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The notion of a compositional language of thought (LOT) has been central in computational accounts of
cognition from earliest attempts (Boole, 1854; Fodor, 1975) to the present day (Feldman, 2000; Penn,
Holyoak, & Povinelli, 2008; Fodor, 2008; Kemp, 2012; Goodman, Tenenbaum, & Gerstenberg, 2015).
Recent modeling work shows how statistical inferences over compositionally structured hypothesis
spaces might explain learning and development across a variety of domains. However, the primitive
components of such representations are typically assumed a priori by modelers and theoreticians rather
than determined empirically. We show how different sets of LOT primitives, embedded in a psycho-
logically realistic approximate Bayesian inference framework, systematically predict distinct learning
curves in rule-based concept learning experiments. We use this feature of LOT models to design a set of
large-scale concept learning experiments that can determine the most likely primitives for psychological
concepts involving Boolean connectives and quantification. Subjects’ inferences are most consistent with
a rich (nonminimal) set of Boolean operations, including first-order, but not second-order, quantification.
Our results more generally show how specific LOT theories can be distinguished empirically.

Keywords: language of thought, concept learning, Bayesian modeling

One of the most powerful features of human cognition is our
ability to create, manipulate and communicate novel structured
ideas—concepts such as prime number, half-sister, the tallest
building in Cambridge, most, or most but not all. Such concepts
are interesting to cognitive psychologists because they are at the
heart of how we humans think flexibly and productively, extending
our thinking into novel situations, tasks, and domains. They are

also central to how we produce and comprehend language. From a
computational viewpoint, these concepts are interesting in part
because they can be characterized using logical machinery: sketch-
ing informally, the Green Building is the tallest building in Cam-
bridge if for all other buildings b, the Green Building is taller than
b; two girls are half-sisters if there exists exactly one parent that
they share; most As are Bs if (according to one standard account)
the cardinality of the subset of As that are Bs is larger than the
subset of As that are not Bs (Montague, 1973). Human fluency
with such concepts likely reflects deep computational properties of
both thinking and language, suggesting to many theorists (Hahn &
Chater, 1998; Gentner, 1983; Penn, Holyoak, & Povinelli, 2008;
Kemp, 2012; Goodman, Tenenbaum, & Gerstenberg, 2015) ways
in which conceptual systems cannot be limited to stored examples
and prototypes, but in some form must incorporate rule-like rep-
resentations that are defined in terms of abstract operations and
that compose flexibly to create new such representations.

Different branches of cognitive science have developed com-
plementary approaches to study compositionally in human
thought. For example, in linguistics, formal semantics has sought
to characterize the logical structure necessary to capture reference
for theoretically interesting fragments of natural language, often
with a focus on quantifiers such as some, all, and most (Montague,
1973). In artificial intelligence, researchers have developed
general-purpose architectures for human-like knowledge represen-
tation and reasoning based on predicate logic, often first-order
logic but also using higher-order logics such as the lambda calcu-
lus, and often integrated with probability to support reasoning
under uncertainty, inductive learning and abductive inference
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(Levesque, Pirri, & Reiter, 1998; Muggleton & De Raedt, 1994;
Milch, Marthi, & Russell, 2004; Russell & Norvig, 2009; Domin-
gos & Richardson, 2007; Richardson & Domingos, 2006; Good-
man, Mansinghka, Roy, Bonawitz, & Tenenbaum, 2008; Shapiro,
Pagnucco, Lespérance, & Levesque, 2011). In cognitive psychol-
ogy, the classic empirical method for studying compositional
thought has used concept learning experiments, where participants
learn various rule-based concepts from examples, and the rules are
most naturally represented as simple or more complex functions of
logical primitives (e.g., Bruner, Goodnow, & Austin, 1956;
Shepard, Hovland, & Jenkins, 1961). By studying characteristic
patterns of mistakes learners make, and which concepts are harder
or easier to learn, researchers aim to discover something about the
primitives and means of combination in human symbolic thought.

Our work here builds most directly on this cognitive psychology
tradition of studying rule-based concept learning, but integrates ele-
ments of the formal semantics and AI traditions, along with new
methods for computational cognitive modeling and web-based exper-
imentation. This allows us to study the building blocks of composi-
tional thought on a previously unprecedented scale, and to ask ques-
tions that have not previously been amenable to empirical inquiry.
Specifically, we make three main contributions. We study empirically
the dynamics of how people induce a much broader space of rules
than previous work has examined, including over 100 distinct con-
cepts varying significantly in complexity and logical structure. We
also show that people’s probabilistic generalization behavior in these
tasks can be quantitatively well described by a memory-constrained
Bayesian learning model. Finally, and most importantly, we show
how the basic building blocks of the model’s compositional hypoth-
esis space can be inferred from the large-scale patterns of participants’
responses. This yields insight into the primitive representations and
operations in the combinatorial language of thought that people bring
to this task, and presumably other settings of symbolic thinking and
reasoning.

We build on recently developed computational tools and empir-
ical techniques that have allowed detailed modeling of how people
learn symbolically structured concepts across a variety of domains
(e.g., Nosofsky, Palmeri, & McKinley, 1994; Kemp, Goodman, &
Tenenbaum, 2008a; Kemp, 2009; Piantadosi, 2011; Kemp, 2012;
Ullman et al., 2012). This work formalizes learning as some kind
of rational inductive inference over a compositional representation
system, or language of thought (LOT; Fodor, 1975; Boole, 1854).
For instance, learning models might posit that people initially have
access to simple logical operations (e.g., and, or, and not), quan-
tifiers (like forall and exists), or computational primitives (e.g.,
�-abstraction or combinators). The task of learners is then to
compose these primitives into a rule denoting a concept that fits
the observed examples in some approximately optimal way, as
measured by posterior probability in a Bayesian framework or
encoding length in an information-theoretic framework. More
broadly, beyond their ability to describe how people learn rule-
based concepts in specific laboratory tasks, models of this sort are
theoretically appealing as a complement to other frameworks for
modeling human learning such as connectionism, because of their
ability to explain how inductive learning integrates with compo-
sitionality, productivity and other core features of symbolic cog-
nition (Fodor & Pylyshyn, 1988; Fodor, 2008; Tenenbaum, Kemp,
Griffiths, & Goodman, 2011; Goodman, Tenenbaum, Feldman, &
Griffiths, 2008).

In a prototypical example of this approach, Goodman et al. (2008)
presented a rational analysis of rule-based concept learning based on
Bayesian induction of the Boolean expressions (built from connec-
tives like and, or, and not) most likely to have generated the observed
example labels for a concept, and showed how this could explain both
classic results in the literature and graded patterns of generalization in
new experiments with higher-dimensional feature spaces. Their ap-
proach has been extended to learning richer logical theories (Kemp et
al. 2008a; Kemp, 2012), as well as conceptual domains like magne-
tism (Ullman et al., 2012), semantic hierarchies (Katz, Goodman,
Kersting, Kemp, & Tenenbaum, 2008), number concepts (Piantadosi,
Tenenbaum, & Goodman, 2012), and function words (Piantadosi,
Goodman, & Tenenbaum, 2014). Kemp (2012) provides an exhaus-
tive characterization of logical domains such models can be formu-
lated over (a “conceptual universe”) and shows that a rule inference
scheme based on minimal description length—closely related to the
Bayesian posterior probability—provides a compelling quantitative fit
to behavioral data across a wide range of conceptual domains.

In these and most other prior efforts, the components and rules
of combination, which together characterize a representation sys-
tem, have been assumed a priori with the analysis focused on
demonstrating the in-principle viability of compositional, LOT-
style learning. For instance, Goodman, Tenenbaum et al. (2008)
assumed that learners form compositions in disjunctive normal
form (disjunctions of conjunctions of primitives). This assumption
amounts to a psychological hypothesis about the format of con-
ceptual representations: it assumes that learners construct Boolean
rules as disjunctions of conjunctions of features—as opposed to, for
instance, conjunctions of disjunctions, horn clauses, or free combina-
tion of logical operations. Beyond the rules of combination, such
theories also formalize a set of primitives, functions that are assumed
to be available before the process of compositional hypothesis for-
mation begins. It is natural to think of these primitives as the innate
conceptual representations that learners use to build complex con-
cepts. However, the effective set of primitives may also include ones
defined using the innate set, and thus include operations that have
been learned at an earlier age. As we study adults, the primitives can
be seen as the key operations that are available to our subjects in
understanding new logical concepts.

In the case of Boolean concept learning, there are many logi-
cally possible sets of primitives that have been used across differ-
ent domains of cognitive science, AI, and machine learning. In one
extreme, all Boolean functions can be constructed from one single
primitive such as NAND (not-and, also known as the “Sheffer
stroke”). In the other extreme, Boolean concepts might psycho-
logically depend on a rich set of redundant primitives, including
operations like conjunction, disjunction, negation, implication, and
so forth as are used in modern computer architectures. The prob-
lem of the underdetermination of representational primitives is
faced even more broadly for systems that extend beyond Boolean
concepts: there are many possible primitives that would permit
Turing-complete computational concepts. A coarse characteriza-
tion of the right system can be made in terms of computational
power: representations must be capable of supporting the knowl-
edge people have and the computations they perform (Marr, 1982).
For instance, human representational systems must extend beyond
simple Boolean propositional logic since such systems that lack
quantification provably cannot express concepts like tallest. How-
ever, descriptions based only on computational power are always
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underdetermined. As the Boolean case illustrates, two representa-
tions can be equally expressive—capable of solving the same
computational problems—yet distinct in how they achieve that
computational power (see, e.g., Hackl, 2009; Pietroski, Lidz,
Hunter, & Halberda, 2009, for examples in semantics). Any po-
tential set of primitives and rules for combination can be regarded
as a scientific hypothesis about how compositional concepts may
arise in mind—a hypothesis that a mature LOT framework should
seek to evaluate empirically.

Here we present a formal modeling approach that aims to discover
which particular LOT features—which primitives and rules of com-
bination—provide the best account of how people learn and reason in
a given domain of compositional thought. Our approach crucially
exploits the classic insight that representational simplicity is a major
determinant of learnability, with learners preferring to infer rules that
are concise in their representational system (Neisser & Weene, 1962;
Haygood, 1963; Feldman, 2000, 2003c, 2003b; Chater & Vitányi,
2003; Goodman, Tenenbaum et al., 2008; Kemp et al. 2008a; Kemp,
2012). Analogously in modeling, simplicity plays a key role in model
selection because simple models are more parsimonious (e.g., Conk-
lin & Witten, 1994), explaining the data with fewer free parameters or
arbitrary stipulations. This property makes a simplicity bias a sensible
psychological strategy.

The existence of a human bias for representational simplicity
allows us to potentially reverse engineer likely components of the
LOT since different hypothesized LOTs will measure simplicity in
different ways. As a result, they make different empirical predic-
tions about what generalizations participants should make from
data and what concepts should be easy to learn (e.g., what concepts
are “simple”). A key example for our purposes is Feldman (2000),
who showed that difficulty with learning Boolean concepts is
well-modeled by the concept’s description length in logic. For
example, participants would find it harder to learn the exclusive
disjunction (XOR),

[red AND [NOT square]] OR [[NOT red] AND square]

(1)

than the nonexclusive disjunction

red OR square (2)

since the former has a longer description in standard Boolean
logic, requiring more primitive logical connectives.

However, as is often pointed out in philosophical discussions of
induction (Goodman, 1955), what counts as “simple” is not purely
objective. For instance if people’s representational system in-
cluded the exclusive-or function (XOR) as a primitive, then the
complexity—and therefore learning difficulty—for the above two
concepts would be equal. Concept 2 could be expressed the same
way, but Concept 1 becomes

red XOR square (3)

which uses only a single logical operation. This only emphasizes
a version of Goodman’s Grue problem: Concept 1 is not more
complex than Concept 2 in any independent, objective sense.1

This philosophical puzzle is also an experimental tool: if par-
ticipants do find Concept 2 easier than Concept 1, that provides
evidence that human cognition measures simplicity via a LOT in
which XOR is not primitive. Here, we take this simple idea and

implement it in a large-scale computational and experimental
study examining a wide range of concepts with state-of-the-art
learning and data analysis tools. Building on Kemp (2009, 2012),
and motivated by both classic work in formal semantics (Mon-
tague, 1973), AI (Levesque et al., 1998; Muggleton & De Raedt,
1994; Milch et al., 2004; Russell & Norvig, 2009; Domingos &
Richardson, 2007; Richardson & Domingos, 2006; Goodman,
Mansinghka, et al. 2008; Shapiro et al., 2011), and more recent
cognitive accounts of symbolic thinking (Gentner, 1983; Penn et
al., 2008), our study moves beyond simple Boolean concepts and
also examines those involving quantification and relational terms.

The outline of this paper is as follows. In the next section, we
present a large-scale concept learning experiment that taught par-
ticipants Boolean and quantificational concepts. We then describe
how we formalize the LOT in terms of �-calculus, and then present
two coordinated models. First, we develop a learning model that—
like participants in the study—takes observed data and infers likely
LOT expressions. As we show, the learning model is capable of
inferring quite complex concepts from data, and the generaliza-
tions it makes closely track those of participants. Then, we present
a data analysis model that uses participants’ experimental data to
infer unknown parameters of the learning model including the
probability of different primitives and participants’ memory-decay
parameters. The details of these models are provided in the Ap-
pendices, and we focus in the main text on intuitively describing
their key properties. Our primary analysis is a model-based com-
parison that quantifies the fit of different LOTs to human learning
patterns. We first apply these methods to only Boolean concepts in
the experiment, and then to concepts involving quantification. Our
results provide quantitative evidence against intuitively implausi-
ble logical bases, evidence for compositional logical rules with a
rich set of logical connectives that include first- but not second-
order quantification. Most importantly, our method shows how
distinct LOTs can be firmly grounded as empirically testable
scientific theories.

Before moving into the body of the paper, we should delimit our
goals in several ways to avoid potential misunderstandings. Al-
though our focus is on symbolic thinking, and the logical structure
of the “language of thought” that underlies it, we do not mean to
imply that all or even most human thinking is of this form. Quite
the contrary: we grant that much of how people think about the
world draws on other kinds of representations, such as perceptually
grounded simulations (Battaglia, Hamrick, & Tenenbaum, 2013)
or probabilistic expectations (Griffiths & Tenenbaum, 2006). Like-
wise, although we focus on a certain class of concept learning tasks
with concepts defined by logical rules, we do not mean to suggest
that all or even most human concepts take this form. Many
concepts, especially those for basic-level natural kind categories,
may be best thought of in other ways (Rosch & Mervis, 1975;
Medin & Smith, 1984; Medin, 1989; Medin & Ortony, 1989;
Hampton, 1998; Murphy, 2002; Hampton, 2006). Different cate-
gorization tasks may even rely on distinct systems and processes
(Ashby & Maddox, 2005).

