
The computational origin of

representation and conceptual change

Steven T. Piantadosi

June 3, 2019

Abstract

Each of our theories of mental representation provides some insight into how the mind works. How-
ever, these insights often seem incompatible, as the debates between symbolic, dynamical, emergentist,
sub-symbolic, grounded, and rational approaches to cognition attest. Mental representations—whatever
they are—must share many features with each of our theories of representation, and yet there are few
hypotheses about how a synthesis could be possible. Here, I develop a theory of the underpinnings of
symbolic cognition that shows how sub-symbolic dynamics may give rise to higher-level cognitive rep-
resentations of structures, systems of knowledge, and algorithmic processes. This theory implements a
version of conceptual role semantics by positing an internal universal language for isomorphism in which
learners may create mental models with arbitrary dynamics. The theory formalizes one account of how
novel conceptual content may arise, allowing us to explain how even elementary logical and computational
operations may be learned. I provide an implementation that learns to represent a variety of structures,
including logic, number, kinship trees, regular languages, context-free languages, domains of theories
like magnetism, dominance hierarchies, list structures, quantification, and computational primitives like
repetition, reversal, and recursion. The account is based on simple discrete dynamical processes that
could be implemented in a variety of different physical or biological systems. In particular, I describe
how the required dynamics can be directly implemented in an existing connectionist framework. The re-
sulting theory provides an “assembly language” for cognition, where high-level theories of representation,
computation, and conceptual change can be translated into simple underlying dynamics.

1

1 Introduction

At the core of cognitive science is an embarrassing truth: we do not know what mental representations
are like. Many ideas have been developed, from the field’s origins in symbolic AI (Newell & Simon, 1976),
to parallel and distributed representations of connectionism (Rumelhart & McClelland, 1986; Smolensky &
Legendre, 2006), embodied theories that emphasize the grounded nature of the mental (Barsalou, 2008, 2010),
Bayesian accounts of structure learning and inference (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010;
Tenenbaum, Kemp, Griffiths, & Goodman, 2011), theories of cognitive architecture (Newell, 1994; Anderson,
Matessa, & Lebiere, 1997; Anderson et al., 2004), and those based on mental models, simulation (Craik,
1967; Johnson-Laird, 1983; Battaglia, Hamrick, & Tenenbaum, 2013), or analogy (Gentner & Stevens,
1983). These research programs have developed in concert with foundational debates in the philosophy of
mind about what kinds of things concepts may be (Margolis & Laurence, 1999), with similarly diverse and
seemingly incompatible answers.

This paper develops a cognitive framework that attempts to unify a variety of ideas about how mental
representations may work. I argue that what is needed is an intermediate bridging theory that lives below
the level of symbols and above the level of neurons or neural network nodes. The formalism I present
shows how it is possible to implement high-level symbolic constructs permitting arbitrary (Turing-complete)
computation in a system that is simple, parallelizable, and addresses foundational questions about meaning.
Although the particular instantiation I describe is an extreme simplification, its general principles, I’ll argue,
are likely to be close to the truth.

The theory I describe is a little unusual in that it is built almost exclusively out ideas that have been
independently developed in multiple subfields of cognitive science. The logical formalism comes from math-
ematical logic and computer science in the early 1900s. The philosophical and conceptual framework has
been well-articulated in prior debates. The inferential theory builds on work in theoretical AI and Bayesian
cognitive science. The overall goal of finding symbolic cognition below the level of symbols comes from
connectionism and other sub-symbolic accounts. An emphasis on the importance of getting symbols eventu-
ally comes from the remarkable properties of human language, as well as centuries of thought in philosophy
and mathematics about what kinds of formal systems may capture thought. What is new is the unification
of these ideas into a framework that can be shown to learn complex symbolic processes and representa-
tions that are grounded in simple underlying dynamics without dodging key questions about meaning and
representation.

The resulting theory formulates hypotheses about how fundamental conceptual change can occur, both
computationally and philosophically. A pressing mystery is how children might start with their initial
knowledge and come to develop rich and sophisticated systems of representation. The problem is deepest
when we consider simple logical capacities—for instance, the ability to represent boolean values, compute
syllogisms, follow logical/deductive rules, use number, or process conditionals and quantifiers. If infants do
not have some of these abilities, we are in need of a learning theory that can explain where such computational
processes might come from. Yet, it is hard to imagine how a computational system that does not know these
could function. From what starting point could learners possibly construct Boolean logic, for instance? Is
it possible to compute and not know logic or number? The answer provided in this paper is emphatically
yes—computation is possible without any explicit form of these operations, and learning systems can be
made that construct and test these logical systems as hypotheses. Conceptual change and representational
learning is possible, from the very basics of computation to our most sophisticated logical and algorithmic
representations. The goal of this paper is describe one way it is possible.

The paper is organized as follows: In the next section, I describe a leading example of symbolic cognitive
science, Fodor’s Language of Thought (LOT) theory (Fodor, 1975, 2008). The LOT motivates the need for
structured, compositional representations, but leaves at its core unanswered questions about how the symbols
in these representations come to have meaning. I then discuss conceptual role semantics (CRS) as an account
of how meaningful symbols may arise. The problem with CRS is that it has no implementations, leaving its
actual mechanics vague and unspecified. To develop a formal version of CRS, I describe combinatory logic,
and a key operation in it, Church encoding, which permits one modeling of one system (e.g. world) within
another (e.g. a mental logic). I then address the question of learning these representations, drawing on
work in theoretical artificial intelligence. The inferential technique allows learners to acquire representations
of arbitrary computational complexity yet avoid the primary difficulty that faces learners who operate on

2

spaces of computations, the halting problem. Providing a GPL-licensed implementation of the inference
scheme, I then demonstrate how learners could acquire a large variety of mental representations found across
human and non-human cognition. In each of these cases, the core symbolic aspect of representation is built
out only out of extraordinarily simple and mechanistic dynamics from which the meanings emerge in an
interconnected system of concepts. I argue that whatever mental representations are, they must be like
these kinds of objects, where symbolic meanings for algorithms, structures, and relations arise out of the
sub-symbolic dynamics that implement these processes. I then describe how the system can be implemented
straightforwardly in existing connectionist frameworks, and discuss broader philosophical implications.

1.1 Representation in the Language of Thought

There is a lot going for the theory that human cognition uses, among other things, a structured symbolic
system of representation analogous to language. The idea that something like a mental logic describes key
cognitive processes dates back at least to Boole (1854), who described his logic as capturing “the laws of
thought” and Gottfried Leibniz, who tried to systematize knowledge and reasoning in his own universal
formal language, the Characteristica Universalis. As a psychological theory, the LOT reached prominence
through the works of Jerry Fodor who argues for a compositional system of mental representation that is
analogous to human language called a Language of Thought (LOT) (Fodor, 1975, 2008). The LOT has
had numerous incarnations throughout the history of AI and cognitive science (Newell & Simon, 1976;
Penn, Holyoak, & Povinelli, 2008; Fodor, 2008; Kemp, 2012; Goodman, Tenenbaum, & Gerstenberg, 2015;
Piantadosi, Tenenbaum, & Goodman, 2016). Most recent versions focus on combining language-like—or
program-like—representations with Bayesian probabilistic inference to model concept induction in empirical
tasks (Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Goodman, Mansinghka, Roy, Bonawitz, & Tenen-
baum, 2008; Yildirim & Jacobs, 2013; Erdogan, Yildirim, & Jacobs, 2015; Goodman et al., 2015; Piantadosi
& Jacobs, 2016; Rothe, Lake, & Gureckis, 2017; Lake, Salakhutdinov, & Tenenbaum, 2015; Overlan, Jacobs,
& Piantadosi, 2017). If mentalese is like a program, its primitives are humans’ most basic mental operations,
a view of conceptual representation that has roots and branches in psychology and computer science. Miller
and Johnson-Laird (1976) developed a theory of language understanding based on structured, program-like
representations. More modern incarnations of conceptual representations can be found in programming
languages like Church that aim to capture phenomena like the gradience of concepts through a semantics
centered on probability and conditioning (Goodman, Mansinghka, et al., 2008; Goodman et al., 2015). In
computer science, the program metaphor has been applied in computational semantics under the name pro-
cedural semantics, in which representations of linguistic meaning are taken to be programs that compute
something about the meaning of the sentence (Woods, 1968; Davies & Isard, 1972; Johnson-Laird, 1977;
Woods, 1981). For instance, the meaning of “How many US presidents have had a first name starting with
the letter ‘T’?” might be captured by a program that searches for an answer to this question in a database.
This approach has been elaborated in a variety of modern machine learning models, many of which draw
on logical tools closely akin to the LOT (e.g Zettlemoyer & Collins, 2005; Wong & Mooney, 2007; Liang,
Jordan, & Klein, 2010; Kwiatkowski, Zettlemoyer, Goldwater, & Steedman, 2010; Kwiatkowski, Goldwater,
Zettlemoyer, & Steedman, 2012). Sophisticated AI theories of how knowledge and inference in domains like
objects, beliefs, physical reasoning, and time also draw on logical representations mirroring psychological
theorizing about the LOT (Davis, 1990).

