high W .

The second row shows an inverse prior P(W) ∝
1/W . This prior would be the Jeffreys’ prior for esti-
mation of a normal standard deviation,7 to which W is
closely related, although the inverse prior is not a Jeffreys’
prior for the current likelihood. The inverse prior strongly
prefers low W .

The third row shows another standard prior, an inverse-
Gamma prior. This prior is often a convenient one for
use in Bayesian estimation of standard deviations because
it is conjugate to the normal, meaning that the poste-
rior is of the same form as the prior, allowing efficient
inference strategies and analytical computation. The shown
inverse-Gamma uses a shape parameter α = 1 and scale
β = 1, yielding a peak in the prior at 0.5. The shape
of the inverse-Gamma used here corresponds to some
strong expectations that W is neither too small nor too
large, but approximately in the right range. Because of
this, this prior pulls smaller W higher, and higher W

lower, as shown by the second column plot with esti-
mates above the line for low W and below the line for
high W .

The fourth row shows an exponential prior P(W) =
λe−λW for λ = 0.1, a value chosen by informal experi-
mentation. This corresponds to substantial expectations that
W is small, with pull downwards instead of upwards for
small W .

From Fig. 3 we are able to read off the most efficient
scheme for estimating W under a range of possible consid-
erations. For instance, we may seek a prior that gives rise to
a posterior with the lowest mean or median KL-Divergence,
meaning the row for which the light and dark blue lines,
respectively, are lowest in the fourth column. Or, we may
commit to a uniform prior (first row) and ask whether
posterior means, medians, or MAPs provide the best sum-
mary of the posterior under each of these measures (likely,
MAP). Much more globally, however, we can look across
this figure and try to determine which estimation scheme—
which prior (column) and posterior summary (line type)—
together provide the best overall estimate. In general, we
should seek a scheme that (i) falls along the line (y = x) in
the first column (low bias), (ii) falls along the line y = 1
in the second (low relative error), (iii) has the minimum
value for a range of W in the third column (low variance),

7In that setting, the Jeffreys’ prior is the unique prior that is invariant
to transformations (Jaynes, 2003), meaning it does not depend on how
we have formalized (parameterized) (1). In this sense, it “builds in”
very little.
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Fig. 3 Estimation properties of W for various priors (rows). The first
column shows the mean estimate Ŵ as a function of the true value W .
Unbiased estimation follows the line y = x shown in black. The sec-
ond column shows the relative error of this estimate Ŵ/W . Unbiased

estimation follows the line y = 1, shown in black. The third column
shows the variance of the estimated Ŵ as a function of the true W .
The fourth column shows a loss function based on the KL-divergence
in the underlying psychophysical model

and (iv) has low values for KL-divergence (the errors in Ŵ

“matter least” in terms of the psychological theory). With
these criteria, the mean and median estimates of W are not
very efficient for any prior: they are high variance, par-
ticularly compared to the ML and MAP fits, as well as
substantially biased. Intuitively, this comes from the shape
of the posterior distribution on W : the skew (Fig. 2d) means
that the mean of the posterior may be substantially dif-
ferent than the true value. The ML fits tend to have high
relative variance for W > 0.5. In general, MAP estima-
tion with the inverse 1/W prior (green line, second row)

is a clear winner, with very little bias (the prior does not
affect the posterior “too much”) and low variance across
all these tested W . This also performs as well as ML fits
in terms of KL-Divergence. A close overall second place
is the weak exponential prior. Both demonstrate a benefi-
cial bias-variance trade-off: by introducing a small amount
of bias in the estimates we can substantially decrease the
variance of the estimated W . Appendices A and B show
that similar improvements in estimation are found in non-
staircased designs and where there are additional sources of
unmodelednoise.
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The success of the MAP estimator over the mean may
have more general consequences for Bayesian data analysis
in situations like these where the likelihood is relatively flat
(e.g., Fig. 2c). Here, the flatness of the likelihood leads to
still a broad posterior (Fig. 2d). This is what leads posterior
mean estimates of W to be much less useful than posterior
MAP estimates.

It is important to point out that the present analysis
has assumed each subject’s W is estimated independently
from any others. This assumption is a simplification that
accords with standard ML fitting. Even better estimation
could likely be developed using a hierarchical model in
which the group distribution of W is estimated for a num-
ber of subjects, and those subject estimates are informed by
the group distribution. This approach, for instance, leads to
much more powerful and sensible results in the domain of
mixed-effect regression (Gelman & Hill, 2007). It is beyond
the scope of the current paper to develop such a model, but
hierarchical approaches will likely prove beneficial in many
domains, particularly where distinct group mean W s must
be compared.

Power and heteroskedasticity in estimating W

We next show that improved estimates of W lead to
improved power in looking for correlates of W , a fact that
may have consequences for studies that examine factors
that do and—especially—do not correlate with approximate
number acuity. A closely related issue to statistical power is
the impact of the inherent variability in our estimation ofW .
In different situations, ignoring the property that higher W

are estimated higher noise can lead to either reduced power
(type I errors) or anticonservativity (type II errors) (Hayes
& Cai, 2007).

Figure 4a shows one simple simulation assessing cor-
relates of W . In each simulated experiment, a predictor x

has been sampled that has a coefficient of determination
R2 with the true value of W (not Ŵ ). Then, 30 subjects
were sampled at random from the Weber value range used
in the previous simulation study (50 responses each, stair-
cased n/(n+1) design). These figures show how commonly
(y-axis) statistically significant effects of x on Ŵ were
found at p < 0.05 as a function of R2 (x-axis), over the
course of 5000 simulated experiments. Statistically pow-
erful tests (lower type I error rate) will increase faster in
Fig. 4a as R2 increases; statistically anti-conservative tests
will have a value greater than 0.05 when R2 = 0 (the
null hypothesis).