1 Tools like Kolmogorov complexity (Li & Vitányi, 2008) come close to
resolving this problem, providing a complexity metric that is arbitrary only
up to an additive constant.
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However, we do think that logically structured concepts have
sometimes been unfairly maligned as “unnatural”. The evidence
for a rich ability to process logical concepts can be seen in many
domains (e.g., Tenenbaum et al., 2011), including number and
mathematics, social systems, taxonomies, and complex causal
processes. The need for structured concepts becomes even more
evident in natural language, where languages contain words to
express a variety of logical relations, whose meanings are typically
captured in formal theory only in with structured, logical systems.
To illustrate in English, these words include quantifiers (e.g.,
every) and other determiners (e.g., the), conjunctions (e.g., and),
kinship terms (e.g., great uncle), prepositions (in), and markers of
discourse relations (e.g., because) expressing relations between
clauses. Below the level of words, morphemes like –est combine
with words to form superlatives whose meaning is most naturally
captured with logic: someone is the “tallest” if their height is
greater than everyone else, a sublexical concept involving first-
order quantification. The full power of abstract logical structure
can be seen in the compositional phrases formed in natural lan-
guage—phrases like “the tallest building in Cambridge” combine
simpler, constituent meanings into complex logical structures that
are able to communicate a huge variety of meanings. There is
logical structure in language even above the level of sentences,
including in the discourse relations between sentences (Wolf &
Gibson, 2005) and in recursive patterns of dialogue and pragmatics
(Levinson, 2013). Our goal here is not to account for the full set of
phenomena that cognitive psychologists have been interested in
under the banner of “concepts” (Margolis & Laurence, 1999;
Murphy, 2002), but rather to better characterize computationally
those aspects of human conceptual thinking and learning that are
broadly accepted across the cognitive sciences to depend on com-
positional language-like representations. Ultimately, we expect
that a full theory of human concepts and thinking will need to
integrate the kinds of approaches we develop with complementary
approaches developed for studying non-rule-like concepts and
nonsymbolic thought.

Experimental Paradigm

Our experiment aims to study concept learning in a domain that
naturally captures both classic Boolean concept learning (e.g.,
Shepard et al., 1961) as well as richer types of relational and
quantification concepts (e.g., Kemp, 2009, 2012). We framed the
problem as one of mapping a set of objects in a feature space to a
subset of those objects. For instance, one might be handed a set of
objects and be asked to give back the ones that are red or green,
a Boolean concept. Or, one could be required to hand back all
objects such that there exists another object in the set of the same
shape, a quantificational concept. This set-to-subset concept is
reminiscent of the set-relational operators required for natural
language semantics.

Rather than exhaustively explore the entire range of logically
possible concepts (as pursued by Feldman, 2003a; Kemp, 2009,
2012), we chose to construct a space of target concepts by hand in
order to focus on a particularly compelling variety of concepts.
Choice of concepts by hand is both a strength and a limitation of
our design. It means on the one hand that the concepts we study are
ones that we believed a priori were interesting and would reveal
the kinds of logical operations (e.g., quantification, logical com-

bination) that most interest us. On the other hand, it means that our
chosen concepts may not be representative of any natural category
of human concepts. We believe this is a necessary property of
work such as this that is very early in the effort to model operations
such as quantification.

Our set includes 108 concepts that were chosen to span a wide
range of quantification and relational operations, including basic
Boolean concepts (e.g., blue objects) and quantificational/rela-
tional terms (e.g., the unique blue object, same shape as a blue
object, every other object with the same shape is blue, etc.). The
full set of concepts is listed in Figures 2, 3, and 4.

Method

In the experiment, participants were told that they had to dis-
cover the meaning of wudsy, a word in an alien language. They
were explicitly told that this word applied to some objects in a set,
and that whether or not an object was wudsy might depend on what
other objects were in the set. The learning paradigm was sequen-
tial: participants were shown a set and asked whether each item
was wudsy. After responding, they were shown the right answers.
The correctly labeled sets stayed visible on the screen, and partic-
ipants moved on to the next set. This means that on set N, a
participant could still see the correct answers to the previous
N � 1 sets. Thus, the participant’s Nth response represents their
inferences conditioned on the previous N – 1 labeled data points.
This continuous measure of generalization contrasts with previous
Boolean concept learning paradigms which have typically tested
only after a fixed amount of training. Our paradigm allows a
substantial amount of inductive generalizations to be gathered, pro-
viding a detailed picture of learning curves and specific patterns of
mistakes. An example experimental item is shown in Figure 1, show-
ing participants being asked to generalize to a set containing five

Figure 1. An example item from the concept learning experiment. Here,
the participant has seen two example sets of objects, and is asked to
generalize to a new set. A likely response here would be to answer in
accordance with the simple concept triangles. See the online article for the
color version of this figure.
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elements after seeing the two preceding sets, only one of which
contained a positive instance of a wudsy object.

To aid in motivation, participants were required to wait 5 seconds
when they made a mistake in any element of a set. The space of
objects included squares, circles, and triangles, that were green, blue,
or yellow. Object sizes ranged through three logarithmically spaced
sizes, denoted here Size 1 (smallest), 2, and 3 (largest). Sets were
generated from this space of objects at random by first uniformly
choosing a set cardinality between 1 and 5, and then randomly
sampling objects without replacement. Random generation was used
to ensure that participants do not assume sets were chosen to be
informative about target concepts (as in, e.g., Shafto & Goodman,
2008). Subjects were shown 25 sets of objects in total, requiring on
average a total of 75 responses to individual objects.

Subjects were randomly assigned to a concept and one of two lists
in that concept, where each list was a different sequence labeled
according to the target concept. Within the same list, the presented
sequence of data was identical. Subjects were allowed to do multiple
concepts, but could not repeat the same concept twice. The small
number of lists allowed us to run more participants within each list to
get higher confidence in the exact learning curves for any particular
sequence of labeled data. The specific shapes and colors in each target
concept were randomized across participants. For example, red and
circle was randomized to blue and triangle, blue and square, green
and circle, and so forth across participants.

At sets 5, 10, and 25, participants were asked to describe what they
thought wudsy meant. In general, verbal descriptions proved ex-
tremely difficult to analyze because participants often wrote ambig-
uous descriptions. For instance, we ran concepts such as the unique
tallest (cannot be tied for tallest shape in the set) and one of the tallest
(can be tied for tallest shape in the set). Subjects with both of these
concepts wrote “tallest,” which, in English, might mean either con-
cept. While we do not analyze this linguistic data here, the ambiguity
in participant descriptions provides some evidence that participants
did not represent target concepts in natural language—doing so often
leaves the target concept underspecified.

Subjects were run online using Amazon’s Mechanical Turk.
Subjects who fell more than 2 standard deviations below the mean
accuracy in their concept were removed. This removed on average
only 3.9% of data from each concept (standard deviation � 2.6%
across concepts). Data from participants who completed fewer
than five sets of a given concept was also removed, but otherwise
partial data from participants was included in our analysis. A total
of 1,596 participants were run across the 108 concepts. While we
did not gather detailed demographics on subjects, a study of the
population of people who tend to complete Turk experiments can
be found in Berinsky, Huber, and Lenz (2012), who show that the
study population is often more representative of the U.S. popula-
tion than in-person convenience samples typically used in research
(see also Paolacci, Chandler, & Ipeirotis, 2010; Behrend, Sharek,
Meade, & Wiebe, 2011). In our experiment, individual participants
completed an average of 4.24 concepts (median 2), with the
maximum number of concepts run by a participant at 80. Overall
accuracy in the experiment was 78% with a chance rate of 56%,
though the accuracies varied substantially by concept. Mean ac-
curacies on concepts were highly consistent across the two lists,
with a correlation of R2 � 0.81. Subjects were run until each
concept and list was completed by approximately 20 participants.

Model-Free Results

Though our primary analysis is model-based, here we present
the general patterns in the learning experiment. Figures 2–4 list the
108 concepts tested as well as raw participant performance on
these concepts. Performance here is computed as the mean accu-
racy across the fixed number of trials in each concept. Each
horizontal line in these figures shows a compressed learning curve
with two points, representing mean participant performance on the
first and last quarter of the experiment. Each figure shows one
third of the total concepts tested, sorted by overall mean accuracy:
Figure 2 shows the most easily learned concepts, Figure 3 shows
concepts that are likely learnable with some difficulty, and Figure
4 shows concepts that are extremely difficult to learn, some of
which may not have been learned by anyone over the course of the
experiment. These plots also include blue bars corresponding to
chance performance. Chance was computed by assuming that
participants guess with the correct base rate: thus, if the concept is
true of set elements 30% of the time, then participants matching
the base rate would be correct with probability 0.3 · 0.3 � (1 � 0.3) ·
(1 � 0.3). The horizontal lines in these plots are green for simple
Boolean concepts and black for concepts that have no equivalent in
Boolean logic.

This graph demonstrates several basic patterns previously found
in Boolean concept learning. For instance, complex concepts (cir-
cle and blue) are learned less quickly than simple ones (circle)
(Feldman, 2000). The graph also shows that conjunctions (circle
and blue) are easier than disjunctions (circle or blue). The and/or
asymmetry is one of the oldest findings in rule-based concept
learning (Bourne, 1966; Shepard et al., 1961). These results also
suggest selective attention effects where multiple references to the
same feature dimension (blue or green) are easier than references
across dimensions (circle or blue). Figure 2 also demonstrates
rapid high performance for many non-Boolean concepts—for in-
stance, the unique element and is (blue and circle), one of the
smallest, exists another object with the same shape and color.

The richness of our data is more clearly illustrated by Figure 5,
which shows response patterns to six examples concepts: Figure 5a
and 5b from the upper most accurate third of concepts, Figure 5c
and 5d from the middle third, and Figure 5c and 5f from the lower
third. Each subfigure shows a participant on a row, and their
response to each object in each set over the course of the experi-
ment. Black squares in this plot represent incorrect responses, and
white represent correct responses. Columns on the left of these
plots correspond to early responses in the experiment; columns on
the right correspond to later ones when correct answers for all
previous (leftward) examples have been observed. So for example,
the top two rows of Figure 5c show two participants who did not
learn the target concept and made mistakes throughout the entire
experiment. The rows (participants) in these plots are sorted by
clustering to reveal participants whose patterns group together.
The blue and gray bar at the bottom is a key showing which
individual responses were responses to objects in the same set:
adjacent columns with the same color in the key were corres-
pond to objects presented in the same set. Thus, for instance in
Figure 5a, the first set contained four objects (four blue in a row in
the key), the second contained one (one gray), the third contained
five objects (five blue), and so forth.
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This plot illustrates several interesting patterns. Even in con-
cepts that participants readily learn (e.g., Figure 5a), they still
make occasional errors. These errors, however, appear not to be
systematic across participants or sets. In other situations, such as
Figure 5d, participants make highly systematic patterns of mis-
takes, often incorrectly labeling the same elements of the same sets
(appearing here as black vertical lines). There are three participants
in the middle of this plot, however, who appear to correctly get the
target early concept and answer perfectly for most of the experi-
ment. This pattern is also found in harder concepts, Figure 5e and
5f, where only a few participants achieve high accuracy and the
rest appear to make regular patterns of responses. Note that even
though mean accuracy is low on these concepts participants show
clearly systematic patterns of inference. This motivates data anal-
ysis based on predicting specific generalizations—responses to
individual items in sets—rather than overall concept accuracy.

These plots also demonstrate that while the average participant
may show graded performance, individual participants likely have
very rule-like hypotheses in mind (Nosofsky et al., 1994): at some
point, participants appear to “get it” and respond perfectly or
nearly perfectly for the remainder of the experiment. Subject
averages, though, show more gradual patterns of learning since
participants often “get it” in slightly different places. Thus, it is
important to recognize that a model of average learning does not
necessarily represent how individuals act. The individual differ-
ences in this task may represent distinct strategies and likely

further insight could be gained by models of individuals (Bruner et
al., 1956; Levine, 1966; Ashby & Maddox, 2005; Gluck, Sho-
hamy, & Myers, 2002; Visser, Raijmakers, & van der Maas, 2009;
Visser, Jansen, & Speekenbrink, 2010). We describe and justify
the linkage between our model and subject data below.

Motivation for a Model-Based Analysis

Although we can compare learning rates and accuracies for
these concepts, such comparisons are not obviously straightfor-
ward and useful. For one, the concepts vary in their base rate
accuracy (blue points) and so it is difficult to know if differences
in accuracy result from difference in chance performance. Worse,
though, is that participants can achieve high accuracy on concepts
not by learning the correct concept but by learning a closely related
one. Subjects may, for instance, learn one of the largest (the object
can be tied for largest) for the unique largest (the object cannot be
tied for largest). A third problem is that it is not clear how
informative learning rates are for comparisons since the observed
data may be differentially informative as to the target concept. For
instance, an ideal learner who is equibiased between circle and
blue and circle or blue may nonetheless find the former easier to
learn because it is true less often, meaning that the positive
examples may be more diagnostic for the target concept, or per-
haps maybe more psychologically available.

CIRCLE OR [BLUE IMPLIES TRIANGLE]
[NOT BLUE] IMPLIES [NOT CIRCLE]

DOES NOT EXIST ANOTHER OBJECT WITH SAME SHAPE AND COLOR
SAME SHAPE AS ONE OF THE LARGEST AND BLUE

ONE OF THE SMALLEST
CIRCLE OR BLUE

CIRCLE IMPLIES BLUE
UNIQUE CIRCLE

[SAME SHAPE AS A BLUE OBJECT] AND CIRCLE
NOT [CIRCLE AND BLUE]

[CIRCLE AND BLUE] OR [TRIANGLE AND GREEN]
BLUE IMPLIES CIRCLE

[NOT BLUE] IMPLIES CIRCLE
UNIQUE LARGEST BLUE OBJECT

CIRCLE OR [BLUE AND TRIANGLE]
THE UNIQUE ELEMENT AND IS [BLUE AND CIRCLE]

ONE OF THE LARGEST AND BLUE
SIZE 3 OR SIZE 2

THE UNIQUE ELEMENT AND IS [BLUE OR GREEN]
CIRCLE AND [NOT BLUE]

THE UNIQUE ELEMENT AND IS [BLUE OR CIRCLE]
BLUE OR GREEN

CIRCLE AND BLUE
SIZE 2

SIZE 1 AND BLUE
CIRCLE OR TRIANGLE

SIZE 2 OR SIZE 1
THE UNIQUE OBJECT THAT IS [BLUE AND CIRCLE]

NOT CIRCLE
FALSE

CIRCLE AND NOT BLUE
SIZE 1

THE UNIQUE OBJECT
BLUE

CIRCLE
SIZE 3
TRUE

Proportion Correct

0.5 0.6 0.7 0.8 0.9 1.0

Figure 2. Proportion correct on the first 25% of the experiment (open circle) and last 25% (closed circles) for
the top third of concepts most easily learned. Green (gray) lines denote concepts that can be written in simple
Boolean (propositional) logic. Blue (black) bars denote chance guessing at the correct base rate. See the online
article for the color version of this figure.
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Note that from these accuracies, we are not able to identify
which particular concepts subjects learned due to similar issues.
Indeed, we do not even need to try: instead we can model their
individual responses with a formal rule-learning model. Different
rule-learning models will predict different patterns of responses,
and we can determine which best describe people’s responses. In
the next section, we describe the learning model that attempts to
capture the details of the learning curves rather than overall pat-
terns of accuracy.