A LOT would explain some of the richness of human thinking by positing a combinatorial capacity
through which a small set of built in cognitive operations can be combined to express new concepts. For
instance, in the word learning model of Siskind (1996) the meaning of the word “lift” might be captured as

lift(x,y) = CAUSE(x,GO(y,UP))

where CAUSE, GO and UP are simpler conceptual representations—possibly innate—that are composed to
express a new word meaning. This compositionality allows theories to posit relatively little innate content,
with the heavy lifting of conceptual development accomplished by combining existing operations productively
in new ways. To discover what composition is “best” to explain their observed data, learners may engage
in hypothesis testing or Bayesian inference (Siskind, 1996; Goodman, Tenenbaum, et al., 2008; Piantadosi,
Tenenbaum, & Goodman, 2012; Ullman, Goodman, & Tenenbaum, 2012; Mollica & Piantadosi, 2015). The
content that a LOT assumes is distinctly symbolic, can be used to generate fundamentally new thoughts, and

3

obeys systematic patterns made explicit in the symbol structures. For example, it would be impossible to
think that x was lifted without also thinking that x was caused to go up. Such compositionality, productivity,
and systematicity have been argued to be desirable features of cognitive theories (Fodor & Pylyshyn, 1988),
one argued to be lacking in connectionism (for ensuing discussion, see Smolensky, 1988, 1989; Chater &
Oaksford, 1990; Fodor & McLaughlin, 1990; Chalmers, 1990; Van Gelder, 1990; Aydede, 1997; Fodor, 1997;
Jackendoff, 2002; Van Der Velde & De Kamps, 2006).

However, work on the LOT as a psychological theory has progressed despite a serious problem lurking
at its foundation: how is it that symbols themselves come to have meaning? It is far from obvious what
would make a symbol GO mean go and CAUSE mean cause. This is especially troublesome when we recognize
that even ordinary concepts like these are notoriously difficult to formalize, perhaps even lacking definitions
(Fodor, 1975). Certainly there is nothing inherent in the symbol (the G and the O) itself that give it this
meaning; in some cases the symbols don’t even refer to anything external which could ground their meaning
either, as is the case for most function words in language (e.g. “for”, “too”, “seven”). This problem appears
even more pernicious when we consider how what meanings might be to a physical brain. If we look at
neural spike trains, for instance, how would we find a meaning like CAUSE?

1.2 Meaning through conceptual role

The framework developed here builds off an approach to meaning in philosophy of mind and language
known as conceptual role semantics (CRS) (Field, 1977; Loar, 1982; Block, 1987; Harman, 1987; Block,
1997; Greenberg & Harman, 2005). CRS which holds that mental tokens get their meaning through their
relationship with other symbols, operations, and uses, an idea dating back at least to Newell and Simon
(1976). There is nothing inherently disjunctive about your mental representation of the mental operation OR.
What distinguishes it from AND is that the two interact differently with other mental tokens, in particular TRUE
and FALSE. The idea extends to more ordinary concepts: a concept of an “accordion” might be inherently
about its role in a greater conceptual system, perhaps inseparable from the inferences it licenses about the
player, its means of producing sound, its likely origin, etc. An example from Block (1987) is that of learning
the system of concepts involved in physics:

One way to see what the CRS approach comes to is to reflect on how one learned the concepts of
elementary physics, or anyway, how I did. When I took my first physics course, I was confronted
with quite a bit of new terminology all at once: ‘energy’, ‘momentum’, ‘acceleration’, ‘mass’, and
the like. ... I never learned any definitions of these new terms in terms I already knew. Rather,
what I learned was how to use the new terminology—I learned certain relations among the new
terms themselves (e.g., the relation between force and mass, neither of which can be defined in
old terms), some relations between the new terms and the old terms, and, most importantly, how
to generate the right numbers in answers to questions posed in the new terminology.

Indeed, almost everyone would be hard-pressed to define a term like “force” in any rigorous way, other than
appealing to other terminology like “mass” and “acceleration” (e.g., f = m ·a). This emphasis on the role of
concepts in systems of other concepts leads CRS to be closely related to the Theory Theory in development
(see Brigandt, 2004) as well work in psychology emphasizing the role of entire systems of knowledge—
theories—in conceptualization, categorization, and cognitive development (Carey, 1985; Murphy & Medin,
1985; Wellman & Gelman, 1992; Wisniewski & Medin, 1994; Gopnik & Meltzoff, 1997; Kemp, Tenenbaum,
Griffiths, Yamada, & Ueda, 2006; Tenenbaum, Griffiths, & Kemp, 2006; Tenenbaum, Kemp, & Shafto,
2007; Carey, 2009; Kemp, Tenenbaum, Niyogi, & Griffiths, 2010; Ullman et al., 2012; Bonawitz, Schijndel,
Friel, & Schulz, 2012; Gopnik & Wellman, 2012). This literature has aimed to empirically explore and
computationally model the way in which people learn and use systems of knowledge. These results generally
show that the use and acquisition of concepts cannot be studied in isolation—our inferences depend not only
on simple perceptual factors, but the way in which our internal systems of knowledge interrelate.

Block (1987) further argues that CRS satisfies several key desiderata for a theory of mental representation,
including its ability to handle truth, reference, meaning, compositionality, and the relativity of meaning.
Some authors focus on the inferential role of concepts, meaning the way in which they can be used to
discover new knowledge. For instance, the concept of conjunction AND is defined by its ability to permit use
of the “elimination rule” P&Q → P (Sellars, 1963). Here I will use the term CRS in a general way, but

4

my implementation will make the specific meaning unambiguous later. In the version of CRS I describe,
concepts will be associated with some, but perhaps not all, of these inferential roles, and some other relations
that are less obviously inferential.

The view that concepts are defined in terms of their relationships to other concepts has close connections
to accounts of meaning given in early theories of intelligence (Newell & Simon, 1976), as well as implicit
assumptions of computer science. Operations in a computer only come to have meaning in virtue of how they
interact with the architecture, memory, and other instructions. For example, nearly all computers represent
negative numbers with a twos’ complement where a number can be negated by swapping the 1s and 0s and
adding 1. For instance, in a five-bit processor, we might represent 5 as 00101 and −5 as 11010 + 1 = 11011.
Then, −5 plus one 00001 is 11011+00001 = 11100, which is the representation for −4. This representation is
just convention, and equally valid systems have been considered throughout the history of computer science,
including using the first bit to represent sign. However, changing the representation of sign would require
different algorithms for subtraction and sign changes. This illustrates that the meaning of a representation
can only be understood by seeing how it interacts with the other operations.

The primary shortcoming of conceptual role theories as a cognitive account is that they lack a computa-
tional backbone, leaving vagueness about what a “role” might be. When we say that a symbol or a concept
gets its meaning from its conceptual role, we must specify what that corresponds to mechanistically and com-
putationally. The lack of computational implementation has given rise to a variety of philosophical debates
about what is possible for CRS, but as I argue, at least some of these issues become less problematic once
we consider a concrete implementation. The lack of implementations also means that it is difficult to make
progress on experimental psychology probing the particular representations and processes of a CRS because
there are few ideas about what, formally, a role might be. Addressing this shortcoming is the primary goal
of this paper.

1.3 Isomorphism and representation

Any CRS theory will have to start by saying which mental representations we create and why. Here, it will
be assumed that the mental representations we construct are likely to correspond to evolutionarily relevant
structures, relations, and dynamics present in the real world.1 This notion of correspondence between mental
representations and the world can be captured with the mathematical idea of isomorphism. Roughly, systems
X and Y are isomorphic if operations in X do “the same thing” as the corresponding operations in Y and
vice versa. For instance, the ticking of a second hand is isomorphic to the ticking of an hour hand: both
take 60 steps and then loop around to the beginning. How one state leads to the next is “the same” even
though the details are different since one ticks every second and the other every minute. Scientific theories
form isomorphisms in that they attempt to construct formal systems which capture the key dynamics of
the system under study. A simple case to have in mind in science is Newton’s laws of gravity, where the
behavior of a real physical object is captured by constructing an isomorphism into vectors of real numbers,
which themselves represent position, velocity, etc. The dynamics of updating these numbers with Newton’s
equations is the same as updating the real objects.

The notion of isomorphism, or internal models of the world, lies at the heart of many theories of mental
representation (McNamee & Wolpert, 2019; Gallistel, 1998; Shepard & Chipman, 1970; Hummel & Holyoak,
1997). Shepard and Chipman (1970) emphasized that while mental representations need not be structurally
similar to what they represent, the relationships between internal representations must be “parallel” to the
relationships between the real world objects, a pre-cursor to CRS. Gallistel (1998) writes,

A mental representation is a functioning isomorphism between a set of processes in the brain
and a behaviorally important aspect of the world. This way of defining a representation is taken
directly from the mathematical definition of a representation. To establish a representation in
mathematics is to establish an isomorphism (formal correspondence) between two systems of
mathematical investigation (for example, between geometry and algebra) that permits one to use
one system to establish truths about the other (as in analytic geometry, where algebraic methods
are used to prove geometric theorems).

1Although this notion is controversial—see Hoffman, Singh, and Prakash (2015) and the ensuing commentary.

5

Figure 1: Learners observe relations in the world, like the successor relationship between seasons. Their goal
is to create an internal mental representation which obeys the same dynamics. This is achieved by mapping
each observed token to a simple expression written in a universal mental language whose constructs/concepts
specify interactions between elements. This system uses a logic for function compositions that is capable of
universal computation.

In this case, mental representations could be used to establish truths about the world without having to
alter the world. However, the notion of isomorphism is also deeply connected to the ability of the brain to
usefully interact with the world. Conant and Ashby (1970) show that if a system X (e.g. the brain) wishes
to control the dynamics of another system Y (e.g. the world), and X does so well (in a precise, information-
theoretic sense), then X must have an isomorphism of Y (see Scholten, 2010). This theorem developed out of
cybernetics and control theory and is not well-known in cognitive science and neuroscience. Yet, the authors
recognized its relevance, noting that the theorem “has the interesting corollary that the living brain, so far
as it is to be successful and efficient as a regulator for survival, must proceed, in learning, by the formation
of a model (or models) of its environment.”2 The centrality of isomorphism in mental representation fits
well with CRS since both emphasize that what matters is the relationship between internal states, not the
specific objects used in the representation.