Fig. 4 (a) A power analysis showing the probability of find-
ing a correlation between a predictor with the given correlation
(x-axis) to the true Weber ratio W . (b) The false-positive (type
II) error rate for various estimators and analyses when considering
correlations

Several different analysis techniques are shown. First, the
red solid line shows the maximum likelihood estimator ana-
lyzed with a simple linear regression Ŵ ∼ x. The light blue
and green lines show the mean and MAP estimators for W

respectively, also analyzed with a simple linear regression.
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The dark blue line corresponds to a weighted regression
where the points have been weighted by their reliability.8

The dotted lines correspond to use of heteroskedasticity-
consistent estimators, via the sandwich package in R
(Zeileis, 2004). This technique, developed in the economet-
ric literature, allows computation of standard errors and p

values in a way that is robust to violations of homoscedas-
ticity.

This figure makes it clear first that the ML estimator
typically used is underpowered relative to mean or MAP
estimators. This is most apparent for R2s above 0.3 or
so, for which the MAP estimators have a much higher
probability of detecting an effect than the ML estimators.
This has important consequences for null results, or com-
parisons between groups where one shows a significant
difference in W and another does not, particularly when
such comparison are (incorrectly) not analyzed as inter-
actions (Nieuwenhuis et al., 2011). The increased power
for non-ML estimations seen in Fig. 4a indicates that
such estimators should be strongly preferred by researchers
and reviewers.

The value for R2 = 0 (left end of the plot) corre-
sponds to the null hypothesis of no relationship. For clarity,
the value of the lines have been replotted in Fig 4b. Bars
above the line 0.05 would reflect statistical anticonserva-
tivity, where the method has a greater than 5 % chance of
finding an effect when the null (R2 = 0) is true. This figure
shows that these methods essentially do not increase the
type-II error rates with a possible very minor anticonserva-
tivity for robust regressions with the MAP estimate.9 Use
of the weighted regression is particularly conservative. In
general, the heteroskedasticity found in estimating W is not
likely to cause problems when un-modeled in this simple
correlational analysis.

8 There is some subtlety in correctly determining these weights. For
this plot, the posterior variance was determined through MCMC sam-
pling. The optimal weighting in a regression (i.e., the weighting which
leads to the unbiased, minimal variance estimator) weights points pro-
portional to the inverse variance at each point. However, in R, this
variance must include the residual variance, not solely the measure-
ment error on W . Therefore, the regression was run in two stages: first,
a model was run using the inverse variance as weights in R. Then, the
residual error was computed and added back into the estimation error
on W .
9Error bars are not shown in this graph since they are very small as a
result of the number of simulated studies run.

Conclusions

This paper has examined estimation of W in the context
of a number of common considerations. Simulations here
have shown that MAP estimation with a 1/W prior allows
efficient estimation across a range of W (Fig. 3) and con-
sidering a variety of important features of good estimation.
This scheme introduces a small bias on W that helps to cor-
rect the large uncertainty about W that occurs for higher
values. Its use leads to statistical tests that are more pow-
erful than the standard maximum likelihood fits given by
Eq. 1. When used in simple correlational analyses, many of
the standard analysis techniques do not introduce increased
type-II error rates, despite the heteroskedasticity inherent in
estimating W .

Instructions for estimation The recommended 1/W prior
is extremely easy to use, including only a − logW term
in addition to the log likelihood that is typically fit. If
subjects were shown pairs of numbers (ai, bi) and ri is
a binary variable indicating whether they responded cor-
rectly (ri = 1) or incorrectly (ri = 0), we can fit W to
maximize

− logW +
∑

i

log

⎛
⎜⎝ri · �

⎡
⎢⎣ |ai − bi |

W ·
√

a2i + b2i

⎤
⎥⎦

+(1 − ri) ·
⎛
⎜⎝1 − �

⎡
⎢⎣ |ai − bi |

W ·
√

a2i + b2i

⎤
⎥⎦

⎞
⎟⎠

⎞
⎟⎠ . (2)

In R (Core Team, 2013), we can estimate W via

where ai, bi and ri are vectors of ai , bi , and ri , respec-
tively. Note that the use of MAP estimation here (rather
than ML) amounts to simply inclusion of the −log(W)

term in each. The ease and clear advantages of this
method should lead to its adoption in research on the
approximate number system and related psychophysical
domains.
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Appendix A: Estimation in a non-staircased design

Fig. 5 An analog to Fig. 3 using a design in which all subjects see
all items, from (1, 2) up to (12, 13) (i.e., not a staircased design).
This shows similar patterns of performance for the various estimation

schemes, indicating that the superiority of an estimator with an inverse
prior is not an artifact of the staircased design
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Appendix B: Estimation with unmodeled noise

Fig. 6 An analog to Fig. 3 in the situation where subjects make mis-
takes 10 % of the time, independent of the displayed stimuli (for
instance, through inattention). This demonstrates that the efficient
performance of the inverse prior holds even when the fit model is

somewhat misspecified in that it neglects the extra noise. Note that in
this case, the estimators tend to over-estimate W since the additional
noise leads them to conclude that W is worse (higher) than it truly is.
Note that the ML fit performs particularly poorly in this situation
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