Languages of Thought

Modeling participant inferences in the experiment requires a
formal system for expressing both concepts and hypothesized
LOTs. For this, we use �-calculus (Church, 1936; Hindley &
Seldin, 1986; Smullyan, 1985), a computational system for ele-
gantly expressing compositions of functions. This framework al-
lows for a flexibility in theorizing that is not possible in other
systems such as propositional or first-order logic because it per-
mits any degree of computational power, ranging from the expres-
siveness of Boolean logic, up to Turing-completeness. In previous
work, we (Piantadosi et al., 2012; Piantadosi, Goodman, Ellis, &
Tenenbaum, 2008, 2014) and others (Zettlemoyer & Collins, 2005;
Liang, Jordan, & Klein, 2010) have demonstrated the computa-
tional plausibility of learning in frameworks like �-calculus.

For the present purposes, the consequences of choosing
�-calculus are relatively minor: it primarily allows us to explicitly
express compositions of functions, including syntax to denote what

parts of expressions are variables and which are functions. For
instance, the �-expression

�x . (f (g x)) (4)

represents a function of a variable x, computed by first applying g
to x (denoted [g x]) and then applying f to (g x), yielding (f (g x)).
Here, the “�x” simply denotes that x is a variable.

We formalize a number of grammars for �-calculus expressions,
each formalizing a distinct representational theory about which
compositions are cognitive permissible and likely. An example
�-calculus grammar for propositional logic is shown in Figure 6a.
Each row in this table represents an expansion rule: the left hand
side is a type and the right hand side is an expression that the type
expand to. Thus, for instance, we could create the expression �x.
(or (green? x) (blue? x)) by first expanding the START symbol
with START to �x.BOOL. We then expand the BOOL in the right
hand side of �x.BOOL to (or BOOL BOOL), yielding the interme-
diate expression �x. (or BOOL BOOL). Then, each of these
BOOLs are expanded to (F x) yielding �x. [or (F OBJECT)
(F OBJECT)]. Finally, the first F is expanded to COLOR, then
green? and the second F is expanded to COLOR and then blue?.
Both OBJECTs are expanded to xes, yielding the full expression.

Using the grammar, one expands expressions until contain no
more nonterminals, the uppercase symbols on the left side of this
grammar. These grammars are meant to capture a core generative
capacity of learners—that learners can in principle construct a
huge number of potential concepts corresponding to every expres-
sion derivable in the grammar. The appeal of the grammar is that

THERE EXISTS A BLUE OBJECT OF THE SAME SHAPE
ONE OF THE SMALLEST OF ITS SHAPE

CIRCLE XOR [NOT BLUE]
NOT [CIRCLE XOR BLUE]

SAME SHAPE AS A BLUE OBJECT
ONE OF THE LARGEST OF ITS SHAPE

[SAME SHAPE AS A BLUE OBJECT] OR GREEN
ALL (>= 1) OBJECTS WITH THE SAME SHAPE ARE BLUE

THE UNIQUE OBJECT THAT IS [BLUE OR CIRCLE]
SAME SHAPE AS A [BLUE OR GREEN] OBJECT (POTENTIALLY ITSELF)

SAME SHAPE AS THE UNIQUE LARGEST BUT NOT THE LARGEST
CIRCLE XOR BLUE

SAME SHAPE AS A [BLUE OBJECT OR GREEN OBJECT]
EVERY OTHER OBJECT WITH THE SAME SHAPE IS NOT THE SAME COLOR

EXISTS ANOTHER OBJECT WITH THE SAME SHAPE
NOT ONE OF LARGEST OR SMALLEST

ALL (>= 1) OTHER OBJECTS WITH THE SAME SHAPE ARE NOT THE SAME COLOR
EXISTS ANOTHER OBJECT WITH THE SAME COLOR

UNIQUE LARGEST AND BLUE
UNIQUE SMALLEST

UNIQUE LARGEST OR BLUE
THERE EXISTS A SMALLER OBJECT

[SAME SHAPE AS A BLUE OBJECT] AND GREEN
SIZE 1 OR BLUE

[EXISTS ANOTHER OBJECT WITH THE SAME SHAPE] AND BLUE
NOT [CIRCLE OR BLUE]

EVERY OBJECT WITH THE SAME SHAPE IS BLUE
ONE OF LARGEST OR SMALLEST

UNIQUE LARGEST
CIRCLE OR BLUE OR [TRIANGLE AND GREEN]

SIZE 3 OR SIZE 1
UNIQUE BLUE OBJECT

[CIRCLE OR TRIANGLE] IMPLIES BLUE
ONE OF THE LARGEST

THE UNIQUE OBJECT THAT IS [BLUE OR GREEN]
BLUE IMPLIES SIZE=1

Proportion Correct

0.5 0.6 0.7 0.8 0.9 1.0

Figure 3. Proportion correct on the first 25% of the experiment (open circle) and last 25% (closed circles) for
the second third of concepts most easily learned. Green (gray) lines denote concepts that can be written in simple
Boolean (propositional) logic. Blue (black) bars denote chance guessing at the correct base rate. See the online
article for the color version of this figure.
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a rich potential for concepts comes from a simple generating
system. The majority of rules in the grammar are actually methods
of accessing perceptual primitives. The core logical or computa-
tion parts of the grammars are few—in this case, just three.

However, there are many other ways to write down expressions
in Boolean logic, corresponding to different LOTs. Figure 6b
shows one other: the NAND grammar uses only a single logical
connective, NAND, yet can provably express all concepts the
SIMPLEBOOLEAN grammar Figure 6a can. For instance (OR A B) can
be computed with NAND as (NAND (NAND A A) (NAND B B)).
As discussed above, these two grammars provide distinct repre-
sentational hypotheses of equivalent computational power, but
distinct computational processes and give rise to distinct inductive
biases because they differ in what counts as simple (short deriva-
tions in the grammar).

We can also define grammars that go beyond simple Boolean
logic. Figure 7a, defines a grammar that includes simple first-order
quantification. Here, we introduce two more functions that return
truth values, exists and forall (? and @ respectively). These func-
tions themselves take a function, F, as an argument, as well as a
set. exists returns true if its argument F evaluates to true on any
element of the set; forall returns true if F evaluates to true on all
elements of the set. We must therefore include sets to quantify
over. Here we choose two that are natural: the set of all elements
in the current set, S (e.g., the range of x), and the set of all elements
in the context other than the current argument x, (non-Xes S). Note
here that F can only be expanded according to the features defined
in Figure 6a, namely size, shape, and color. Using Simple-FOL we
may write concepts such as There exists a red object [�x. (exists
red? S)] or There exists a triangle other than x [�x. (exists
triangle? (non-Xes S)].

A much more interesting kind of quantification can be created if
the grammar can potentially define new functions from sets to
objects. FOL is one such grammar, where now F can expand to a
new �-expression using the rule F ¡ (�xi.BOOL). Such a grammar
is shown in Figure7b. This reveals the power of �-expressions: we
can use the same syntactic form to specify functions, and functions
of functions, and so forth.

In this case, we can create concepts like There exists a red object
that is the same shape as x in (non-Xes S):

�x S . (exists (�x2 . (and (red? x2) (equal-shape? x x2)))

(non-Xes S)). (5)

Here, the F on the right hand side of the rule for exists was
expanded to a new �-expression, (�x2 . (and (red? x2) (equal-
shape? x x2)), itself representing a new function that learners might
hypothesize. This ability to define new functions introduces a
small technical complication: every time a new �-expression is
created, it requires a name for a new bound variable, here xi (for
i � 1, 2, 3, . . .). To deal with this, any time a �-expression is
generated, we also add a rule to the grammar that expands
OBJECT to the new xi for all lower nodes (e.g., nodes contained
by the novel �-expression). For simplicity, we make all expan-
sions to any x or xi equally likely. With this setup, our actual
grammar is not a context-free grammar, but is closely related:
the expressions without distinct labels on the bound variables
are context-free, and the bound variables are uniformly gener-
ated from those that are possible at each depth. Note that with
the ability to create new �-expressions (involving another vari-
able xi), it makes sense to introduce relations between objects,
such as size� and equal-shape?, which respectively check if an

EXACTLY ONE ELEMENT IS BLUE
EXISTS ANOTHER OBJECT WITH SAME SHAPE THAT HAS ANOTHER WITH SAME COLOR

SHARES A FEATURE WITH EVERY OBJECT
EXACTLY ONE OTHER ELEMENT IS BLUE

ALL (>= 1) OBJECTS WITH THE SAME SHAPE ARE THE SAME COLOR
[EVERY OTHER OBJECT WITH THE SAME SHAPE IS SAME COLOR] OR CIRCLE

THE UNIQUE SMALLEST OF ITS SHAPE
EVERY OTHER OBJECT WITH THE SAME SHAPE IS BLUE

EXISTS ANOTHER OBJECT WITH SAME SHAPE, AND A DIFFERENT ONE WITH SAME COLOR 
EVERY OTHER OBJECT WITH THE SAME SHAPE IS THE SAME COLOR

[EVERY OTHER OBJECT WITH THE SAME SHAPE IS SAME COLOR] OR BLUE
SAME SHAPE AS A [BLUE OBJECT OR CIRCLE]

EXISTS ANOTHER OBJECT WITH SAME SHAPE, AND ONE WITH SAME COLOR
SAME SHAPE AS ANOTHER OBJECT WHICH IS [BLUE OR GREEN]

SAME SHAPE AS ONE OF THE LARGEST BLUE OBJECTS
SAME SHAPE AS THE UNIQUE LARGEST BLUE OBJECT

SAME SIZE AS A CIRCLE
THERE EXISTS A SMALLER BLUE OBJECT

SAME SHAPE AS EXACTLY ONE BLUE OBJECT
SAME SHAPE AS ONE OF THE LARGEST BUT NOT ONE OF THE LARGEST

THERE EXISTS ANOTHER BLUE OBJECT WITH THE SAME SHAPE
SAME SHAPE AS EXACTLY ONE OTHER BLUE OBJECT

[SAME SHAPE AS A BLUE OBJECT] AND NOT BLUE
EXACTLY ONE OTHER ELEMENT IS THE SAME COLOR

EXISTS ANOTHER OBJECT WITH THE SAME SIZE
[EXISTS ANOTHER OBJECT WITH THE SAME SHAPE] OR BLUE

SAME SHAPE AS THE UNIQUE LARGEST
SAME SHAPE AS ONE OF THE LARGEST

EVERYTHING IFF TRIANGLE
SAME SHAPE AS ANOTHER OBJECT WHICH IS BLUE

SAME SHAPE AS ONE OF THE LARGEST OR BLUE
ONE OF THE LARGEST OR BLUE

DOES NOT EXIST ANOTHER OBJECT WITH SAME SHAPE
SAME SIZE AS THE UNIQUE BLUE OBJECT

UNIQUE LARGEST [BLUE OR GREEN] OBJECT

Proportion Correct

0.5 0.6 0.7 0.8 0.9 1.0

Figure 4. Proportion correct on the first 25% of the experiment (open circle) and last 25% (closed circles) for
the third of concepts hardest to learn, none of which are simple Boolean expressions. Blue (black) bars denote
chance guessing at the correct base rate. See the online article for the color version of this figure.
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object is larger than another object or if two objects are the
same shape.2

In sum, the most important fact about these grammars is that
they each allow a large number of concepts to potentially be
defined, yet they “build in” very little, including only a few logical
and feature-based operations. We conceptualize these languages as
essentially like programming languages. Programming languages
are useful precisely because they allow a huge range of computa-
tional processes to be defined using a highly formalized, small set
of primitives, some of which are instantiated directly in hardware.
With this view, the task of learning becomes one of program
induction: given some observed data, which expression in the LOT
best captures the process generating the observed data?

Inference and the Language of Thought

Our modeling is based around two intertwined computational
models. One model is a model of what is going on in subjects’
heads—namely using Bayesian methods as a model of cognitive
processes. This is a model of subjects’ inferences in learning the
concept for wudsy and follows largely the concept learning model

of (Goodman, Tenenbaum et al., 2008). This model observes the
uses of wudsy on prior concepts and infers what composition of
primitives most likely captures the concept.

The second Bayesian model is a Bayesian data analysis, which
takes subjects’ behavioral responses and infers the parameters of
the cognitive model. As experimentalists, this permits us to make
efficient inferences about unknown values in each cognitive
model. In particular, for each assumed grammar, it takes the
behavioral responses and infers the parameters of the grammar,
under the assumption that concept learning proceeds according to
the assumptions of the cognitive model. For data analysis, we are
also interested in comparing different models entirely. Due to the
computational difficulty of model comparison in Bayesian infer-
ence, we rely on other methods to quantitatively evaluate models
(Shiffrin, Lee, Kim, & Wagenmakers, 2008) once parameters have
been estimated using Bayesian tools (e.g., sampling and priors).

2 In the case of SIMPLEBOOLEAN, there is no way to call functions on
anything except x, meaning that it would be useful to have primitives for
these kinds of comparison.