But what is mysterious about the brain is that we are able to encode a staggering array of different
isomorphisms—from language, to social reasoning, physics, logical deduction, artistic expression, causal
understanding, meta-cognition. Such breadth suggests that our conceptual system can support essentially
any computation or construct any isomorphism. Moreover, essentially none of this knowledge could possibly
be innate because it is so clearly driven by the right set of experiences. Yet, the question of how systems
might encode, process, and learn isomorphisms—and CRS systems—in general has barely been addressed
in cognitive science. Indeed, work on the LOT has typically made ad-hoc choices about what primitives
should be considered in hypotheses in any given context, thus failing to provide a demonstrably generalized
theory of learning that takes the breadth of human cognition seriously. The representational system below
develops a universal framework for isomorphism, a mental system in which we can construct, in principle,
a representation of anything else. Unsurprisingly, the existence of such a formalism is closely connected to
the existence of universal computation.

1.4 The general theory

We are now ready to put together some pieces. The overall setup is illustrated in Figure 1. We assume that
learners observe a structure in the world. In this case, the learner sees the circular structure of the seasons,
where the successor (succ) of spring is summer, the successor of summer is fall, etc. Learners are assumed
to have access to this relational information between tokens shown on the left. Their job is to internalize

2I’ll conjecture that their proof could be reworked to show that a system which is capable of optimally predicting another
also must contain an isomorphism since prediction intuitively seems to take as much knowledge as control.

6

(mentally represent) each symbol and relation by mapping symbols to expression in their LOT that obey
the right relations, as shown on the right. The mapping will effectively construct an internal isomorphism
of the observations, written in the language of mentalese.

A little more concretely, the relations in Figure 1 might be captured with the following facts,

(succ winter) → spring
(succ spring) → summer
(succ summer) → fall
(succ fall) → winter

Here, I have written the relations as functions, where for instance the first line means that succ is a function
applied to winter, that returns the value spring. To represent these, we must map each of these symbols
to a mental LOT expression that obeys the same relational structure. So, if succ, winter, and spring get
mapped to mental representations ψsucc, ψwinter, and ψspring respectively, then the first fact means that

(ψsucc ψwinter) → ψspring

also holds. Though this statement looks simple, it actually involves some subtlety. It says that whatever
internal representation succ gets mapped to, this representation must also be able to be used internally as
a function. The return value when this mental function is evaluated on ψwinter has to be the same as how
spring is represented mentally. Each token participates in several roles and must simultaneously yield the
correct answer in each, providing a full mental isomorphism of the observed relations.

One might immediately ask why we need anything other than the facts—isn’t it enough to know that
(succ spring) → winter in that purely symbolic form? For instance, a Prolog program might encode the
relations (e.g. ψspring is a symbol “SPRING”) and look up facts in a database. It could even be able to answer
questions like “The successor of which season is spring?” by compiling these questions into the appropriate
database query. Of course, if this worked well, good old fashioned AI would have yielded striking successes.
Unfortunately, several limitations of such purely symbolic encoding are clear. First, it is not apparent
how looked-up symbols get their meaning, a version of the problem highlighted by Searle (1980)’s Chinese
Room. It is not enough to know these symbolic relationships; what matters is the semantic content that
they correspond to—cognitive science needs a real theory of meaning. Second, architectures for processing
symbols seem decidedly unbiological, and the problem of how these symbols may be grounded in a biological
system has plagued theories of representation and meaning. Instead, what is needed is a marriage of rules,
inference, and abstraction that can be biologically grounded. Third, in many of the cases I’ll consider, what
matters is not the symbols themselves, but the computations they correspond to. For instance, we might
consider a case of a simple algorithm like repetition. Your internal concept of repetition must include
more than the symbol—it must also encode the process. But what mental representation could encode the
general process of repetition? Fourth, our cognitive systems must go beyond memorization of facts—we are
able to generalize beyond what we have observed, extracting regularities and abstract rules. What might
representations be like such that they can allow us to deduce more than what we’ve already seen? Each
of these four goals—meaning, implementation, computation, and induction—can be met with the logical
system described below.

The core hypothesis developed in this paper is that the symbols like succ and winter get mapped to LOT
expressions that correspond only to computational or dynamical objects. Thus, ψsucc is a small dynami-
cal/computational object that, when applied (through function composition) to ψwinter gives us back ψspring

as the return value of the computation. These meanings are specified in a language of pure computational
dynamics, absent any additional primitives or meanings. This is shown with the minimalist set of primitives
in Figure 1, where each token is mapped to some structure built of S and K and whose meaning are purely
dynamical (and discussed below). Symbols like spring come to have meaning as CRS supposes, by virtue
of how they act on other symbols. With the appropriate mapping, learners are able to derive new facts by
applying their internal expressions to each other in novel ways. As I show, this can give rise to rich systems
of knowledge that span classes of computations and permit learners to extend a few simple observations into
the domain of richer cognitive theories.

7

2 Combinatory logic as a language for universal isomorphism

A mathematical system known as combinatory logic provides the formal tool we’ll use to construct a universal
isomorphism language as a hypothesis about how mentalese may work. Combinatory logic was developed in
the early- and mid-1900s in order to allow logicians to work with expressions that did not require variables like
“x” and “y” yet had the same expressive power (Hindley & Seldin, 1986). In cognitive research, combinatory
logic is primarily seen in formal theories of natural language semantics (Steedman, 2001; Jacobson, 1999),
although its relevance has also been argued in other domains like motor planning (Steedman, 2002). The use
of combinatory logic as a representational substrate, moreover, fits with the idea that tree-like structures are
fundamental to human-like thinking, as in Fitch (2014)’s dendrophilia. More broadly, combinatory logic’s
general usefulness is demonstrated by the fact that it was invented at least three independent times by
mathematicians, including Moses Schönfinkel, John von Neumann, and Haskell Curry (Cardone & Hindley,
2006). The main advantages of combinatory logic are its simplicity (allowing us to posit very minimal built-in
machinery) and its power (allowing us to model symbols, structures, and relations).

This first section will illustrate how combinatory logic can write down a simple function. This illustrates
only some of its basic properties, such as its simplicity (involving only two primitives), its ability to handle
variables, and its ability to express arbitrary compositions of operations. The more powerful view of combi-
natory logic comes later, where it is shown how we may use combinatory logic to create a system which is
isomorphic to any other computational process using a technique known as Church encoding.

One warning—the next two sections are central to understanding the formalism used in the remainder
of the paper. They illustrate how combinatory logic functions, and how it works to encode other conceptual
systems, and this is the basis of the representational theory worked out later.

2.1 A very brief introduction to combinatory logic

To illustrate the basics of combinatory logic, consider the simple function definition,

f(x) = x+ 1. (1)

The challenge with expressions like (1) is that the use of a variable x adds bookkeeping to a computational
system because one has to keep track of what variables are allowed where. Compare (1) to a function of two
variables g(x, y) = When we define f, we are permitted to use x. When we define g, we are permitted
to use both x and y. But when we define f, it would be nonsensical to use y, assuming y is not defined
elsewhere. Analogously in a programming language—or cognitive/logical theories that look like programs—
we can only use variables that are defined in the appropriate context (scope). The syntax of what symbols
are allowed changes in different places in a representation.3 What logician Moses Schönfinkel discovered was
that this situation could be avoided by using combinators to glue together the primitive components +, and
1 without ever explicitly creating a variable x. A combinator is a higher-order function (a function whose
arguments are functions) that, in this case, routes arguments to the correct places. For instance using := to
denote a definition, let

f := (S + (K 1))

define f in terms of other functions S and K, in addition to the operator + and the number 1. Notably there
is no x in the above expression for f, even though f does take an argument. The functions S&K are just
symbols, and when they are evaluated, they have very simple definitions:

(K x y) → x
(S x y z) → ((x z) (y z))

Here, the arrow (→) indicates a process of evaluation, or moving one step forward in the computation. The
combinator K takes two arguments x and y and ignores y, a constant (k) function. S is a function of three
arguments, x, y, and z, that essentially passes z to each of x and y before composing the two results.4 In

3In combinatory logic’s rival, lambda calculus (Church, 1936), much formal machinery is spent ensuring that variable names
are distinct and only used in the appropriate places, and that substitution does not incorrectly handle variable names.

4In other notation, S could be defined as S(x, y, z) := x(z, y(z)).

8

this notation, if a function does not have enough arguments it may take the next one in line. For instance
in ((K x) y) the K only has one argument. But it can grab the y as its second argument, meaning that
computation proceeds,

((K x) y) → (K x y) → x

Doing so must respect the grouping of terms, so that ((K x)(y z)) becomes (K x (y z)). This capacity to
take the next argument is known in logic as currying, although Curry attributed it to Schönfinkel, and it was
more likely first invented by Frege (Cardone & Hindley, 2006). Together, S&K and currying define a logical
system that is much more powerful than it first appears.

To see how the combinator definition of f works, we can apply f to an argument. For instance, if we
evaluate f on the number 7, we get can substitute in the definition of f into the expression (f 7):

(f 7) := ((S + (K 1)) 7) ; Definition of f
→ (S + (K 1) 7) ; Currying
→ ((+ 7) ((K 1) 7)) ; Definition of S
→ (+ 7 ((K 1) 7)) ; Currying
→ (+ 7 (K 1 7)) ; Currying
→ (+ 7 1) ; Definition of K

Essentially what has happened is that S&K have shuttled 7 around to the places where x would have appeared.
They have done so merely by their compositional structure and definitions, without ever requiring the
variable x to be written. Schönfinkel—and other independent discoverers of combinatory logic—proved the
non-obvious fact that any function composition could be expressed this way. In other words, compositional
functions like S&K can allow computations to take place without needing variables.

Terminologically, the process of applying the rules of combinatory logic (shown in the gray box just
above) is known as reduction. The question of whether a computation halts is equivalent to whether or
not reduction leads to a normal form in which none of the combinators have enough arguments to continue
reduction.