Blue

Response Number

S
ub

je
ct

(a) [Circle and blue] or [triangle and green]

Response Number

S
ub

je
ct

(b)

Circle or blue

Response Number

S
ub

je
ct

(c) Not one of largest or smallest

Response Number

S
ub

je
ct

(d)

There exists a blue object of the same shape

Response Number

S
ub

je
ct

(e) Exactly one element is blue

Response Number

S
ub

je
ct

(f)

Figure 5. Each row of (a)–(f) shows a single participant’s responses throughout the course of the experiment
(left to right). Black responses are errors and white responses are correct. The rows have been sorted by similarity
in order to illustrate common patterns of generalization. The key at the bottom shows which elements are
grouped together in each set. This shows systematic patterns of mistakes during learning, and often all-or-none
acquisition by individual participants. See the online article for the color version of this figure.
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These two models are nested and inherently connected, yet
reflect very different aspects of our scientific analysis. It could be
true or false, for instance, that people use the Bayesian concept
learning model, independent of whether or not the Bayesian data
analysis model is appropriate and effective here. This double use
of Bayesian models has been used and discussed previously in
cognitive literature (Kruschke, 2010b; Huszár, Noppeney, &
Lengyel, 2010; Lee & Sarnecka, 2010, 2011; Lee, 2011; Hemmer,
Tauber, & Steyvers, 2014). We leave the mathematical details of
these models to the appendixes, and here focus on an intuitive
description of both of these inferences.

A Cognitive Model of Concept Inference

The learning model takes previously seen sets labeled with
true/false values and infers a hypothesis generating the labels from
the objects in each set. This hypothesis represents a learner’s guess
about the meaning of the word wudsy. We create a model of this
inference on Marr’s computational level (Marr, 1982)—that is, by
formalizing the problem that learners solve rather than the specific
algorithm they use to do so. For reasons of computational and
experimental tractability, we model only subject averages, with the

assumption that the distribution of subject responses will track our
idealized learning model. Note that this approach leaves unspeci-
fied what goes on in the mind of an individual learner. In partic-
ular, we do distinguish whether individuals represent one or many
rules at a single time—and for good reason: as discussed above,
the experimental data needed to determine individual’s hypotheses
would likely have been much more difficult to collect and would
have necessitated a smaller set of target concepts. The learning
model assumes only that what they do can be modeled in aggregate
as an approximation to the true posterior distribution.

To do this, we use is a form for the learning model that is a
simple extension of Goodman, Tenenbaum et al. (2008). This
model has two components: a prior P(h | G, D��) specifying learn-
er’s estimate of how likely any hypothesis h is before any labeled
objects have been observed. The prior is constructed using a
version of a probabilistic context-free grammar (PCFG) G (see,
e.g., Manning & Schütze, 1999), which specifies a distribution on
parse trees, or here a distribution on compositions of the primitive
functions. The nonterminals of this grammar are the return types of
the primitive functions and the rules of the grammar state how
those primitives can be combined. For instance, G might contain a

Figure 6. Two bases for Boolean logic: (a) writes expressions using the standard logical connectives (and, or,
not), while (b) uses only one connective (not-and). Both are universal, in that all propositional formulas can be
written using either set of primitives.
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rule like BOOL ¡ and (BOOL, BOOL), stating that a Boolean
(BOOL) can be expanded to a conjunction of Booleans, which
themselves are then expanded according to the rules of the gram-
mar. This rule has an associated probability, which can be viewed
as the prior probability of conjunction. These probabilities are
formalized with parameters D�� (see Appendix A) which quantify
the distribution of expansions for each nonterminal.

The second component specifies the likelihood P(li | h, si, �, �,
	), quantifying the probability that the set si was labeled li, if h
were the true concept. There are three parameters of the likelihood:
� quantifies the amount of noise, or probability that the labeling
was done at random rather than according to the rule. � represents
a baseline preference for true-versus-false responses. 	 represents
memory decay parameter specifying how much more important
recent observations are for the model’s inferences. We use actually
use two values for 	, so that 	� (	�, 	�), respectively giving the
memory for positive and negative instances of the concept, in
case these differ. Note that a “pure” Bayesian model might not
include factors like memory decay. By including these, we are
giving the model the possibility of using them to capture human
response patterns in case people do not engage in Bayesian
inference with perfect memory.

Together, this prior and likelihood can be used to construct an
inferential statistical model of rules (h) given the observed sets and
labels (s1, s1, . . . , sn, and l1, l2, . . . , ln):

P(h | s�n, �ln, G, D��, �, �, �) � P(h | G, D��) · �
i�1

n

P(li | h, si, �, �, �).

(6)
where sn� � (s1, s2, . . . , sn) and ln� � (l1, l2, . . . , ln).

Using this model, Figure 8 shows the posterior probability of
several hypotheses as the amount of training data increases for four
target concepts. These plots were produced by running 250,000
steps of the Metropolis Hastings algorithm (Metropolis, Rosen-
bluth, Rosenbluth, Teller, & Teller, 1953; Hastings, 1970; Mac-
Kay, 2003) on each number of labeled points, ranging through the
25 sets run in the experiment. At each point sequentially through

the experiment, the top 250 hypotheses were stored, forming a
large finite hypothesis space that was used for all further analysis.
This means that any hypothesis that was found to be high proba-
bility (at any point in the experiment) was reevaluated on the entire
set of labeled objects, producing the learning curves shown in
Figure 8. These plots illustrate several important aspects of the
learning dynamics. First, they show that in many cases the learning
model can arrive at the correct concept. This is true even when the
target concept is quite complex: for instance, in the unique largest
(Figure 8b) the model correctly constructs a �-expression that
quantifies over all elements other than x and asserts that all other
objects x2 are strictly smaller than x. In this sense, the learning
model “really works” and is capable of narrowing down a vast
space of hypotheses using only a few labeled examples—in this
case, around 30 labeled sets.

Second, these plots demonstrate the model’s simplicity bias: the
expressions that are learned early are often simplified approxima-
tions of the correct target concept. For instance, for circle and not
blue (Figure 8a) the model initially learns circle; for there exists a
smaller blue object the model first learns to pick out objects of size
3, the maximum size, then picks out objects that have a smaller
object in the set, and finally it converges on the correct answer.
Such learning patterns demonstrate that “errors” participants make
in the experiment may be rational: the ideal learner does not
immediately jump to there exists a smaller blue object when
shown only two examples. Instead, simpler and thus more likely a
priori hypotheses must be eliminated first. This behavior is a
natural consequence of learners who have a simplicity bias.

These plots also illustrate the fact that for any given set of
labeled training data, there are relatively few hypotheses relevant
at any given time. Nearly all the probability mass in the model is
split between at most the top 10 hypotheses—all the rest of the
infinite space have very low probability. This means that a learner
who only actively considered a handful of relevant hypotheses
could well approximate the full ideal learner operating over the
infinite space. This is a lucky fact for a theory of concept learning

Figure 7. Two grammars for generating expressions with quantification. Both build on FULLBOOLEAN by
adding primitives: (a) adds quantifiers, and (b) adds quantifiers and �-abstraction, allowing for quantification
over arbitrary predicates.
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in such an unrestricted space because it means that our model
implementations can do the same. Even though the model is stated
as operating over an infinite space, we make an approximation to
the full posterior distribution using only the top hypotheses at each
point in time.

Figure 8d shows an interesting concept that is not easily ex-
pressed in the representation language FOL. Expressing exactly one
other . . . requires two quantifiers in FOL and this intuitively should
take a considerable amount of data to justify. Indeed, with this
amount of data the model does not learn the correct concept, but
comes to there exists another object of the same color. This shows
that the representation language chosen may substantially influ-
ence what concepts are easily learnable.

A Parameter-Fitting Model

The learning model described in the previous section specifies a
probability of any expression, given some set of labeled data. This
is intended as our psychological theory of how human learners
react to evidence, given the assumed structure of the model, choice
of grammar, and choice of parameter values. However, we are
really interested in the right representational system—what gram-
mar G and grammar parameters D�� are most likely, given peo-

ple’s learning curves. We structure this problem as a Bayesian data
analysis problem (Kruschke, 2010a; Gelman, Carlin, Stern, &
Rubin, 2014), allowing us to infer likely parameter ranges for the
grammars.

The basic setup of this analysis is to consider taking the human
data we measured in our experiment and inferring the parameters
of the model we do not know. For each item in each set (for a given
concept and list in the experiment) we observe a number of counts
of how often participants respond true and false. Let rn(x) be the
number of participants who labeled set sn with the set of labels x,
and R the set of all human responses. In analyzing the data, we are
interested in scoring the probability of any particular set of param-
eters given the participant responses:

P(D��, �, �, � | R, s�n, �ln, G). (7)

Here, the parameters of the learning model (G, D��, �, �, 	) are
being inferred from the measured behavioral responses (R) for a
given grammar (G) and set of data (s�n,�ln,). Due to the difficulty of
grammar induction, G does not appear on the left side of this
equation—the grammar itself is not inferred from data. Instead, we
used held-out data techniques described in the next section to
compare fixed G, leaving the fitting to find only the parameters.
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Figure 8. Learning curves with expressions from FOL-OTHER, with � � 0.75, � � 0.5, 	 � �0.1. The top six
hypotheses are shown in color and all other hypotheses are in gray. This figure collapses (sums) across logically
equivalent hypotheses. See the online article for the color version of this figure.
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This data analysis model lets us determine what parameters for the
learning model are most likely, given people’s observed responses.
This model is also Bayesian: intuitively, any setting of parameters
will determine a learning curve. Bayes rule allows us to do
inference from the empirically observed learning curves to deter-
mine statistically likely values of the parameters from the observed
learning curves. The details of this model are in Appendix B. For
this data analysis model, we also include a temperature parameter
tuning the overall uncertainty in the model.

We note that this setup assumes that the distribution of subject
responses is the “right” dependent measure, and that it should be
modeled as a posterior predictive distribution. Thus, subject’s
concept at each point in the experiment can be viewed as a sample
(Vul & Pashler, 2008; Goodman, Tenenbaum et al., 2008; Deni-
son, Bonawitz, Gopnik, & Griffiths, 2013; Bonawitz, Denison,
Griffiths, & Gopnik, 2014) of posterior distribution on rules. This
framework allows us to abstract away from the specific algorithm
individuals use. This reflects an important linking assumption, and
one that is testable: if models with this assumption do not provide
good fits, other linking functions should be explored.

Model Method

Ultimately, we are interested in determining which grammar
(representational system) is most likely, given humans’ responses.
Full Bayesian model comparison would compute P(G | R), the
probability of any grammar given all responses, marginalizing
over all the unknown parameters. Unfortunately this, like most
such problems, is intractable. We therefore evaluate different
grammars using held-out data on the maximum a posteriori (MAP)
fitting parameters, an approach common in machine learning. We
only train the model (fit the parameters) on one of the two lists for
each concept. The held-out scores represent the ability of the
model to predict human learning curves on entire sequences of
data that it has received no training on. This indirectly penalizes
models with too many degrees of freedom since overfitting will
result in poor performance on new data. An overview of held-out
evaluation and related methods can be found in Shiffrin et al.
(2008).

This still leaves the issue of how to fit the model parameters. In
the data analysis algorithm, this is a doubly intractable problem,
with an infinite search over hypothesized expressions in the gram-
mar for each of an infinite number of choices of the parameter
values. We approximate a solution to this problem by first con-
structing a finite space of hypotheses to approximate the infinite
one, and then using this finite space in our data analysis algorithm.
To make the finite space, we run 100,000 Markov Chain Monte
Carlo (MCMC) steps on each concept, list, and amount of data,
using a version of the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970; MacKay, 2003). These MCMC runs
search over expressions using typical values of the likelihood
parameters and D�� � 1, and produce a finite sample of hypoth-
eses. Any hypothesis that occurs in the top 100 hypotheses for any
amount of data on a particular concept and list is stored and added
to the finite hypothesis space for the model. Thus, the finite space
includes a large number of hypotheses that are high-probability at
some point throughout the experiment. This is justified because the
learning results above (see Figure 8) shows most hypotheses are

very low probability at each amount of data, so the top 100 form
a reasonable approximation to the infinite space.

Given this finite space of hypotheses we then do MCMC to
approximately fit the parameters �, 	, �, and D��. To do this, we
run 6,000 iterations, each alternating between 10 MCMC steps
over the likelihood parameters, and 10 MCMC steps over the prior
parameters (In trial runs, most of the “burn in” time was used to
increase a prior temperature parameter, which we initialized to a
higher value of 3.5 for the full run). This, along with hand-tuned
proposal distributions, means that the model mixes within several
hundred of the outer-loops, or several thousand total MCMC steps.
Because we do inference over the prior but our finite space was
constructed with a particular prior, we also update the finite
hypotheses by, every five steps, sampling 10,000 times from the
prior and adding the top 25 hypotheses to the finite space. This
keeps the finite approximation “current” to the inferred prior
parameters and yields replicable results across multiple inference
runs.

Modeling Summary

We have defined two statistical models. The first captures the
behavior of an ideal learner over the space of �-expressions,
showing how for any particular choice of its prior and parameter
values, one can compute model’s expected learning curves. To do
this, we formalized a prior probability on �-expressions, and a
likelihood measuring how well each �-expression explains previ-
ously observed labels on sets. Bayes’ theorem shows how to
optimally combine the prior and likelihood, yielding an idealized
cognitive model of �-expression inference. We relate the concept
learning model to human data through a data analysis model that
infers which values of parameters most closely match human
learning. Model comparison between LOTs is done by computing
a held-out likelihood score, corresponding to performance of a fit
model on independent (untrained) data. This gives an ability to
assign each potential LOT a number representing how well it
predicts human learning after its parameters have been fit.

Boolean Concept Analysis

In this section, we first apply this technique to simple Boolean
representation languages, before moving on to languages with
quantification. The Boolean concepts studied here are shown by
the green lines in Figures 2 to 4. These target concepts involved
operations limited to Boolean logical connectives. We first de-
scribe the Boolean languages compared by our model.

Languages Under Consideration

All languages we consider here—and in the next section—
assume a fixed basis of perceptual features—namely that there are
fixed Boolean predicates like red? and circle? that can take an
element of a set and return true if it possesses the relevant feature.
The assumed features are those fixed by our experimental design:
features for shape, color, and size. The prior probabilities of these
operations are fit in D��. Beyond these assumed featural primi-
tives, we are primarily interested in comparing sets of predicates
(like and and nor).

First, we include the two grammars discussed earlier, SIMPLEBOOLEAN

and NAND. The SIMPLEBOOLEAN grammar was the one used by
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Feldman (2000), and in addition corresponds naturally to the way
that these logical words are used in natural language. The NAND
basis is natural because it corresponds to a minimal set of logical
operations. A cognitive scientist who had strong expectations that
the set of cognitive primitives was small, simple, and nonredun-
dant might find this the most plausible basis. The NOR grammar,
including only the operation not-or is similarly minimal and is also
included for comparison. There are several natural extensions of
SIMPLEBOOLEAN to consider. First, we might add logical operations
such implication (implies or )) or the biconditional (iff or N).
These operations are redundant in that they can be written using
primitives in SIMPLEBOOLEAN: implies is �x y. (or (not x) y), and iff
is �x y. (or (and x y) (and (not x) (not y))). The “claim” of a
representational system including these primitives is that they are
so simple for learners, they must be cognitive primitives rather
than compositionally derived from other connectives. We include
three additional languages, shown in Table 1: IMPLIES adds implies,
BICONDITIONAL adds iff, and FULLBOOLEAN adds both.

All these languages allow for free-form recombination of logical
connectives in that there are no restrictions on the compositional
structure. However, there are ways of writing Boolean expressions
that force everything into a structurally constrained format known
as a normal form. Figure 9a shows one example: a DNF grammar
for disjunctive normal form, in which all concepts are written as
disjunctions of conjunctions. This might be natural if people paid
attention to conjunctions of features, and preferentially stated
concepts in terms of these conjunctions; indeed, this LOT was used
by Goodman, Tenenbaum et al. (2008). Similarly, we can also
consider a CNF grammar that expresses concepts as conjunctions
of disjunctions.

Figure 9b shows a grammar for conjunctions of Horn clauses
(Horn, 1951; McKinsey, 1943), which generate expressions of the
form x1 � x2 � . . . � xk ¡ y. Horn clauses are often used in
artificial intelligence systems due to their desirable computational
properties (e.g., Hodges, 1993; Makowsky, 1987; Russell & Nor-
vig, 2009, section 7.5.3). In particular, they support efficient
algorithms for inference and satisfiability (Dowling & Gallier,
1984; Russell & Norvig, 2009), and thus provide a plausible basis
for Boolean reasoning in any computational system. Indeed, recent
cognitive models have assumed the plausibility of Horn clauses in
human learning of theories about the world (Katz et al., 2008;
Kemp et al. 2008a).

For baseline measures, we include ONLYFEATURES, which cor-
responds to learners with no logical connectives, but only access to

primitive features (i.e., a learner with no generative capacity). An
even simpler base, RESPONSEBIASED corresponds to learners who
only try to learn the correct response bias, which is equivalent here
to a representation language who only expressions are true and
false.

Finally, we evaluate several other types of models, described
in Appendix C. First, an EXEMPLAR model measures each set’s
similarity to all previously observed sets and attempts to gen-
eralized previous labels based on this similarity. LOGISTIC per-
forms a simple logistic regression within each concept and list,
providing a type of “psychophysicist’s baseline”: if we can
predict learning curves better than a freely fit logistic curve,
then that provides good evidence for a real representational
theory. Note that LOGISTIC is not a learning model in that it does
not learn any mapping from the stimuli to concepts or repre-
sentations, and it provides no kind of mechanistic or cognitive
theory. Instead, it is only a curve fit to the observed subject
accuracy. It therefore cannot generalize to new, held-out lists or
concepts. We also include a version of the model that incorpo-
rates no prior: the UNIFORM model has an improper, flat prior on
expressions, corresponding to no prior bias for simplicity. As
with the LOT models, the free parameters (e.g., the distance
metric for the EXEMPLAR model) are inferred from data.

Posterior Parameters

A plot of the posterior parameter values for �, 	, and � for each
grammar can be found in Appendix D. These results generally
make clear several intuitive results, and we do not undertake a
detailed analysis or comparison here. The fit alpha values tend to
be a little less than 50%, meaning that the model acts as though
there is substantial noise, about half of the data. The base rate is
near 50% meaning that models do not have a strong yes/no bias for
noise data. The 	 values show that positive examples tend to be
remembered better than negative. They fall around �1, meaning
that the preference for recent data in making inferences is rela-
tively strong, but not overwhelming (a data point 10 back has the
effective weight in the likelihood of 1/10 a recent data point). The
model temperature parameters are generally over 1, indicating that
the models—likely the PCFG priors—are overconfident. This
overconfidence is particularly apparent for models that are poor,
like the ONLYFEATURES model.

Table 1
Summary of Boolean Languages Compared

Language Description

SIMPLEBOOLEAN and, or, not, used in any composition.
IMPLICATION Same as SIMPLEBOOLEAN, but with logical implication ()).
BICONDITIONAL Same as SIMPLEBOOLEAN, but a biconditional operation (N).
FULLBOOLEAN Same as SIMPLEBOOLEAN, but with logical implication ()) and biconditional (N).
HORNCLAUSE Expressions must be conjunctions of Horn clauses (e.g., (implies (and (and a b) c) d)).
DNF Expressions are in disjunctive normal form (disjunctions of conjunctions).
CNF Expressions are in conjunctive normal form (conjunctions of disjunctions).
NAND The only primitive is NAND (not-and).
NOR The only primitive is NOR (not-or).
ONLYFEATURES No logical connectives; the only hypotheses are primitive features (red?, circle?, etc).
RESPONSEBIASED Learners only infer a response bias on true/false.
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Language Comparison Results

Table 2 shows the key model comparison of these represen-
tation languages’ ability to predict human responses. This table
shows the held-out likelihood score (H.O.LL) described above.
Better model fit on the held-out likelihood corresponds to
numbers closer to positive infinity. The “FP” column gives the
model’s number of free parameters, counting the several pa-
rameters in the likelihood and the D�� parameters of the gram-
mar. The last two columns of Table 2 give two intuitive mea-
sures of the model’s performance. Rresponse

2 gives the model’s
overall R2 value to individual responses, quantifying the
amount of variation in proportion of people who select true for
each single response that can be explained by the model. Rmean

2

gives the model’s ability to predict each concept’s average
difficulty, across all concepts. These correlation measures pro-
vide a more intuitive way of understanding the relative perfor-
mance of each model and are computed only on held-out
data.

In this table grammars are sorted by the main measure, held-out
likelihood. The worst performing models and grammars are ones that
lack structured representation: the EXEMPLAR model, ONLYFEATURES

grammar, and RESPONSE-BIASED grammar. The best of these, the
EXEMPLAR model, can explain only around half of the variance in

human responses. The failure of these models provides evidence that
such unstructured approaches miss fundamental facts about people’s
patterns of generalization. The next worst model is the UNIFORM model
that has no simplicity bias. The language used in this model was the
best-performing language, FULLBOOLEAN. Again, this provides strong
evidence for a simplicity bias in concept learning, in line with Feld-
man (2003c), among others.

Above these grammar, we have HORNCLAUSE, which still per-
forms several hundred points worse than the top grammars. This
indicates that this common representation for AI and machine
learning research does not accurately capture human inductive
biases. The next best languages are IMPLIES and SIMPLEBOOLEAN.
SIMPLEBOOLEAN allows for free-form combination of and, or, and
not; IMPLIES additionally includes logical implication. The fact that
SIMPLEBOOLEAN performs worse than languages with more primi-
tives like FULLBOOLEAN and BICONDITIONAL means that people
likely have a richer set of logical connectives than just and, or, and
not. In particular, the grammars that perform best according to
Table 2 are the grammars that add iff to SIMPLEBOOLEAN, as well as
the normal-form grammars, DNF and CNF. The largest differences
between languages with and without iff appears to be in concepts
that require exclusive-or (XOR), such as red XOR circle. Even for
those concepts, differences in learning curves for languages with

Figure 9. Two additional bases for Boolean logic. The DNF grammar expresses concepts as disjunctions of
conjunctions; the HORNCLAUSE grammar expresses concepts as conjunctions of Horn clauses.
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and without iff are not very large, resulting in very close held-out
likelihood scores.

The best grammar, FULLBOOLEAN, scores about 8 points better
on held-out likelihood than its closest competitor, BICONDITIONAL.
Appendix E provides details on the inferred grammar parameters
(D��) for FULLBOOLEAN that were found by the data analysis
model.

In one sense, we may take the held-out data scores as “final”
measures of how well each grammar performs. However, we
might also wonder if these differences between the top grammars
are statistically significant—after all, we tested only finitely many
concepts out of an infinity of possible concepts. Also, our infer-
ence algorithms make several approximations, and it would be
good to know if these approximations are good enough to maintain
sensitivity to 8-point differences in likelihood. To address this, we
first computed a Wilcoxon signed-ranks test, a nonparametric paired
comparison, on the likelihood that each pair of models assigned to
each held-out data point. With Bonferroni correction for multiple
comparisons,3 this reveals no difference between the FULLBOOLEAN

language and BICONDITIONAL, CNF, DNF, or SIMPLEBOOLEAN. However,
it does show that FULLBOOLEAN performs significantly better
than the others (p 
 .05, corrected)—in particular, IMPLIES,
HORNCLAUSE, NAND, and NOR. We also ran the inference algo-
rithms multiple times on the set of Boolean concepts (A single
“run” takes about 50 processor days of CPU time, making gath-
ering a large sample of runs impractical). This revealed some
variation in the order of the top four grammars, but consistency in
ranking these four better than the rest, typically with either DNF,
BICONDITIONAL, or FULLBOOLEAN ranked first. Though this shows
that the resolution of the present data set cannot distinguish be-
tween the top four grammars, it does indicate that FULLBOOLEAN,
CNF, DNF, and BICONDITIONAL are better than the other languages
for capturing people’s inductive bias.

We note that the best grammars can explain an impressive
amount of variation in the individual participant responses. This is

especially compelling because this correlation is computed only on
held-out data: with no parameters fit to the held-out data, the
learning model described above can explain 88% of the variation
in participants’ response patterns. This is further demonstrated by
Figure 10, which shows FULLBOOLEAN’s probability of responding
true compared to participants in the experiment. This shows sub-
stantial noise in the individual object (in a particular set, list, and
concept) responses, shown in gray. The binned data for which we
have much less measurement error shows a strong and almost
perfectly linear relationship between model posterior predictive
and human responses. This holds across both training and held-out
data suggesting no overfitting in the model. The other well-
performing grammars appear similar when plotted in this manner.

Learning Curves

Importantly, the model is capable of capturing many of the
qualitative phenomena that learners exhibit. In particular, learners
in the experiment tended to make systematic patterns of errors (see
Figure 5). Because we have implemented a full learning model, we
can see if the model makes similar errors. Figure 11 shows six
typical learning curves, which also function as posterior model
checks, demonstrating the model’s qualitative fit. The x-axis here
shows the response number for List 2 in the experiment, the
held-out data. The y-axis shows human participants’ proportion
correct at this object, and the model’s proportion correct. Thus,
each y-value represents the accuracy of learners and the model,
conditioning on having seen the correct labels for all previous sets.
The dotted blue line here represents the base rate of the concept.
This figure shows that through the experiment, both learners and
the model make systematic patterns of errors, corresponding to
dips in accuracy for the black and red lines.

Figures 11a to d show concepts where the agreement of the
model and people is quite close, and Figures 11e to f show cases
where the agreement is less good. The fact that the model and
people tend to agree indicates that what people are doing is largely
rational, generalizing in a way that is similar to our model based on
previous labeled examples. In this sense, their “errors” are not
really mistakes, but only cases where previous data has led them to
hypotheses that give answers different from what the target con-
cept says. Even in cases where the model posterior predictive
curves differ from human participants, many of the differences
tend to be in the magnitude of an error and not presence or absence
of an error. For instance, many of the model “dips” in Figure 11f
line up with places where people do have an increased rate of
errors. It is important to emphasize that these model curves are not
fit to this data. There is no parameter of the models, for instance,
that makes the learning curves dip around item 20 of Figure 11a.
This dip is caused by the model’s learned prior (D��) on indepen-
dent training data, combined with the fact that at this particular
item the observed data leads both models and people to make an
incorrect generalization.

3 It is not clear what the best statistical testing procedure is to use here,
since we are selecting the main comparison grammar, FULLBOOLEAN by
good performance, and it should be more difficult to find statistical
differences between the top performing grammars. Bonferroni correction
here is likely highly conservative.

Table 2
Model Comparison Results on All Languages for Boolean
Target Concepts Only

Grammar H.O.LL FP Rresponse
2 Rmean

2

FULLBOOLEAN �16296.84 27 .88 .60
BICONDITIONAL �16305.13 26 .88 .64
CNF �16332.39 26 .89 .69
DNF �16343.87 26 .89 .66
SIMPLEBOOLEAN �16426.91 25 .87 .70
IMPLIES �16441.29 26 .87 .70
HORNCLAUSE �16481.90 27 .87 .65
NAND �16815.60 24 .84 .61
NOR �16859.75 24 .85 .58
UNIFORM �19121.65 4 .77 .06
EXEMPLAR �23634.46 5 .55 .15
ONLYFEATURES �31670.71 19 .54 .14
RESPONSE-BIASED �37912.52 4 .03 .04

Note. H.O.LL gives the held-out likelihood on data independent from that
used to fit the parameters. FP gives the number of free parameters,
dominated by the number of rules in the grammar (e.g. one for each
primitive). Rresponse

2 gives the correlation of proportion correct on raw
responses between each model and humans. Rmean

2 gives the correlation
between model and humans on overall concept accuracy.
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Boolean Language Summary

These results demonstrate that models which treat learning as
inference in a rich representational system can capture partici-
pants’ detailed patterns of errors (see Figure 11) as well as their
patterns of graded generalizations (see Figure 10). These best
rule-like representations outperform other types of baselines, such
as simple exemplar models, logistic curves, and response-biased
models (see Table 2). Importantly, we are also able to provide
evidence against intuitively implausible representations bases,
such as the NAND basis, and even formalisms popular in AI like
Horn clauses, although the amount of data at present does not
distinguish between the best grammars.

We note that this experiment provides evidence about represen-
tational components, but does not establish definitively which
primitives people are capable of manipulating. We are, after all,
able to represent the concept of NAND. This experiment can be
viewed as therefore informing our theory of the most natural set of
primitives deployed by people’s inductive machinery when faced
with a feature-based rule learning task like our experiment. It is
possible that in other tasks, different sets of data, or with appro-
priate priming, people would show NAND-based inferences. Our
data indicates, however, that such representations would be less
cognitively natural.

Languages Involving Quantification

Building off of previous experimental and computational
studies (Kemp, 2009; Piantadosi, Tenenbaum, & Goodman,
2010), we extend the modeling results to the wider range of
concepts from our experiment that involve quantification and
relational terms. To model these concepts, we must consider

spaces of representation languages that include these additional
operations such as existential and universal quantification, or
cardinality operations.