In terms of computational power, combinatory logic is equivalent to lambda calculus (see Hindley &
Seldin, 1986), both of which are capable of expressing any computation through function composition (Turing,
1937). This means that any typical program (e.g. in Python or C++) can be reduced to a composition of
these combinators. Equivalently, any system that implements these very simple rules for S&K is, potentially,
as powerful as any computer. This is a remarkable result in mathematical logic because it means that
computation can be expressed with the simplest syntax imaginable, compositions of S&K with no extra
variables or syntactic operations. Evaluation is equally simple and requires no special machinery beyond
the ability to perform two tree transformations. This uniformity and simplicity of syntax opens the door for
straightforward implementation in physical or biological systems.

2.2 Church Encoding

The example above uses primitive operations like + and objects like the number 1. It therefore fits well
within the traditional LOT view where mental representations correspond to compositions of intrinsically
meaningful elements. The primary point of this paper, however, is to argue that the right metaphor for
mental representations is not structures like (1) or its combinator version, but rather structures without any
cognitive primitives at all—that is, structures that contain only combinators and no additional operations
(like 1 or +).

The technique behind this is known as Church encoding, and it corresponds to building a structure in
a purely logical system that is isomorphic to another system. The idea is that if symbols and operations
are encoded as pure combinator structures, they may act on each other to produce equivalent algorithms to
those that act on numbers, boolean operators, trees, or any other formal structure. As Pierce (2002) writes,

... suppose we have a program that does some complicated calculation with numbers to yield
a boolean result. If we replace all the numbers and arithmetic operations with [combinator]-
terms representing them and evaluate the program, we will get the same result. Thus, in terms
of their effects on the overall result of programs, there is no observable difference between the
real numbers and their Church-[encoded]numeral representations.

9

A simple, yet philosophically profound, demonstration is to construct a combinator structure that implements
Boolean logic. One possible way to do this is to define

true := (K K)
false := K
and := ((S (S (S S))) (K (K K)))
or := ((S S) (K (K K)))
not := ((S ((S K) S)) (K K))

Defined this way, these combinator structures obey the laws of Boolean logic: (not true) → false, and
(or true false) → true, etc. The meaning of mental symbols like true and not is given entirely in terms
of how these little algorithmic chunks operate on each other. To illustrate, the latter computation would
proceed as

(or true false) = (((S S) (K (K K))) (K K) K) ; Definition of or, true, false
→ (((S S) (K (K K)) (K K)) K) ; Currying rule
→ ((S S (K (K K)) (K K)) K) ; Currying rule twice
→ ((S (K K) ((K (K K)) (K K))) K) ; Definition of S
→ ((S (K K) (K (K K) (K K))) K) ; Currying
→ ((S (K K) (K K)) K) ; Definition of K
→ (S (K K) (K K) K) ; Currying
→ ((K K) K ((K K) K)) ; Definition of S
→ ((K K K) ((K K) K)) ; Currying
→ (K ((K K) K)) ; Definition of K
→ (K (K K K)) ; Currying
→ (K K) ; Definition of K

resulting in an expression which is the same as the one for true! Readers may also verify other relations, like
that (and true true) → true and (or (not false)false) → true, etc.

The Church encoding has essentially tricked S&K’s boring default dynamics into doing something useful,
implementing a theory of simple boolean logic. This is a CRS because the symbols have no intrinsic meaning
beyond that which is specified by their dynamics and interaction. The capacity to do this reflects a more
general idea in dynamical systems—one which is likely central to understanding how minds represent other
systems—which is that sufficiently powerful dynamical systems permit encoding or embedding of other
comptuations (e.g. Sinha & Ditto, 1998; Ditto, Murali, & Sinha, 2008; Lu & Bassett, 2018). Such dynamics
and flexibility of representation is undoubteldy a central feature of what minds fundamentally do.

As shown above, the ability to use S&K to perform useful computations is very general, allowing us to
encode complex data types, operations, and a huge variety of other logical systems. Appendix A sketches
a simple proof of conditions under which combinatory logic is capable of representing any consistent set of
facts or relations, making it truly a universal isomorphism language. It is this combination of generality
and simplicity that makes combinatory logic a desirable language for formalizing notions of computation,
conceptual role, and cognition.

2.3 An inferential theory from the probabilistic LOT

The capacity to represent anything is, of course, not enough. Our cognitive theory must also have the ability
to construct the right particular representations when data is observed. The data that we will consider is
sets of base facts like those shown in Figure 1, (succ winter) → spring, etc. These facts may be viewed
as structured representations of perceptual observations—for instance, the observation that some season
(spring) comes after another (winter). Note, though, that the meanings of these symbols are not specified
by these facts; all we know is that spring (whatever that is) comes after (whatever that is) the season
winter (whatever that is). Apart from any perceptual links, that knowledge is structurally no different from
(father jim) → billy. Because these symbols do not yet have meanings, knowledge of the base facts is
much like knowledge of a placeholder structure (Carey, 2009), or concepts whose meanings yet to be filled
in, even though some of their conceptual role is known.

The goal of the learner is to assign each symbol a combinator structure so that the structures in the base
facts are satisfied. For this one rule (succ winter) → spring we could assign succ := (K S), winter := I

and spring := S since then

(succ winter) := ((K S) I) → (K S I) → S = spring

10

Only some mappings of symbols to strings will be valid. For instance, if spring := I instead, we’d have that

(succ winter) := ((K S) I) → (K S I) → S 6= spring.

The trick is to find a mapping of symbols to combinators that satisfies all of the facts simultaneously.
Such a solution provides an internal model—a Church encoding—whose computational semantics captures
the relations you have observed. Often, the mapping of symbols to combinators will often be required
to be unique, meaning that we can always tell which symbol a combinator structure stands for. Once
symbols are mapped to combinators satisfying the observed base facts, learners or reasoners may derive new
generalizations that go beyond these facts.

The choice of which combinator each symbol should be mapped to is made using ideas about smart ways
of solving the problem of induction. In particular, our approach is motivated in large part by Solomonoff’s
theory of inductive inference, where learners observe data and try to find a concise Turing machine that
describes the data (Solomonoff, 1964a, 1964b). Indeed, human learners prefer to induce hypotheses that
have a shorter description length in logic (Feldman, 2000, 2003a; Goodman, Tenenbaum, et al., 2008),
with simplicity preferences perhaps a governing principle of cognitive systems (Feldman, 2003b; Chater &
Vitányi, 2003). Simplicity-based preferences have been used to structure the priors in standard LOT models
(Goodman, Tenenbaum, et al., 2008; Katz, Goodman, Kersting, Kemp, & Tenenbaum, 2008; Ullman et al.,
2012; Piantadosi et al., 2012; Piantadosi, 2011; Kemp, 2012; Yildirim & Jacobs, 2014; Erdogan et al., 2015),
and has close connections to the idea of minimum description lengths (Grünwald, 2007).

One problem with theories based on description length is that they can easily run into computability
problems: short programs or logical expressions often do not halt computation5 meaning that we may not
be able to even evaluate every given logical hypothesis. A solution is to instead base our preferences on
running time (or evaluation time), for instance assigning a prior to a hypothesis h that is proportional to
2−t(h) where t(h) is the amount of time it takes h to halt evaluation. In combinatory logic, this means that
the amount of time it runs until combinators are in a normal form. This idea has been developed in theories
of artificial intelligence (Levin, 1973, 1984; Schmidhuber, 1995, 2002; Hutter, 2005; Schmidhuber, 2007);
related ideas can be found as a measure of complexity (Bennett, 1995). Running time allows learners to
operate in Turing-complete spaces because expressions that do not halt will have zero (2−∞) probability. As
they run, their probability drops, meaning that they can effectively be pruned out of searches before seeing
whether they eventually halt, a fact that can also be used in Markov-Chain Monte-Carlo techniques like the
Metropolis Hastings algorithm often used in LOT models (Goodman, Tenenbaum, et al., 2008).

Since so much other work has explored the probabilistic details of LOT theories, and I intend to provide
a simple demonstration, I’ll make two simplifying assumptions in this paper. First, I assume that learners
want only the fastest-running combinator string which describes their data (e.g. ignoring the gradience of
fully Bayesian accounts). Second, it will be assumed that only theories that are consistent with the data
are considered. This will therefore assume that leaner’s data is noise-free, although the general inferential
mechanisms can readily be extended to noisy data (see LOT citations above).

2.4 Details of the implementation

The problem of finding a concise mapping of the symbols to combinators that obey these laws is solved
here using a custom Scheme implementation named ChurIso (pronounced like the sausage “chorizo”) and
available under a GPL license6. The implementation was provided with base facts and searched for mappings
from symbols to combinators that satisfies those constraints under the combinator dynamics defined above.
The general idea of finding a formal internal representation satisfying observed relations has close connections
to model theory (Ebbinghaus & Flum, 2005; Libkin, 2013), as well as the solution of constraint satisfaction
problems specified by logical formulas (satisfiability modulo theories) (Davis & Putnam, 1960; Nieuwenhuis,
Oliveras, & Tinelli, 2006). Among all mappings of symbols to combinators that are consistent with the
base facts, those with the fastest running time are preferred. The search is limited by length as well for
computational tractability, but among those found, the fastest-running combinator structure is preferred.