Languages Under Consideration

Like the Boolean analysis, we assumed a fixed set of primitives
for accessing the shape, color, and size features of the objects. To
study the compositional elements, we ideally might write a set of
primitives and construct a grammar either including or excluding
each possible primitive. The problem with this approach is that the
number of possible grammars would then be exponential in the
number of primitives. We might alternatively consider writing a
large grammar including all of the primitives and positing that
low-probability primitives are likely not components of the LOT.
The problem with this is demonstrated by FULLBOOLEAN and
SIMPLEBOOLEAN above, where low-probability operations (iff and
implies) nonetheless improve the model fit. It is difficult to tell
from the values of D�� which primitives should be considered “in”
the grammar. We therefore take a more modest approach and
construct several plausible collections of related primitives. Our
language comparison either includes or excludes each set. Table 3
shows five different families of primitive functions. The primitives
in each family can be added or not to the best Boolean language,
FULLBOOLEAN, to form a new and more powerful LOT.

First we can consider adding first-order quantifiers, exists (?) and
forall (@), as in the FOL grammar. These primitives strictly increase
the expressive power of any of the Boolean representation languages,
allowing for existential and universal quantification. We allow each
type of quantification to operate either over the entire set S, or over the
elements other than x in S, and the probabilities of each of these types
of quantification are fit in the PCFG.

As described above, only adding exists and forall yields relatively
impoverished quantificational abilities since the predicate mapping
over the set must be another primitive. True quantification abilities
would allow an arbitrary predicate F to range over a set, not just the
primitive features. This can be accomplished by allowing F to expand
to a new �-expression using the rules in LAMBDA-AND-RELATIONAL.
This introduces a rule for defining new functions F:

F ¡ �xi . BOOL. (8)

This rule says that a nonterminal of type F can be expanded into a
�-expression �xi followed by an expansion of BOOL (for i � 1, 2, 3,
. . .). For instance, F could expand to �x2 . (or (red? x2) (blue? x2)).
Quantifiers such as exists then can take this function and a set:

�x S . (exists (�x2 . (or (red? x2) (blue? x2))) S). (9)

Here, exists returns true iff the function �x2. (or (red? x2) (blue?
x2)) is true for some element of S.

The FOL operators correspond to those in classical logic. It has
also been suggested, though, that other types of quantification
actually provide a better account of people’s inductive learning.
For instance, Kemp, Goodman, and Tenenbaum (2008b) intro-
duces two quantifiers, exists-exactly one and exists-one-or-fewer.
Both of these quantifiers are analogous to exists, except that
exists-exactly one is true if there is only one element of the set
satisfying the predicate, and exists-one-or-fewer is true if there is
at most one element of the set satisfying the predicate. These
quantifiers can be written using the more standard exists and forall

Figure 10. Relationship between model probability of responding true
(x-axis) and participants’ probability (y-axis). The gray background repre-
sents unbinned data, corresponding to raw responses on each object in each
set, list, and concept, of the experiment. Black points are binned training
data and blue (gray) are binned held-out data. See the online article for the
color version of this figure.
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predicates. For instance, exists-exactly one, is a function of a
function F and a set S, and can be written as,

� F S . (exists (�x1 . (and (F x1) (forall (�x2 . (implies (F x2)

(equal? x1 x2))) S))) S). (10)

In other words (exists-exactly-one F S) is true if there is one
element x1 in S satisfying F, and for each x2 in S, if x2 satisfies
F it must be x1. Importantly, these quantifiers are quite complex
to express using exists and forall, so including them as primi-
tives substantially changes the inductive bias of the model.
More generally, we have argued elsewhere (Piantadosi et al.,
2012, 2014) that small-set cardinalities (1, 2, and 3) should also
be included as representation primitives, in line with very
young children’s abilities to manipulate small sets (Wynn,
1992). These novel quantifiers are included as ONE-OR-FEWER

and SMALL-CARDINALITIES.
Finally, we also compare a simplified version of second-order

quantification. In standard logic, second-order quantification al-
lows for quantification over predicates, or equivalently subsets of
the domain of discourse. For instance, a typical second-order
expression is ?P@x.P(x), which is true if there exists a predicate P
such that P(x) for all x. Here, it is difficult to allow for quantifi-
cation over all predicates, but we can allow quantification over the
primitive feature predicates, red?, blue?, triangle?, size1?, and so

forth This is not formally powerful enough for capturing “real”
second-order logic since this type of quantification can be ex-
pressed in first-order logic, but it does capture an intuitive sense of
quantifying over predicates rather than objects (see also Kemp,
2009). Thus, an expression such as

�x S . (exists-color (�P . (forall (�x2 . (P x2)) S))) (11)

says that there exists a color predicate P (e.g., a predicate in red?,
green?, blue?) such that (P x2) is true for all x2 in S. In other words,
all of the elements of S are the same color, no matter what that
color happens to be. We note that—unlike second-order logic in
general—this could be written using only disjunctions of forall,
although it would be substantially more complex. Also, it is the
case that these second-order predicates require an additional bound
variable to be interesting: concepts such as �x S . (exists-color (�
P. (P x))) is true for all objects.

To summarize, we have introduced several sets of primitive
functions, each of which may or may not be included in a hypoth-
esized LOT. Because the learning model we developed is powerful
enough to handle learning in any representation system, we can
apply the same methods as the previous Boolean section to see
which combination of these primitives best captures people’s
learning curves.

Figure 11. Human (black) versus model learning curves on four example concepts. The numbers in the lower
right give R2s between FULLBOOLEAN’s posterior predictive accuracies and humans’ observed accuracies. Note
the human data for these sequences of data were held-out from training all models (a)–(d) were chosen as
examples of “good” fit to the model (e)–(f) represent characteristic poor fits for the model. See the online article
for the color version of this figure.
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Posterior Parameters

Figure D2 shows the posterior parameters in the quantifier
analysis. The posterior parameters yield similar values to the
Boolean analysis, including temperatures above one, noise and
base rate parameters near 0.5, and memory parameters near �1.

Language Comparison Results

Grammars without the LAMBDA-AND-RELATIONAL operations
generally performed poorly, so all grammars compared here in-
clude these primitives. Thus, by including or excluding each of
four sets of primitives, we form a hypothesis space that encom-
passes a total of 24 � 16 different grammars. We additionally
include the top-performing Boolean grammars on this wider space
of concepts to test whether people’s inductive machinery goes
beyond these simple Boolean predicates. Appendix F shows the
posterior parameter values found for these grammars. The general
ranges and values are similar to the Boolean case above.

Table 4 shows the results of the model comparison on all lan-
guages. Beyond the primitives in FULLBOOLEAN, the best grammar
here includes only primitives from FOL and ONE-OR-FEWER. This
grammar performs substantially better than the Boolean languages,
across all measures. Using a Wilcoxon signed-ranks test on held-out
likelihoods, the top grammar is significantly better than the second
place grammar and all others, conservatively correcting for 16 com-
parisons (p 
 .01, corrected). This provides strong evidence for
quantification in the LOT, in line with Kemp (2009); the superiority
of a grammar with multiple types of quantifiers indicates that, like the
Boolean results, quantificational operations in the LOT do not make

use of a “minimal” basis of operations (such as just FOL). The details
of the grammar parameters (D��) found by the data analysis algorithm
for FOL are shown in Appendix D.

These results suggest that SMALL-CARDINALITIES are potential
primitives since the second-place grammar includes them; note
that the concepts studied here do not include many operations
on small cardinalities. Most concepts here required checking
only for the existence of single elements, which is a cardinality
operation captured by FOL. Grammars with these operations
might do better if more of the target concepts require them.
Additionally, as with the Boolean results, we do not have a
precise ability to distinguish between the top hypotheses, as
their held-out performance depends (as always) somewhat on
the randomness of the held-out data split.

However, these results do provide strong evidence against
SECOND-ORDER-QUANTIFIERS: for every other choice of primi-
tives, addition of SECOND-ORDER-QUANTIFIERS reduced the
model fit. Indeed addition of only SECOND-ORDER-QUANTIFIERS

to FULLBOOLEAN resulted in a language that performed worse than any
of the Boolean languages. This provides some evidence that people
tend not to quantify over properties, consistent with Kemp (2009).
This result contrasts with SMALL-CARDINALITIES, which improves over
Boolean LOTs, though not as much as the inclusion of other quanti-
fiers.

The ability of the quantificational grammars here to predict
human responses on all the concepts is substantially worse than
the previous analysis on solely Boolean concepts. The Rresponse

2

values show that the grammars explain around 66% of the
variance, compared to the capability of the Boolean grammars

Table 3
Five Sets of Primitives Which Can Each Be Independently Included or Not to Form a Space of
Possible Grammars

FOL
(exists F SET) There exists some x � S such that (F x)
(forall F SET) For all x � S, (F x)

LAMBDA-AND-RELATIONAL

(lambda xi. BOOL) Lambda abstraction (also introduces a new bound variable xi)
(equal? x y) x and y are the same object
(equal-shape? x y) x and y are the same shape
(equal-color? x y) x and y are the same color
(equal-size? x y) x and y are the same size
(size � x y) x is larger than y
(size � x y) x is large than or equal to y

ONE-OR-FEWER

(exists-one-or-fewer F SET) There exists one or zero x � S such that (F x)

SMALL-CARDINALITIES

(exists-exactly-one F SET) There exists exactly one x � S such that (F x)
(exists-exactly-two F SET) There exists exactly two x � S such that (F x)
(exists-exactly-three F SET) There exists exactly three x � S such that (F x)

SECOND-ORDER-QUANTIFIERS

(exists-shape P) There a shape predicate s � {circle?, rectangle?, triangle?} such that (P s)
(exists-color P) There a color predicate s � {blue?, green?, yellow?} such that (P s)
(exists-size P) There a size predicate s � {size1?, size2?, size3?}such that (P s)

Note. All grammars include expansions mapping SET ¡ S and SET ¡ (non-Xes S), respectively, the context
set S and the set S\{x}.
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to explain around 88% of the variance for Boolean concepts.
This could indicate that the representation languages we con-
sider here do not as accurately model people’s conception of
quantificational concepts, or it could be that people give more
variable responses on such complex concepts. Interestingly, the
ability of the model to predict each concept’s mean difficulty
(Rmean

2 ) is actually higher, around 78% of the variance compared
with 60 –70% on Boolean concepts. This is potentially due to
greater and more systematic variance in the concept mean
difficulties. As with the Boolean concepts we can plot the
model performance versus the participants’ actual performance,
collapsing across all concepts. Figure 12 shows this relationship
and demonstrates the model’s ability to predict fine gradations
in human response probabilities.

Learning Curves

Again, like the Boolean analysis, the quantificational model
is capable of predicting detailed patterns of human learning
curves. Figure 13 shows eight different learning curves: Figure
13a–f show well-fit concepts and Figure 13g–h show relatively
poorly fit concepts. Some plots show concepts in which the best
grammar with quantifiers and other operations is substantially
better than FULLBOOLEAN. In Figure 13a, for instance, FULL-
BOOLEAN is incapable of expressing exists another object with
the same color, yet people learn this relatively quickly. Inter-
estingly, on this concept both grammars fit equally well for the
first few sets, during which people would not have observed
enough data to justify using quantifiers and so therefore would
respond with simple Boolean expressions. Once enough data
has been seen to cause people to learn the concept (around
20 – 40 sets), the behavior of the quantifier language and the

Boolean one diverge substantially. This is exactly the type of
concept for which we find strong quantitative evidence in favor
of a representation language that is capable of quantification.
However, these types of clear and intuitive cases are relatively

Table 4
Model Comparison Results on All Languages With Quantifiers

FOL One-Or-Fewer Small-Cardinalities 2nd-Ord.-Quan. H.O. LL FP Rresponse
2 Rmean

2

✓ ✓ · · �79023.25 41 .66 .78
✓ ✓ ✓ · �79096.47 44 .66 .78
✓ · · · �79329.61 40 .65 .78
✓ ✓ · ✓ �79347.52 46 .65 .77
· ✓ · · �79463.06 39 .64 .80
✓ · ✓ · �79518.84 43 .65 .77
· ✓ ✓ · �79863.95 42 .63 .77
✓ · · ✓ �79908.25 45 .64 .78
✓ ✓ ✓ ✓ �79997.35 49 .64 .74
· ✓ · ✓ �80261.60 44 .63 .77
✓ · ✓ ✓ �80366.78 48 .63 .75
· · ✓ · �80392.52 41 .63 .72
· ✓ ✓ ✓ �80435.33 47 .62 .76
· · ✓ ✓ �80604.70 46 .63 .71

BICONDITIONAL �81790.49 26 .59 .72
FULLBOOLEAN �81844.53 27 .58 .71

SIMPLEBOOLEAN �82134.87 25 .58 .73
· · · · �82342.76 38 .57 .72

DNF �82380.87 26 .59 .73
CNF �82597.55 26 .58 .73

· · · ✓ �82745.12 43 .56 .72

Note. H.O.LL gives the held-out likelihood on data independent from that used to fit the parameters. FP gives
the number of free parameters, dominated by the number of rules in the grammar (e.g., one ror each primitive).
Rresponse

2 gives the correlation of proportion correct on raw responses between each model and humans. Rmean
2 gives

the correlation between model and subjects on overall accuracy aggregated by concept.

Figure 12. Relationship between model’s probability of responding true
(x-axis) and participants’ probability (y-axis). The gray background repre-
sents unbinned data, corresponding to raw responses on each object in each
set, list, and concept, of the experiment. Black points are binned training
data and blue (gray) are binned held-out data. See the online article for the
color version of this figure.
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uncommon; most of the target quantifier concepts are difficult
for people to learn. Importantly, Figure 13c demonstrates that
for the Boolean concepts, both grammars are capable of per-
forming equally well, here with an R2 of about .91. By adding
quantifiers, we do not decrease the model’s ability to fit simpler
concepts.

Figure 13e to 13f show two concepts that are not simple
Boolean predicates, but for which the qualitative fits for the
Boolean and quantificational grammars are approximately the
same. Indeed, most of the concepts studied here are like this,
and do not strongly distinguish between these types of gram-
mars. The reason is likely that in these concepts people do not
appear to learn the target concept, as evidenced by the fact that
they make systematic patterns of mistakes even near the end of
the experiment. The fact that FULLBOOLEAN can capture these
mistake patterns indicates that people learn Boolean concepts

that are similar to the target concepts, yet not the target concept.
For instance, in Figure 13e ([exists an object with the same
shape] and blue) they might learn the concept blue since it will
often be the case that there is an object of the same shape, and
so blue provides a good approximation to the target. In Figure
13f (same shape as another object which is [blue or green]),
people may eventually learn same shape as another object,
which can only be expressed as quantifiers. Using people’s
response patterns to infer what concept they may have learned
is an important future direction for this work.