The implementation uses a backtracking algorithm that exhaustively tries pairing symbols and combinator
structures (ordered in terms of increasing description-length complexity), rejecting a partial solution if it

5One simple “non-halting” combinator is (S (S K K)(S K K)(S (S K K)(S K K))).
6https://github.com/piantado/ChurIso

11

is found to violate a constraint. Several optimizations are provided in the implementation. First, the set
of combinators considered for each symbol can be limited to those already in normal form to avoid re-
searching equivalent combinators. Second, the algorithm uses a simple form of constraint propagation in
order to rapidly reject assignments of symbols to combinator strings that would violate a later constraint.
For instance, if a constraint says that (f x) must reduce to y, and f and x are determined, then the resulting
value is pushed as the assignment for y. In order to explore the space, ChurIso also allows us to define and
include other combinators either as base primitives or as structures derived from S&K. The results in this
paper use the search algorithm including several other standard combinators (B, C, I) to increase the search
effectiveness, but each is converted to S&K in evaluating a potential hypothesis.

In a testament to the simplicity and parsimony of combinatory logic, the full implementation requires only
a few hundred lines of code, including algorithms for reading the base facts, searching for constraints, and
evaluating combinator structures. Ediger (2011) provides an independent combinatory logic implementation
that includes several abstraction algorithms and was used to test ChurIso.

3 Applications to cognitive domains

This section presents a number of examples of using the inferential setup to discover combinator structures
for a variety of domains. In each example, I will provide the base facts and then the fastest running
combinator structure (Church encoding of the base facts) that was discovered by ChurIso. The examples
have been chosen to illustrate a variety of different domains that have been emphasized in human and animal
psychology. The first section shows that theories can represent or encode relational structures. The second
examines conceptual structures that involve generalization, meaning that we are primarily interested in how
the combinator structure extends to compute new relations not in set of base facts. In each of these cases, the
generalization fits simple intuitions about and permits derivation of new knowledge in the form of “correct”
predictions about unobserved new structures. The third section look at combinatory logic to represent new
computations in the form of components that could be used in new mental algorithms, and the fourth uses
these computational processes to approximate some formal languages.

3.1 Representation

Table 1 shows five domains with very different structural properties and how they may be represented
with S&K. The middle column shows the base facts that were provided to ChurIso and the right hand column
shows the most efficient combinator structure. The seasons example show a circular system of labeling,
where the successor (succ) of each season loops around in a Mod-4 type of system. The 1, 2, Many concept
where there is similarly a successor, but the successor of any number above two is just the token many, a
counting system found in many languages of the world. Roshambo (also called “Rock, paper, scissors”) is
an interesting case where each object represents a function that operates on each other object, and returns an
outcome in a discrete set (“rock” beats “scissors”, etc.). This game has been studied in primate neuroscience
(Abe & Lee, 2011). This illustrates a type of circular dominance structure, but one which is dependent on
which object is considered the operator (e.g. first in the parentheses) and which is the operand. The family
example shows a case where simple relations like mother and husband can be defined and are functions that
yield the correct individual. Interestingly, realization of just these representations does not automatically
correspond to representation of a “tree”—instead the requirement to represent only these relations yields a
simpler composition of combinators without an explicit tree structure. Later examples (Tree, List) show
how trees themselves might be learned; an interesting challenge is to discover a latent tree structure from
examples like in family (for work on learning the general case with LOT theories, see Katz et al. (2008);
Mollica and Piantadosi (2015)). Note that in all examples, the combinator structures ChurIso discovers
shouldn’t be intuitively obvious to us—these combinators structures are not the symbols we are used to
thinking about (like father and many), certainly not in conscious awareness. Instead, the base facts should
sound obvious; the S&K structures are the stuff out of which the symbols in the base facts are made.

3.2 Generalization

12

Domain Facts Representation

Seasons

(succ winter) → spring
(succ spring) → summer
(succ summer) → fall
(succ fall) → winter

spring := (K (K K))
winter := (K (S (K K) (K (K K))))
fall := (K K)
summer := K
succ := ((S ((S S) S)) K)

1, 2, Many
(succ one) → two
(succ two) → many
(succ many) → many

many := (S K K)
two := (K (S K K))
one := K
succ := ((S (S K K)) (K (S K K)))

Roshambo

(rock scissors) → win
(rock rock) → draw
(scissors scissors) → draw
(scissors paper) → win
(paper rock) → win
(paper paper) → draw
(rock paper) → lose
(paper scissors) → lose
(scissors rock) → lose

lose := (K K)
paper := ((S ((S K) S)) (K (K K)))
draw := K
win := (K (K K))
scissors := ((S ((S S) (K (K K)))) K)
rock := ((S ((S S) (K (K (K K))))) S)

Family

(father sasha) → barack
(father malia) → barack
(mother sasha) → michelle
(mother malia) → michelle
(sister malia) → sasha
(sister sasha) → malia
(husband michelle) → barack
(wife barack) → michelle

michelle := (K S)
wife := K
barak := S
malia := K
sister := (((S (S S)) S) (S K))
sasha := (K K)
mother := (K (K S))
father := (K S)
husband := ((S ((S K) S)) S)

Table 1: Church encoding inferred from the base facts that permit representation of several logical structures
common in psychology.

The examples in Table 1 mainly shows how learners might memorize facts and relations using S&K.
But equally or more important to cognitive systems is generalization: given some data, can we learn a
representation whose properties allow us to infer new and unseen facts? What this means in the context of
ChurIso is that we are able to form new combinations of functions—those whose outcome is not specified in
the base facts. Table 2-3 shows some examples. The first of these is a representation of a singular/plural
system like those found in natural language. Here, there is a relation marker that takes some number of
arguments item, item, etc. and returns singular if it receives one argument, plural if it receives more than
one. This requires generalization because the base facts only show the output for up to four items. However,
the learned representation is enough to go further to any number of items, outside of the base facts. For
instance,

(marker item item item item item item item) → ((S (S K)) (S (S K))) = plural

Intuitively, the first time marker is applied to item, we get

(marker item) → ((S (K (S K K))) (S (S K))) = singular

When this is applied to another item, you get the expression for plural:

(marker item item) = ((marker item) item) → (singular item) → plural

And then plural has the property that it returns itself when given one more item:

(plural item) → plural

So, plural is a “fixed point” for further applications of item, allowing it to generalize to any number of
arguments. In other words, what ChurIso discovers is a system that is functionally equivalent to a simple
finite-state machine:

13

Domain Facts Representation

Singular/Plural

(marker item) → singular
(marker item item) → plural
(marker item item item) →

↪→plural
(marker item item item item)

↪→ → plural

item := (S (S K))
marker := (S (K (S K K)))
plural := ((S (S K)) (S (S K)))
singular := ((S (K (S K K))) (S (S K)))

Number
(Z)

(succ one) → two
(succ two) → three
(succ three) → four

succ := K
one := S
two := (K S)
three := (K (K S))
four := (K (K (K S)))

Even-Odd
(Z2)

True := (K K)

(succ one) → two
(succ two) → three
(succ three) → four

(even one) 9 True
(even two) → True
(even three) 9 True
(even four) → True

(odd one) → True
(odd two) 9 True
(odd three) → True
(odd four) 9 True

odd := ((S ((S (K S) K) K)) (S K K))
even := ((S (S K K)) (K K))

one := (((S (K (S (K (S S (K K))) K)) S
↪→) (S K K)) (K K))

succ := (((S (K (S (K (S S (K K))) K))
↪→S) (S K K)) K)

Table 2: S&K structures in domains involving interesting generalization, where the combinator structures
allow deduction beyond the base facts.

14

Domain Facts Representation

Dominance
(a � b � c � d)

True := K
(dom a b) → True
(dom a c) → True
; No information a,d relation
(dom b c) → True
(dom b d) → True
(dom c d) → True
(dom b a) 9 True
(dom c a) 9 True
(dom c b) 9 True
(dom d b) 9 True
(dom d c) 9 True
(dom b a) 9 True
(dom c b) 9 True
(dom d c) 9 True

a := (K (K K))
b := (S (S K))
c := (S K K)
d := (K K)
dom := (((S (K (S (K (S S (K K))) K)) S

↪→) (S (K (S (K (S S (K K))) K)) S)
↪→) K)

Magnetism

(attract p1 p2) 9 True
(attract p2 p1) 9 True
(attract p1 n1) → True
(attract p1 n2) → True
(attract p2 n1) → True
(attract p2 n2) → True
(attract n1 n2) 9 True
(attract n2 n1) 9 True
(attract n1 p1) → True
(attract n1 p2) → True
(attract n2 p1) → True
(attract n2 p2) → True
; and one single example
(attract n1 x) → True
True := (K K) ; fixed by

↪→design

attract := ((S S) (K I))
n1 := K
n2 := K
p2 := (K K)
p1 := (K K)
x := (K K)

Table 3: S&K structures in domains involving interesting generalization, where the combinator structures
allow deduction beyond the base facts. The arrow “↪→” shows wrapped lines.

15

PS

Note that this FSM is not an explicitly-specified hypothesis that learners have, but only emerges implicitly
through the appropriate composition of S&K.

The next domain, number, shows a generalization that builds an infinite structure. Intuitively, the
learner is given a successor relationship between the first few words. The critical question is whether this is
enough to learn a S&K structure for succ that will continue to generalize beyond the meaning of four. The
results show that it is: the form of succ that is learned is essentially one that builds a “larger” representation
for each successive number. The way this works is extremely simple: K requires more than one argument.
But, the structure represented in the relation (succ x) for x=one, two, ... only provides it a single argument
(x). Thus, the n’th number in this Church encoding is the one that needs n more arguments to successfully
evaluate (or reduce to nothing). This will make it such that (succ four) is a new concept (representation)
and (succ (succ four)) is yet another, generalizing infinitely to infinitely many numbers. In this case, S&K
create from the three base facts a structure isomorphic to the natural numbers,

2 3 4 51 6 ...

The assumed base facts correspond to the kind of evidence that might be available to learners of counting
(Carey, 2009). This provides a close theory to Piantadosi et al. (2012)’s LOT model of number acquisition,
which was created to solve the inductive riddle posed by Rips and colleagues (Rips, Asmuth, & Bloomfield,
2006, 2008; Rips, Bloomfield, & Asmuth, 2008) about what might constrain children’s generalization in
learning number. The difference is that the Piantadosi et al. (2012)’s LOT representations were based in
primitive cognitive content, like an ability to represent sets and perform operations on them. Here, the
learning is not a counting algorithm, but rather an internal conceptual structure that is generative of the
concepts themselves, providing a possible answer to the question of where the structure itself may come
from (see Rips, Asmuth, & Bloomfield, 2013). It is interesting to contrast number, 1, 2, Many, and
seasons. In each of these, there is a “successor” function, but which function is learned depends on the
structure of the base facts. This means that notions like “successorship” cannot be defined narrowly by
the relationship between a few elements, but will critically rely on the role this concept plays in a larger
collection of operations.

The dominance concept in Table 3 shows another interesting case of generalization. Dominance struc-
tures are common in animal cognition (see, e.g., Drews, 1993). Grosenick, Clement, and Fernald (2007) show
that fish can make transitive inferences consistent with a dominance hierarchy: if they observe a � b and
b � c, then they know that a � c, where � is a relation specifying who dominates in a pairwise interac-
tion. The base facts for the dominance encode slightly more information, corresponding to almost all of
the dominance relationships between some mental tokens a, b, c, and d.7 This example illustrates another
feature of ChurIso: we are able to specify constraints in terms of evaluations not yielding some relations. So
for instance,

(dom b a) 9 True

means that (dom b a) evaluates to something other than True. This relaxation of the constraints to only
partially-specified often helps to learn more concise representations in S&K. Critically the relation between a

and d is not specified in the base facts. Note that this relation could be anything and any possible value could
be encoded by S&K. The simplicity bias of the inference, however, prefers combinator structures for these
symbols such that the unseen relation (dom a d) → True but (dom d a) does not. Thus, the S&K encoding of
the base facts gives learners an internal representation that automatically generalizes to an unseen relation.

7Intuitively, more data is needed than in the simple Fish transitive inference cases because the S&K model does not inherently
know it is dealing with a dominance hierarchy. Cases of dominance hierarchies in animal cognition may have a better chance
of being innate, or at least higher prior than other alternatives.

16

Domain Facts Representation

Reversal (reverse x y) → (y x) reverse := ((S (K (S (S K K)))) K)

If-else

True := (K K)
False := K
(ifelse True x y) → x
(ifelse False x y) → y

ifelse := ((S ((S K) S)) (S K)))

Identity (identity x) → x identity := (S K K)

Repetition (repeat f x) → (f (f x)) repeat := ((S (S (K S) K)) (S K K))

Recursion (Y f) 99K (f (Y f))
Y := (((S (K S) K) ((S ((S (K (S (K (S

↪→S (K K))) K)) S) (S (S (S K K))))
↪→) S)) (S (K S) K))

Mutual recursion (f (g (Y* f g))) 99K (Y* f g)

Y* := (((S (K S) K) (((S (K S) K) ((S (
↪→S (K S) K)) ((S (K (S (K (S S (K
↪→K))) K)) S) (S (K S) K)))) (S ((S
↪→ (K (S (K (S S (K K))) K)) S) (S
↪→K K))))) (S (K S) K))

Apply (apply f x) → (f x) apply = (S K K)

Tree, List
(first (pair x y)) → x
(rest (pair x y)) → y

pair := (((S (K S) K) (S (K (S (K (S S
↪→(K K))) K)) S)) ((S (K (S (K (S S
↪→ (K K))) K)) S) (S (K (S (K (S S
↪→(K K))) K)) S)))

first := ((S (S K K)) (K (S K)))
rest := ((S (S K K)) (K K))

Table 4: S&K structures that implement computational operations.

The magnetism example is motivated by Ullman et al. (2012)’s model studying the learning of entire
systems of knowledge (theories) in conceptual development. In magnetism, we know about different kinds
of materials (positive, negative, non-magnetic) and that these follow some simple relationships, like that
positives attract negatives and that positives repel each other, etc. The magnetism example provides base
facts giving the pairwise interaction of two positive two positives (p1, p2) and two negatives (n1, n2). But from
the point of view of the inference, these four symbols are not categorized into “positives” and “negatives”,
they are just arbitrary symbols. In this example, I have also dropped the uniqueness requirement to allow
grouping of these symbols into “types”, as shown by their learned combinator structures with the pi getting
mapped to the same structure and the ni getting mapped to a different one. To test generalization, we can
provide the model with one single additional fact, that n1 and x attract each other. The model automatically
infers that x has the same S&K structure as p1 and p2, meaning that it learns from a single observation of it
is a “positive”, including all of the associated predictions such as that (attract n1 x) → True.

3.3 Computational process

The examples above respectively show computation and generalization, but they do not illustrate one of
the most remarkable properties of thinking—we appear able to discover a wide variety of computational pro-
cesses. The concepts in Table 4 are ones that implement some simple and intuitive algorithmic components.
Here, I have introduced some new symbols to the base facts, f , x, and y. These are treated as universally
quantified variables, meaning that the constraint must hold for all values (combinator expressions) they can
take. The learning model’s discovery of how to encode these facts corresponds to the creation of fundamental
algorithmic representations using only the facts’ simple description of what the algorithm must do.

An example is provided by if-else. A convenient feature of many computational systems it that when
they reach a conditional branch (“if” statement), they only have to evaluate the corresponding branch of the

17

program. The shown base facts make if-else return x if it receives a true first argument and y otherwise,
regardless of what x and y happen to be. Even though conditional branching is a basic computation, it can
be learned from even more primitive components S&K.

The identity example illustrates the distinction between implicit and explicit knowledge in the system.
We can define identity := (S K K) so,

(identity x) = ((S K K) x) → (S K K x) → ((K x) (K x)) → (K x (K x)) → x.

It may be surprising that we could construct a cognitive system without any notion of identity. Surely to
even perform a computation on a representation x, the identity of x must be respected! In S&K, this is true in
one sense: the default dynamics of S and K do respect representational identity. But in another sense, such
a system comes with no “built in” cognitive representation of a function which is the identity function.

A more complex example can be found in the example of repetition. Here, we seek a function repeat

that takes two arguments f and x and calls f twice on x. Humans clearly have cognitive representations
of a concept like repeat ing a computation; “again” is an early-learned word, and the general concept of
repetition is often marked morphologically in the world’s languages with reduplication. As is suggested by
the preceding examples, the concept of repetition need not be assumed by a computational system.

Related to repetition, or doing an operation “again” is the ability to represent recursion, a computational
ability that has been hypothesized to be the key defining characteristic of human cognition (Hauser, Chomsky,
& Fitch, 2002). One example of how to implement recursion in combinatory logic is the Y-combinator,

Y = (S (K (S I I)) (S (S (K S) K) (K (S I I)))),

a function famous enough in mathematical logic to have been the target of at least one logician’s arm tattoo.
Like other concepts, the Y-combinator can be built only from S&K. It works by “making” a function recursive,
passing the function to itself as an argument. The details of this clever mechanism are beyond the scope
of this paper (see Pierce, 2002). One challenge in learning Y is that by definition it has no normal form
when applied to a function. To address this, we introduce a new kind of constraint 99K, which holds true if
the partial evaluation trace of the left and right hand sides yield expressions that are equal to a given fixed
constant depth. To learn recursion, we that applying Y to f is the same as applying f to this expression
itself,

(Y f) 99K (f (Y f))

Neither side reduces to a normal form, but the special equality symbol means that when we run both sides,
we get out the same structure, which in this case happens to be the (infinite) recursion of f composed with
itself,

(f (f (f (f . . .))))

ChurIso learns a slightly longer form than the typical Y-combinator due to the details of its search procedure
(for the most concise recursive combinator possible, see Tromp, 2007). The ability to represent Y permits
us to capture algorithms, some of which may never halt. For instance, if we apply Y top the definition of
successor from the number example, we get back the concept of that counts forever, continuously adding
one to its its result: (Y succ). The ability to learn recursion as a computation from a simple constraint
might be surprising to programmers and cognitive scientists alike, for whom recursion may seem like an
aspect of computation that has to be “built in” explicitly. It need not be so, if the underlying logic is LCL.

The mutual recursion case shows a recursive operator of two functions, known as the Y*-combinator,
that yields an infinite alternating composition of f and g,

(f (g (f (g (f (g . . .))))))

This is the analog of the Y-combinator but for mutually recursive functions–where f is defined in terms of
g and g is defined in terms of f . This illustrates that even more sophisticated kinds of algorithmic processes
can be discovered and implemented in S&K.

From surprisingly small base facts, ChurIso is also able to discover primitives first, rest, and pair,
corresponding to the structure-building operations with memory. The arguments for pair are “remembered”
by the combinator structure until they are later accessed by either first or rest. As a result, they can build
common data structures. For instance, a list may be constructed by combining pair:

18

L = (pair A (pair B (pair C D)))

pair

A pair

B pair

C D

Or, a binary tree may be encoded,

L = (pair (pair A B) (pair C D))

pair

pair

A B

pair

C D

An element such as C may then be accessed (first (rest T)), the first element of the second grouping
in the tree. These data structures are so foundational that they form the foundational built-in data type in
programming languages like Scheme and Lisp (where they are called car, cdr, and cons for historical reasons),
and thus support a huge variety of other data structures and algorithms (Abelson & Sussman, 1996; Okasaki,
1999). By showing how speakers might internalize these concepts, we can therefore demonstrate in principle
how many algorithms and data structures could be represented as well.