The curves shown in Figure 13g–h are particularly poor fits
for the model. Both grammars seem to mischaracterize learning
late in Figure 13g, yielding low correlations. Even though the
correlation is high for Figure 13h, both grammars predict pat-
terns of mistakes later that are not observed in human partici-

Figure 13. Human (black) versus learning curves according to the best grammar in Figure 4 and FULLBOOLEAN.
The numbers in the lower right give R2s between each language’s model-based accuracies and humans’ observed
accuracies. Note the human data for these sequences of data were held-out from training all models. See the
online article for the color version of this figure.
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pants. This latter example suggests potential for improvement
in how the model handles uniqueness and small cardinalities.

Quantifier Language Summary

These results generally indicate that people deploy quantifica-
tional primitives in rule-based learning tasks like our experiment.
These primitives likely include first-order representations with
special operations for small cardinalities like exactly one. Re-
sources for second-order quantification appear unnatural. How-
ever, as in the case of Boolean languages, these results must be
interpreted in the context of our task and experimental items. It is
possible that other settings may bring out the kinds of operations
as more natural inferences.

Discussion

These results have begun to elaborate the representational sys-
tems that support rule-based concept learning. We have shown that
it is possible to take human learning curves and infer likely
representational systems. Our approach is based on the fact that
learners prefer concepts that are representationally simple and that
distinct LOTs give different measures of simplicity even if they
have the same expressive capability. This allowed comparisons to
determine which LOTs best capture human learning curves. We
found that systems with rich sets of Boolean connectives and
quantifiers best described human learning. Importantly, we also
showed that a single, unitary analysis can distinguish across levels
of computational power (e.g., predicate logic, first-order logic,
second-order logic). Our results rule out intuitively implausible
bases like the NAND-basis, and provide quantitative evidence
supporting representations systems with quantification over ob-
jects.

It may seem obvious that human conceptual systems involve
first-order quantification since we are able to think thoughts like
“Some dog adored Lindsay.” It may seem equally obvious that we
can think second-order thoughts, despite the fact that LOTs with
this computational ability did not better explain human perfor-
mance. However, note that our experiments did not test what it is
possible to think, but rather that it is natural to learn. More
precisely, our results have characterized whether each of these
kinds of quantification are a natural part of people’s induc-
tive machinery. We believe that the presence of these abilities in
the context of high-level inductive learning is not at all obvious; it
could be the case that our mechanisms of learning operate only
over very simple representations like conjunctions of features or
continuous spaces. What we have shown here adds to a growing
body of work that demonstrates Bayesian induction in rich, cog-
nitive representational systems. This is not to say that there are no
situations in which participants might demonstrably learn concepts
involving higher-order quantification; in fact, such situations likely
exist. Our findings only characterize the inductive mechanisms at
play when subjects are asked to learn novel concepts in a sequence
of examples from feedback, without the support of rich commu-
nicative context or interaction or common sense background
knowledge. Pushing this approach to capture the full range of
possible human concept induction across learning paradigms is an
ambitious and important project.

The results here have examined learning in adults, and there-
fore is likely to be useful in working out the primitives and

processes that support children’s learning. However, our results
are not about children, and there exist several possibilities for
how these findings may relate to processes like language ac-
quisition and cognitive development. In the strongest case, it is
possible that the inductive biases guiding adults are very similar
to children, suggesting a high degree of continuity in logical,
rule-based learned. Alternatively, it is likely that adults have
more operations than are available to children, either as a
consequence of learning, maturation, or language acquisition.
Differences could be in inductive bias (e.g., adults have
“cached” some compositions of primitives that children have
not, as in Dechter, Malmaud, Adams, & Tenenbaum, 2013) or
computational power (adults may have operations available that
are qualitatively unlike those for early learners, as in Carey,
2009). Finally, it is possible that young children’s inductive
systems behave very little like adults in our experiment, as
might be the case if the acquisition of natural language is the
key cognitive step in achieving the kinds of quantificational
inference abilities shown in our experiment. Our data does not
speak to these possibilities, although the potential to now ex-
tend this simple paradigm to children and other populations is
clear.

Our work complements Kemp (2012), who demonstrated a
close model fit between grammar-based logical rule learning
and human behavior across 11 domains with varying logical
structures. Our approach and formalism is deeply related to
Kemp’s, but different in several key details. Our data set
contrasts with Kemp’s in that it gathers detailed time courses of
concept learning, and our methods realize model comparisons
within the context of a Bayesian analysis that infers both
distributions on concepts from data, and parameters of the
learning model like those in the probabilistic grammar. Kemp’s
formalism focuses on minimal concept descriptions, with close
connections to Minimum Description Length methods (Grün-
wald, 2007) like those studied previously for Boolean concepts
in Feldman (2000). Our results do not exhaustively examine
concepts; instead we created a set of concepts that we believed,
a priori, were interesting, in part for their concise yet semanti-
cally complex descriptions in natural language. Our formalism
of �-calculus is only superficially different than Kemp’s, as
both primarily function to formalize compositions over primi-
tive operations. Our choice of �-calculus was motivated by
connections to semantics and an eye toward what we believe
should be a primary aim for LOT models in the future: infer-
ence of arbitrarily rich computational systems. We find it
compelling that, despite these differences, we find qualitatively
similar results, including a tendency for quantification over
objects but not features (Kemp, 2009, 2012).

Our results have also provided quantitative evidence in sup-
port of a capacity for rule-like inference. Even the worst rule-
based theories have substantially higher correlations with hu-
man responses than alternatives like the exemplar model. It is
possible that the types of (e.g., gradient) effects typically of-
fered in support of non-rule-based approaches are compatible
with the types of rules used in the model—for instance, from
“averaging” over rules (Tenenbaum, 2000), a probabilistic rule-
based system (Stuhlmüller, Tenenbaum, & Goodman, 2010), or
a model that incorporates both rule-like behavior and exemplar
behavior (Nosofsky, 1991). Indeed, participants’ success with
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many of these rule-based concepts illustrates that rule-learning
may be a viable developmental theory across domains. At least
for our task, rule induction is not extremely difficult for people
or models: humans could learn these concepts in a few dozen
examples, and the model could using a very simple—indeed
very general—stochastic algorithm that may even be develop-
mentally plausible (Ullman et al., 2012). Forming compositions
of primitives in order to explain data is not intractably difficult,
in theory, practice, or people.

This work has drawn on the capacity to run a new kind of
experiment on the Internet— one that involves a large number
of participants, conditions, and data points. We expect too that,
upon releasing the data with this publication, further techniques
and analysis tools will be employed to develop and test rich
theories of the statistical learning the experiment captures. Our
approach gained much of its power by aggregating results
across concepts. Intuitively, a human’s probability of using a
primitive like and should be found by seeing how well gram-
mars performs on all concepts, not simply on conjunctions. If
and is high probability, other possible concepts like or and not
must be lower probability, and so the predicted learning on
these concepts are affected by the probability of and. One could
imagine simpler “pairwise” comparisons for instance compar-
ing average learning rates on concepts like red and circle and
red or circle. The difficulty with this approach is that it seems
difficult or impossible to control other variables like the com-
peting hypotheses and the informativeness of the data with
respect to the target concept, so comparisons of average accu-
racy and learning rate may not be meaningful. The alternative
used here is full implementation of a learning model which can
support precise quantitative fits. The learning model allowed
different representational systems to be “plugged in” without
requiring any modification to the inductive mechanisms. We
then could recover a single score corresponding to how well the
best-fitting parameters of the model generalized to unseen
human response patterns. This provides a quantitative standard
and allows for an effective comparison of representations that
cannot be directly observed in behavior. In principle— due to
the computational power of �-calculus—this approach can be
extended to any type of representational system or learning
task.

The quantitative results in this paper motivate a challenge to
the other paradigmatic approaches to cognitive science—such
as connectionism (e.g., Rumelhart & McClelland, 1986; Smo-
lensky & Legendre, 2006) or cognitive architectures (e.g., An-
derson, 1993; Newell, 1994)—to provide a model that quanti-
tatively outperforms theories based on near-ideal statistics and
explicit representations, or to explain how these types of sta-
tistical learning competencies may be implemented. We believe
several design features of our experiment make this especially
difficult for, for example, connectionist models: the concepts
learned are rule-like and relational, the set sizes are variable,
participants learn the concepts from relatively little data, and
revise hypotheses from a single data point. The important
aspect of this challenge is that we have an explicit and princi-
pled quantitative measure of performance, likelihood on held-
out data. Other fields such as natural language processing find
standardized data sets critical for comparing approaches and
measuring progress. This present work provides one standard-

ized data set that we hope will prove useful in refining debates
about what types of representations and architectures support
the richness of human cognition.

Conclusion

The primary goal this work has been to firmly ground the
language of thought hypothesis in an empirical domain. We
have shown through the use of learning experiments that we can
behaviorally distinguish different formal languages for con-
cepts, considering exclusion and exclusion of many sets of
primitive operations. LOTs should be considered psychological
theories that are subject to empirical evaluation, rather than
merely theoretical or philosophical possibilities. Overall, our
results demonstrate that intuitively implausible bases cannot
explain human learning patterns, and we have provided tenta-
tive, early answers to what types of representational systems
best capture people’s psychological notion of simplicity in the
context of inductive rule learning. In particular, rich (nonmini-
mal) Boolean languages including some first-order quantifica-
tional concepts appear to best describe human learning. Our
results with other baseline models showed that they performed
substantially worse than virtually all theories with explicit,
compositional representations.

The work has provided evidence for the theory that learners
combine a compositional representational system with an ap-
proximately ideal statistical inference mechanism. When effec-
tive inference is combined with rich representations, we are
able to model key phenomena including patterns of errors,
graded responses, and eventual learning of complex, composi-
tional concepts. More generally, inductive inference combined
with a compositional representational system provides a work-
ing theory for how elementary conceptual abilities might be
elaborated into complex systems of structured concepts over the
course of learning and development.
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Appendix A

The Formal Learning Model

We introduce the learning and data analysis models with Figure
A1, a graphical model (Pearl, 1998) that describes the relationships
between the variables used. The blue nodes in this figure denote
variables that are known to learners; they may not be known in the
data analysis model. Let si and li respectively denote the ith set of
objects observed and their corresponding labels. For i 
 n, the sets
and the labels are both known to learners since they have been
provided feedback on previous sets. The main variable of interest,
h, is a �-expression in some representation language, G. The true
value of h is the �-expression that generates the true/false labels
for each past set and the current set sn. It is assumed that learners
know a grammar G that generates expressions h, as well as
variables that parameterize the likelihood (�, 	, �), and the prior
(D��), both of which are discussed later. Thus, learners must take
their grammar and the previously observed labels to infer a hy-
pothesis h, and apply this to the current set sn to find ln.

For convenience, denote the sequence of sets (s1, s2, . . . , si) by
si�and the corresponding sequence of sets of labels li�. We are
interested in scoring the probability of h given these previously
observed sequences, s�n	1 and �ln	1, and the other known variables.
Using Bayes rule, this probability is given by

P(h | s�n	1, �ln	1, G, D��, �, �, �) � P(h | G, D��)P(�ln	1 | h, s�n, �, �, �)

� P(h | G, D��)�
i�1

n	1

P(li | h, si, �, �, �). (12)

Equation (12) makes use of several natural conditional indepen-
dences shown in Figure A1, for instance, the fact that ln is inde-
pendent of G once the hypothesis h is known, and that the li are
independent once h is known. This equation has two parts, a prior
and likelihood, which we now address in turn.

Priors on Expressions

The prior P(h | G, D��) embodies the core assumptions that
learners bring to learning. Here we choose the prior to capture the
assumption that learners should prefer representationally simple
hypotheses. What is simple may depend on several factors: sim-
plicity might depend on an expression’s description length, corre-
sponding to the number of primitives used in the expression h. Or,
it may not be the case that all primitives are equally costly,
meaning that the prior might depend on which primitives are used,
not just how many. Additionally, Goodman et al. (2008a) show
that a model that prefers re-use can capture selective attention

(Appendices continue)
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effects in concept learning, where participants prefer concepts that
use the same dimension (e.g., color) multiple times to those that
use different dimensions. Thus, circle or square is easier than
circle or red since the former references two shape dimensions,
and our prior should potentially incorporate notions of re-use.

One way to capture all of these factors is to first imagine
converting one of the above context-free grammars (e.g., Figure
6a) to a probabilistic context-free grammar (PCFG). This amounts
to assigning a probability that each nonterminal will be expanded
according to each of its rules (see Manning & Schütze, 1999). For
instance one could make all rule expansions equally likely, mean-
ing that learners would have equal preferences for using any
primitive (given a nonterminal type). However, we might also
assign the probabilities nonuniformly, corresponding to varying
expectations about the probability of any particular expansion or
primitive. Any such choice of probabilities induces a distribution
on expressions, with the probability of any expression given by
product of the probabilities of each of its expansions. Following
Goodman et al. (2008a) and Johnson, Griffiths, and Goldwater
(2007) we use a variant of PCFGs that potentially encourage reuse
of rules: a Dirichlet-Multinomial PCFG (see also O’Donnell, Te-
nenbaum, & Goodman, 2009). This is best understood as integrat-
ing over the rule production probabilities, using a Dirichlet prior
on the (multinomial) rule expansions. Suppose that CAB

(h) is the
count of how many times an expression h uses the rule A¡B, and
that CA� is a vector of counts of how many times the nonterminal
A expands to each B. Then, for a given grammar G,

P(h | D��, G) � �
nonterminals A

�(CA�(h) 
 DA�)
�(DA�)

, (13)

where DA� is a vector of parameters of the same length as CA�, and
D�� is the set of all Dirichlet parameters (for each A). Here, 	 is the

multinomial beta-function, which is given in terms of the Gamma
function:

�(c1, c2, . . . cn) �
�i�1

n
�(ci)

���i�1
n ci�

. (14)

This prior uses a single Dirichlet-multinomial for each set of
rule expansions for each nonterminal A. This Dirichlet-
multinomial is parameterized by a set of real numbers, DA�. If we
renormalize DA�, we get the expected probability of each rule
expansion from A, using the basic properties of the Dirichlet-
distribution. Importantly, however, the Dirichlet parameters also
characterize reuse: if the Dirichlet parameters are small in magni-
tude, then observing a rule used once will substantially increase its
probability of being re-used in the future. In contrast, if the
magnitude of DA� is large, then adding additional rule counts does
not change the probability an expansion will be reused, so the
model does not prefer reuse strongly. When DA� � 1 for all A, this
prior recovers the rational rules model of Goodman et al. (2008a).
By doing inference over the D�� we are therefore able to infer both
the relatively probabilities of each rule expansion, and how much
their probabilities of use in the future are influenced by whether or
not they were used already in an expansion.