3.4 Formal languages

One especially interesting case to consider is how S&K handles concepts that correspond to (potentially)
infinite sets of strings, or formal languages. Theoretical distinctions between classes of formal languages form
the basis of computational theories of human language (e.g. Chomsky, 1956, 1957) as well as computation
itself (see Hopcroft, Motwani, & Ullman, 1979). To implement each, Table 5 provides base facts giving
the transitions between computational states for processing languages. The regular language provides
the transition table for a simple finite-state machine that recognizes the language {ab, abab, ababa, . . . }.
The existential one also describes a finite state machine that can implement first-order quantification, an
association potentially useful in natural language semantics (van Benthem, 1984; Mostowski, 1998; Tiede,
1999; Florêncio, 2002; Gierasimczuk, 2007).

The most interesting example is provided by context-free, which is a language {ab, aabb, aaabbb, . . . }
that provably cannot be expressed with a regular language (finite-state machine). Instead, the learned
mapping essentially implements a computational device with an infinite number of states from the base
facts. For instance, the state after observing 1, 2, and 3 as are,

got_a := ((S (K K)) S)
got_aa := ((S (K K)) (S (K K) S))
got_aaa := ((S (K K)) (S (K K) (S (K K) S)))
got_aaaa := ((S (K K)) (S (K K) (S (K K) (S (K K) S))))

Each additional a adds to this structure. Then, each incoming b removes from it

(b got_aaaa) = want_bbb = (K (K (K (K (S S)))))
(b got_aaa) = want_bb = (K (K (K (S S))))
(b got_aa) = want_b = (K (K (S S)))
(b want_b) = accept = (K (S S))

This works precisely like a stack in a parser, even though such a stack is not explicitly encoded into S&K or
the base facts. Thus, this mapping generalizes infinitely to strings of arbitrary length, far beyond the input
base facts’ length of four (Note that the base facts and combinators ensure correct recognition, but do not
guarantee correct rejection).

Finally, the finite example shows an encoding of the set of strings of the letters “m”, “a”, “n” and
space (“ ”) that form valid English words, {a,man, am, an,mam}. These can be encoded by assigning each

19

Language Facts Representation

Regular
((ab)n)

(a start) → state_a
(b state_a) → accept

(a accept) → state_a
(b accept) → invalid

(a invalid) → invalid
(b invalid) → invalid

start := (K (K (S K K)))
a := ((S (S K K)) K)
b := ((S (S K K)) ((S (K (S (K (S S (K

↪→K))) K)) S) (S K K)))

invalid := (((S (K (S (K (S S (K K))) K
↪→)) S) (S K K)) (S K K))

accept := (S K K)

Context-free
(anbn)

(a start) → got_a
(b got_a) → accept

(a got_a) → got_aa
(b got_aa) → want_b
(b want_b) → accept

(a got_aa) → got_aaa
(b got_aaa) → want_bb
(b want_bb) → want_b

(a got_aaa) → got_aaaa
(b got_aaaa) → want_bbb
(b want_bbb) → want_bb

start := S
a := (S (K K))
b := (((S (K (S (K (S S (K K))) K)) S)

↪→(S K K)) S)
accept := (K (S S))

Existential
(∃z . . .)

(start True) → accept
(start False) → reject

(reject True) → accept
(reject False) → reject

(accept True) → accept
(accept False) → accept

True := ((S S) K)
False := ((S (S K K)) K)
start := ((S (S K K)) K)
accept := ((S (K (S S K))) (K (K (S S K

↪→))))
reject := ((S (S K K)) K)

Finite
{a,man, am, an,mam}

S := { a,man, am, an,mam}
For all s in { ,m, a, n}3

(check s) → valid if s ∈ S
(check s) 9 valid

↪→otherwise

_ = (((S (K (S (K (S S (K K))) K)) S) (
↪→S (K (S (K (S S (K K))) K)) S)) (
↪→S (K (S (K (S S (K K))) K)) S))

n = (K ((S (K (S (K (S S (K K))) K)) S)
↪→ (S (K (S (K (S S (K K))) K)) S))
↪→)

a = (((S (K (S (K (S S (K K))) K)) S) (
↪→S (K S) K)) S)

m = (((S (K (S (K (S S (K K))) K)) S) (
↪→S K K)) (S (K (S (K (S S (K K)))
↪→K)) S))

valid = (((S (K (S (K (S S (K K))) K))
↪→S) (S (K (S (K (S S (K K))) K)) S
↪→)) ((S (K (S (K (S S (K K))) K))
↪→S) (S (K (S (K (S S (K K))) K)) S
↪→)))

check = ((S (S (S (K (S (K (S S (K K)))
↪→ K)) S))) (S (K S) K))

Table 5: Church encoding of several formal language constructs.

20

character a combinator structure, but the resulting structures are quite complex. Note, too, that these
base facts do not guarantee correct generalization to longer character sequences. This example illustrates
that while Church encoding can represent such information, it is unwieldy for rote memorization. Church
encoding is more likely to be useful for algorithmic processes and conceptual systems with many patterns.
Memorized facts (or sets) may instead rely on specialized systems of memory representation.

The ability to represent formal languages like these is important because they correspond to provably
different levels of computational power, showing that a single system for learning and representation across
these levels is a defining strength of this approach (for for LOT work along these lines, see Yang & Piantadosi
(in prep); for language learning on Turing-complete spaces in general, see Chater and Vitányi (2007); Hsu and
Chater (2010); Hsu, Chater, and Vitányi (2011)). In the examples, we have taught ChurIso the full algorithm
by showing it a few steps from which it generalizes the appropriate algorithm. This ability demonstrates
the induction of a novel dynamical system from a few simple observations, work in many ways reminiscent
of encoding structure in continuous dynamical systems (Tabor, Juliano, & Tanenhaus, 1997; Lu & Bassett,
2018).

3.5 Summary of computational results

The results of this section have shown that learners can in principle start with only representations of S&K
and construct much richer types of knowledge. Not only can they represent structured knowledge, by doing
so they permit derivation of fundamentally new knowledge and types of information processing. The ability
of a simple search algorithm to actually discover these kinds of representations shows that the resulting
representational and inductive system can “really work” on a wide variety of domains. However, the main
contribution of this work are the general lessons that we can extract from considering systems like S&K.

4 Mental representations are like combinatory logic (LCL)

My intention is not to claim that combinatory logic is the solution to mental representation—it would be
quite lucky if logicians of the early 19th century happened to hit on the right theory of how a biological system
works! Rather, I see it as a metaphor with some of the right properties—whatever mental representations
are, they must be similar to combinatory logic in a number of key ways. I will refer to the more general form
of the theory as like Combinatory-Logic, or LCL, and describe some of its core components.

4.0.1 LCL theories have no cognitive primitives

The primitives used in LCL theories (like S&K) specify only the dynamical properties of a representation—how
each structure interacts with any other. LCL therefore has no built-in cognitive representations, or symbols
like CAUSE and True. This is the primary difference between LCL and LOT theories, whose bread and butter
is meaningful components with intrinsic meaning. The lack of these operations is beneficial because LCL
therefore leaves no lingering questions about how mental tokens may come to have meaning. The challenge
for LCL is then to eventually specify how a token such as CAUSE comes to have its meaning by formalizing
the necessary and sufficient relations to other concepts that fully characterize its semantics.

4.0.2 LCL theories are universal and Turing-complete

Though it is not widely appreciated in cognitive science or philosophy of mind, humans excel at learning,
internalizing, creating, and communicating algorithmic processes of incredible complexity. This is most
apparent in domains of expertise—a good car mechanic or numerical analyst has a remarkable level of
technical and computational knowledge, including not only domain-specific facts, but knowledge of specific
algorithms, processes, causal pathways, and causal interventions. The mystery for development is to discover
how to start with what a baby might know and build the genuinely complex algorithms and representations
that adults know. The power of LCL systems come from starting with a small basis of computational
elements that have the capacity to express arbitrary computations, and applying a powerful learning theory
that can operate on such spaces.

21

It is important, though, to emphasize that the kind of comptution captured in combinatory logic and
other formalisms differs in character, but not power, from Turing machines. There are several key differences
with combinators that make them a better architecture for thinking of cognition, including their simplicity
and uniformity. First, they are a formalism for computation which is entirely compositional, motivated
here by the compositional nature of language and other human abilities. This means that although a
Turing Machine might be able to emulate compositions, combinators are compositional at their core. In
fact, because combinators are purely compositional, they lend themselves to parallelization much more
naturally than a program on a Turing machine would, an obviously desirable property of cognitive theories.
Functional programming languages, for instance, a based on logics like combinatory logic and can very
naturally be parallelized precisely because of their uniform syntax and encapsulated components. In this
way, combinator bases—or something like them—might provide the route that allows marriage of unbounded
symbolic computation with genuinely neural architectures. Combinators are incredibly simple, meaning that
it is not implausible to imagine both their emergence over evolutionary time, and ways in which they might be
implemented on neural systems. Indeed the idea of a neural implementaiton of a Turing machine (e.g. Graves,
Wayne, & Danihelka, 2014) might face a problem of irreducible complexity where the control structure of a
Turing machine might be useless without the memory and state, and vice versa. However, combinators use
only a single operation (function application) with a simple structure (binary branching structure), either
of which may be useful on its own in cognitive systems evolved for prediction and representation or motor
control (Steedman, 2001).

4.0.3 LCL theories are compositional

The compositionality of natural language and natural thinking indicates that mental representations must
themselves support composition (Fodor, 1975). Semantic formalisms in language (e.g Montague, 1973; Heim
& Kratzer, 1998; Steedman, 2001; Blackburn & Bos, 2005) rely centrally on compositionality, dating back
to Frege (1892). It is no accident that these theories formalize meaning through function composition,
using a system (λ-calculus) that is formally equivalent to combinatory logic. The inherently compositional
architecture of LCL contrasts with Turing machines and von Neumann architectures, which have been
dominant conceptual frameworks primarily because they are easy for us to conceptualize and implement in
hardware. But when we consider the rampant compositionality of thought, a computational formalism based
in composition becomes a more plausible starting point.