We also include one more parameter, a temperature T, which
controls the strength of this prior by raising it to the 1/Tth power.
As T ¡ 0 the prior assigns most probability mass to short expres-
sions, and as T ¡ � the prior approaches a uniform distribution.
For notational simplicity, this is left out of our equations.

The Likelihood of Data Given an Expression

The likelihood P(�ln | h, s�n, �, �, 	) in Equation (12) quantifies
how well each expression h explains previously observed labels.
Following the set-up of the experiment, we can consider sets of
objects and learners who have observed true and false labels on some
collection of previously observed data points. Given h, we assume
labels are noisily generated for the current set by choosing the correct
label (according to h) for each item with high probability �, and with
probability (1 – �) choosing from a baseline distribution on labels,
parameterized by �. Thus, when the labeling is not done according to
h, true is chosen with probability � and false is chosen with proba-
bility (1 – �). This captures the intuition that the labels typically come
from h, but occasionally noisy labels are generated from some base-
line distribution. This process is therefore parameterized by two
variables, � and �. This process gives that

P(li � x | h, si, �, �)

��
� 
 (1 	 �) · � if h returns x for si and x � true
� 
 (1 	 �) · (1 	 �) if h returns x for si and x � false
(1 	 �) · � if h returns y � x for si and y � true
(1 	 �) · (1 	 �) if h returns y � x for si and y � false.

(15)

Equation (15) simply adds up all the ways that x could be
generated for si. When x is the correct label generated by h, then

(Appendices continue)

Figure A1. Graphical model representing the variables of the learning
model. Here, the expression for the target concept h depends on Dirichlet
parameters D�� and the grammar G. The specific labels observed for the ith
object of the nth set depend on the hypothesis, set, and likelihood param-
eters, � and �. In responding, the labels for the nth set of objects are not
observed, but the nth set is. See the online article for the color version of
this figure.
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x could be generated by labeling from h with probability �, or by
choosing from the baseline distribution with probability (1 – �).
This choice from the baseline depends on whether x is true
(probability �) or x is false (probability 1 – �). If x is not the label
returned by applying h to si, then it has to have been generated
from the baseline distribution. This equation embodies the assump-
tion that learners reason about the statistical process that generates
their observed data, allowing them to imagine how likely any
particular hypothesis h would make the observed data, given the
noisy labeling process.

Equation (15) allows us to score the likelihood of the label
for any particular labeled set of objects. But in the experiment,
participants see a sequence of labeled sets and objects. It is
likely that learners have better memory for more recent exam-
ples, so we include a memory-decay on the likelihood, so that

learners prefer more strongly to get more recent examples
correct. Motivated by power law decays in memory (Anderson
& Schooler, 1991), this takes the form of a power law decay on
the log likelihood:

logP(�ln | h, s�n�, �, �) � �
i�1

n

(n 	 i 
 1)	� logP(li | h, sn, �, �)

(16)

Here, we have weighted the likelihood of an individual set from
(15) by a power-law term, (n – i � 1)�	, which makes earlier data
less important. This introduces one free parameter, 	 � 0, which
controls the amount of memory-decay in the model. For 	 � 0,
learners prefer hypotheses that explain more recent data, but as
	 ¡ 0, this preference is reduced.

Appendix B

Inference for Data Analysis

Let rn(x) be the number of participants who labeled set sn with the
set of labels x (one true/false response for each item in sn), and R the
set of all human responses. In analyzing the data, we are interested in
scoring the probability of any particular set of parameters given the
participant responses. By Bayes rule, the probability

P(D��, �, �, � | G, R, s�n, �ln)

� P(R | G, D��, �, �, �, s�n, �ln)P(D��, �, �, �). (17)

The first term here is the likelihood of the human responses for
any given setting of the parameters. Under the assumption that
participants choose labelings according to the output of the learn-
ing model, this term is a multinomial likelihood,

P(R | G, D��, �, �, �, s�n, �ln)

� �
i�1

n

�
x

�P(li � x | s�i	1, �li	1, G, D��, �, �, �)	ri(x) (18)

where product over x runs over all possible labelings x of si (all
values of li). Equation (18) says that the probability of all re-
sponses according to the learning model is a product over all
sets observed, and for each set a product over all possible
labelings raised to the number of times that labeling is observed
in participants. The key term of (18) is the probability of any
labeling given all previous data, P(li � x | s�i	1, �li	1, G, D��, �,
�, 	), since this is the model’s predicted distribution of re-
sponses to set i. This term is important because it characterizes
the model generalizations: the model works well if it generalizes
like people do, labeling new data from typically ambiguous evidence
in the same way as our study participants. The target expression h
does not appear here because the right h is not known to participants;

however, it can be computed using the previously defined prior (13)
and likelihood (15):

P(li � x | s�i	1, �li	1, G, D��, �, �, �)

� �
h�G

P(ln � x | h, si, �, �, �)P(h | s�n	1, �ln	1, G, D��, �, �, �).

(19)

Intuitively, participants’ distribution of guesses at ln is given by
the probability of ln given each hypothesis h, times the probability
that h is correct according to all previously labeled data.

The second term in Equation (17) is the prior on parameters. We
choose these priors to have a very simple form: D�� is chosen
according to a gamma (1, 2) prior and the priors on �, 	, and � are
taken to be uniform. In practice, the amount of data the model is
fit to makes these priors largely irrelevant.

Together, these parts of Equation (17) specify a probabilistic
data analysis model that allows us to use the learning model to
infer a distribution on unknown parameters that characterize the
grammar and the likelihood. Until this point, we have presented
this model as though there is only one concept and list; this was for
notational convenience since otherwise all variables would have to
be indexed by a concept (and potentially a list). The main param-
eters of interest—D��, �, �, 	, and most importantly G—are
psychological variables that are true across concepts. Most of the
power of our analysis comes from finding parameters that work for
a wide variety of concepts. So in reality, (18) involves a product
over concepts.4

4 And so s�n and �ln must also be indexed by concept and list correspond-
ingly.

(Appendices continue)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

28 PIANTADOSI, TENENBAUM, AND GOODMAN



Appendix C

Formal Description of Alternative Models

Here we describe several additional models compared in the
Results sections:

Uniform

This model assigns all hypotheses a uniform prior:

P(h) � 1. (20)

This prior is also improper and is an interesting baseline that
corresponds to no substantive expectations about the form of
concepts.

Response-Biased

This model corresponds to a simple response-biased model
which uses labeled data to do inference over the proportion of time
the hypothesis is true. This can be interpreted as a special repre-
sentation language where there are only two possible expressions:
one that is always true and one that is always false.

Logistic

This model provides another baseline which fits a logistic learn-
ing curve within each concept. This model therefore has no inter-
esting representational capacities or predictive abilities, but com-
parison to it reveals the degree to which LOT models can surpass
how a statistician or psychophysicist might model performance in
this task.

Exemplar

This is an exemplar model on the set-based stimuli. It is difficult
to know exactly how exemplar models might be applied to sets of

objects, since such models are generally stated in terms of simi-
larity of object features, not similarities of collections of objects.
Here, we begin by defining an object-wise distance metric:

d(x, y) � shape(x)�shape(y) · Wshape


 color(x)�color(y) · Wcolor


 size(x)�size(y) · Wsize,

where shape, color, and size are functions that map objects to their
shapes, colors, and sizes, and Wshape, Wcolor, and Wsize are free
parameters. Given two sets, we can then consider all possible ways
of aligning their objects. This is necessary because if the next set
is similar to a previously observed set, we need to know how
objects in the current set correspond to objects in the previous one.
Since their orders may change, this can only be accomplished by
finding an alignment between the sets. For convenience, let
d�(sj,sk) be the total distance according to d of the best alignment
of elements of sets sj and sk. If the sets are different sizes, then
some elements may be dropped. Then we define a distance metric
on sets by

D (sj, sk) � abs ( |sj| 	 |sk| ) · Wlength 
 d*(sj, sk). (21)

Intuitively, this says that sets are penalized Wlength for differ-
ences in cardinality, and then according to the distance of their
elements in the best alignment via d(x, y). D is used to define the
probability of generalizing labels from a previously labeled sj to
the next set, sn, according to the best alignment between the two.
This log probability is proportional to

	�n	j
1 · log D(sj, sn). (22)

Like the Bayesian models, this includes a power law memory-
decay parameter, 	.

(Appendices continue)
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Appendix D

Posterior Parameter Fits

Figures D1 and D2 show posterior HPD intervals for the
grammar parameters of each model, giving the estimate for how
likely each primitive operation is to be used in people’s con-

ceptual representations. The values can be interpreted as prob-
abilities by re-normalizing the values in each row (e.g. all
BOOL to . . . rows).

Figure D1. Posterior parameter ranges for each Boolean model. Dots show medians and error bars show
posterior 95% quantiles.

(Appendices continue)
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Figure D2. Posterior parameter ranges for each language. The x-labels give which primitives are included in
each language (FOL � first order logic; OOF � one or fewer; SMC � small cardinalities; 2OQ � second order
quantifiers).
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Appendix E

The Inferred Boolean Grammar

A more detailed picture of the grammars inferred from the
experimental results is shown in Figure E1. This shows the D��

parameters found by the data analysis model for FULLBOOLEAN.
The red points correspond to MAP estimates of the parameters,
and the intervals are highest-posterior density ranges, using the
Chen and Shao (1999) algorithm from the R package boa (Smith,
2007). These numbers can, roughly, be interpreted by re-
normalizing for each nonterminal type to yield a PCFG. Thus,
COLOR expands to yellow? and green? with approximately equal
probability. blue? is much more salient—it is more likely to be
used in a concept. Similarly, for SHAPE expansions, participants
are roughly twice as likely to expand to circle? as the others,
indicating a bias in the prior for concepts using circular shapes.

The (unnormalized) magnitude of these numbers shows the role of
reuse in an expression: roughly, each time a rule is used in creating
an expression, its parameter value is increased by 1 for later
expansions in the same expression, and the nonterminals are renor-
malized. For example, F is equally likely to expand to a SIZE,
SHAPE or COLOR since all of these have equal magnitudes
(� 2.0). Roughly, once F is expanded one way once—say to
SHAPE—in an expression, SHAPE is preferentially re-used with
probability (2.0 � 1)/(2.0 � 1 � 2.0 � 2.0) � 0.43 next time a F
expansion is followed. Here, since SHAPE was used once, 1 has
been added to its initially unnormalized probability of 2.0, and the
expansions renormalized. Thus, as the magnitude of these param-
eters gets large, reuse of rules is less preferred; the general low
values of these parameters indicate that reuse is likely preferred by
learners, consistent with Goodman et al. (2008a).

Figure E1 reveals several interesting trends. First, the START
symbol is expanded with very high probability to an expression
involving BOOL instead of true or false hypotheses, indicating a
prior bias against truth-functionally trivial expressions. Plausibly,
SIZE is preferentially expanded to the most salient sizes, size3?
and size1?. Not surprisingly, this grammar assigns substantial
probability to iff, the primitive that only the top two grammars,
FULLBOOLEAN and BICONDITIONAL include. Lower probability is
assigned to implies. However, implies is not zero probability—
otherwise these probabilities for FULLBOOLEAN would essentially
yield the grammar BICONDITIONAL. The MAP probability of implies
is about 0.001, so use of implies would yield a prior about 7 log
points lower, requiring getting 10 to 15 additional example objects
(not sets) correct throughout the experiment for typical values of �.
Said another way, this difference in the prior could easily be
overcome in the likelihood with just a handful of examples; this is
why FULLBOOLEAN can outperform BICONDITIONAL despite the fact
that the only primitive FULLBOOLEAN additionally has (implies) is
low probability.

Examination of grammars for CNF and DNF reveal trends of
some preference for re-use, especially of feature primitives. These
grammars also tend to set probabilities to generate primarily con-
junctive concepts, rather than disjunctive concepts, leading to a
stronger prior conjunction bias than FULLBOOLEAN; this may be a
hallmark of over-fitting, potentially explaining why CNF and DNF
performed better on training data but trended worse on held-out
data.

It is important to note that the prior on these parameters was
Gamma (2, 1), which means that if the data was not informative
about the parameter values, we could expect them to be approxi-
mately 1 with a variance of 1. Thus, values that are far from 1
represent parameters that have changed from the prior in order to
better explain the data. Values near 1 with a different variance (e.g.
AND) may have a true value close to 1 and the data has increased
our confidence relative to the prior in this value.

(Appendices continue)

Figure E1. Posterior parameters D�� found by the inference algorithm for
the FULLBOOLEAN grammar. The red (gray) dots are MAP grammar pa-
rameters and the intervals are 95% HPD intervals computed using the Chen
and Shao (1999) algorithm. See the online article for the color version of
this figure.
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Appendix F

The Inferred Full Grammar

A better understanding of the grammar that is inferred with
quantifiers is provided by the probabilistic version for the grammar
that is parameterized by D��. As with the Boolean grammar, the
relative size of each of these parameters characterizes the proba-

bility of using each primitive, and the magnitude of these values
inversely relates to the degree that reuse is preferred. Values far
from the Gamma (2, 1) prior (with mean 1 and variance 1) should
be interpreted as values that the experimental data is highly infor-
mative about.

Figure F1 shows the D�� parameters for the full data set and
illustrates similar patterns to Figure E1: for instance, size2? is a
low-probability operation, F is about equally likely to expand to
SIZE, SHAPE and COLOR. Unlike the Boolean results, this shows
that and is higher probability than or, agreeing with concept
learning asymmetries between conjunctive and disjunctive con-
cepts.

Most interestingly, however, are the probabilities assigned to
the more complex primitives. For instance, the quantifiers exists
and forall are given relatively low probability, and the low
magnitude of all expansions of BOOL in general indicate a
stronger preference for reuse. The relational terms in LAMBDA-
AND-RELATIONAL vary substantially in probability, indicating
preferences to compare equality of shapes, colors, and objects,
not sizes. As with implies in the FULLBOOLEAN above, the
primitive exists-one-or-fewer is given a MAP probability of
0.013, which is low in the prior, but easily overcome with a few
examples, allowing it to improve model fit. Additionally, SETs
are more likely to be expanded to (non-Xes S) than S, indicating
that quantification tends to occur over all other objects in the
set; this makes it more natural to express concepts such as exists
another object with the same color and less natural to express
everything iff there is a triangle in the set, concepts which
people find easy and hard respectively.
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Figure F1. Posterior parameters D�� found by the inference algorithm for
the best grammar in Figure 4, including only FOL operations. The red
(gray) dots are MAP grammar parameters and the intervals are 95% HPD
intervals computed using the Chen and Shao (1999) algorithm. See the
online article for the color version of this figure.
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