4.0.4 LCL theories are structured

As with compositionality, the structure apparent in human language and thought seems to motivate a
representational theory that incorporates structure, like the structures of LCL ((S (K S)) is a different
concept/computation than ((S K)S), even though they are composed of the same elements in the same
order). Structure-sensitivity is also a central feature of thought since thoughts can be composed of the same
elements but differ in meaning due to their compositional structure (e.g. “Bill loves Mary” compared to
“Mary loves Bill”).

Indeed, LCL’s emphasis on isomorphism aligns it closely with the literature on structure mapping
(Gentner, 1983; Falkenhainer, Forbus, & Gentner, 1986; Gentner & Markman, 1997; French, 2002), where
the key operation is the construction of a correspondence between two otherwise separate systems. For
instance, we might consider an alignment between the solar system and the Bohr model of the atom, where
the sun corresponds to the nucleus and the planets to electrons. The correspondence is relation preserving
in that a relation like orbits(planets,sun) holds true when its arguments are mapped into the domain of
atoms, orbits(electrons,nucleus). What structure mapping literature does not emphasize, however, is that
the systems being aligned are sometimes dynamic and computational, rather than purely structural (isomor-
phism is a mapping of dynamics). Moreover, work on structure mapping has focused on high-level tasks like
computation of analogy, rather than the sense in which relational isomorphisms might be the foundation of
meaning itself.

LCL also shares much motivation and machinery with the literature on structure learning, which has
aimed to explain how learners might discover latent structured representations, which then can guide further
inference and learning. Kemp and Tenenbaum (2008) show how learners could use statistical inference to
discover the appropriate mental representation in a universal graph grammar capable of generating any

22

Function Equivalent combinatory logic structure
(f)→ (+ 1 4) f := (+ 1 4)

(f x)→ (+ x 1) f := (S + (K 1))

(f x y)→ (+ x y) f := +

(f op x y)→ (op x y) f := (S K K)

Table 6: Several levels of abstraction for a function f and their corresponding combinator structures. The
combinator structures have no explicit variables (e.g. x, y, op). Note that if the constants or primitives +,
1, and 4 were defined with a Church encoding, they too would be combinators, permitting us to translate
everything into pure S&K.

structure. They show how learners could discover representations appropriate to many sub-domains such
as phylogenetic trees for animal features, or the left-right spectrum seen in supreme court judgments. A
limitation of that work is that it focuses on learning graph structures, not computational objects that can
capture internal processes and algorithms, like LCL.

4.0.5 LCL theories handle abstraction

Combinatory logic was created as a system to allow abstraction with a simple, uniform syntax that avoids
difficulties with handling variables. Marcus (2003) considers training data like “A rose is a rose”, “A frog is a
frog”, “A blicket is a ?” The intuition is that “blicket” is a natural response, even though we do not know
what a blicket is. This means that we must have some system capable of remembering the symbol in the
first slot of “A is a ” and filling it in the second slot. This problem more generally faces systems tasked
with understanding and processing language (Jackendoff, 2002). Sub-symbolic approaches have explored
a variety of architectural solutions to this variable binding problem (Hadley, 2009), including those based
on temporal synchrony (Shastri, Ajjanagadde, Bonatti, & Lange, 1996), tensor products (Smolensky, 1990;
Smolensky & Legendre, 2006), neural blackboard architectures (Van Der Velde & De Kamps, 2006), and
vector symbolic architectures (Gayler, 2004, 2006). Marcus (2003) argues for explicitly variables in the
sense of symbolic programming languages like Lisp; some work in the probabilistic LOT has explored how
symbolic architectures might handle variables (Overlan, Jacobs, & Piantadosi, 2016) and how abstraction
helps inductive inference (Goodman, Ullman, & Tenenbaum, 2011).

Unfortunately, the debate about explicit variables has been completely misled by the notation that
happens to be used in computer science and algebra. In fact, combinatory logic is one of many systems
that behaves as though it has variables when in fact none are explicitly represented—this is precisely why
it was invented. To illustrate this, Table 6 shows various levels of abstraction for a simple function f , none
of which involve variables when expressed with S&K. The top row is a function of no arguments that always
computes 1 + 4. The next rows shows a function of one variable, x; the third adds its two arguments; the
fourth row shows a highly abstract function that applies an operation (perhaps +) to its two arguments x
and y. In none of these abstract functions do the arguments appear explicitly, meaning that abstraction can
be captured without variables. This shows that when an appropriate formalism is used, cognitive theories
need not explicitly represent variables, even though they may be there implicitly by how other operators act
on symbols. This type of system is especially convenient for thinking about how we might implement logic
in artificial or biological neural networks because it means that the syntax of the representation does not
need to change to accomodate new variables in an expression.

4.0.6 LCL theories permit construction of systems of knowledge

It is absolutely central to LCL systems that the meaning of a representation can only be defined by the
role it plays in an interconnected system of knowledge. There is no sense in which any of the combinator
structures mean anything in isolation. Even for a single domain like number, the most efficient mapping
to combinators will depend on on which operations must be easy and efficient (for comparison of encoding
schemes, see Koopman, Plasmeijer, & Jansen, 2014). The idea that learners must create entire frameworks
for understanding, or theories, comes from cognitive and developmental literature emphasizing the way in

23

which concepts and internal mental representations relate, to create systems of knowledge (Carey, 1985;
Murphy & Medin, 1985; Wellman & Gelman, 1992; Gopnik & Meltzoff, 1997; Carey, 2009; Ullman et al.,
2012). Of course, these relationships must include a variety of levels of abstraction—specific representations,
computational processes, abstract rules, new symbols and concepts, etc. LCL permits this by providing a
uniform language for all the components that might comprise a theory. If this aspect of LCL is correct, that
might help to explain why cognitive science—and its theories of conceptual representation in particular—
seem so hard to figure out. Definitions, prototypes, associations, or simple logical expressions seem like they
would license fairly straightforward investigation by experimental psychology. But if concepts are intrinsically
linked to others by conceptual and inferential role, then it may not be easy or possible to study much in
controlled isolation.

4.0.7 LCL theories come from a simple basis

Turing machines are simple when compared to modern microprocessors but they are not simple when com-
pared to combinatory logic. A Turing machine has separate mechanisms for its state, memory, and update
rules. Combinatory logic has only a few functions that always perform the same operation on a binary
branching tree. Indeed, the combinators S&K are not even minimal. There exist single combinators from
which S&K can be derived. Single-point systems have been studied primarily as curiosities in logic or computer
science, or as objective ways to measure complexity (Stay, 2005), but they suggest that the full complexity
of human-like cognition may not be architecturally or genetically difficult to create. Thus, while it is difficult
to see how to get the dynamics of a Turing machine into a neural network (though see Graves et al., 2014),.
it is easy get Turing-completeness through combinators (see below). The uniformity of representation—
everything is built from just two elements—additionally means that the neural systems at the heart of the
biological implementation potentially involve just a few types of neurons or local architectures. The im-
plications for cognitive theories should be clear: a system that computes, even symbolically, need not be
architecturally complex.

4.0.8 LCL theories are dynamical

A popular view is that cognitive systems are best viewed not as symbolic, but rather dynamical (Van Gelder,
1995, 1998; Beer, 2000). It’s always a curious claim because by definition, everything in the universe is a
dynamical system, even—or perhaps especially—Turing machines. LCL theories are inherently dynamical
since the meaning of abstract symbols comes from the underlying dynamics of combinator evaluation, exe-
cuted mindlessly by the underlying machine architecture. The view of dynamics emphasizes a key difference
to traditional LOT theories. In most incarnations of the LOT the key part of having a concept would be
building the structure (e.g. CAUSE(x,GO(x, UP))) and little attention is paid to the system by which this
represents a computation that actually runs—what is the architecture of the evaluator, how does it run, and
what makes those symbols mean what they do? In LCL theories, the important part of the representation is
not only building the structure, but being able to run it or evaluate it with respect to other concepts. This,
in some sense, puts the computational process itself back into “computational theory of mind”—we should
not discuss symbols without discussing their computational/CRS roles.

For LCL, the important part of the dynamics is that it can be manipulated into capturing the relations
present in any other system. Unlike most dynamical accounts in cognition, the dynamics are discrete in
time and space; research on discrete space systems is a subfield of dynamical systems research in itself
(Lind & Marcus, 1995) and is likely to hold many clues for how symbolic or symbolic-like processes may
emerge out of underlying physics and biology. The general idea, for instance, of discretizing physical systems
in order to provide adequate explanations lies at the heart of symbolic dynamics, including mathematical
characterizations of general complex systems (Shalizi & Crutchfield, 2001), as well as recent attempts to
encode cognitive structures into dynamical systems (Lu & Bassett, 2018). Recent work in cognitive science
has explored the tradeoff between symbolic and continuous systems, providing a formal account of when
systems may become discretized (Feldman, 2012).

24

4.0.9 LCL meanings are sub-symbolic and emergent

While LCL dynamics do deal with discrete objects (like combinators), the meaning of these objects is not
inherent in the symbols themselves. This is by design because LCL theories are intended to show how
meaning, as cognitive scientists talk about it, might arise from lower-level dynamics. Cognitive symbols like
True arise from the sub-symbolic structures that True gets mapped to and the way these structures interact
with other representations. This emphasis on sub-symbolic dynamics draws in part on connectionism, but
also on theories that pre-date modern connectionism. Hofstadter (1985), for example, stresses the active
nature of symbolic representations (also Hofstadter, 1980, 2008). He contrasts himself with Newell & Simon,
for whom symbols are “just” the objects that get manipulated. For Hofstadter, symbols are the objects that
participate in the manipulating:

The brain itself does not “manipulate symbols”; the brain is the medium in which the symbols
are floating and in which they trigger each other. There is no central manipulator, no central
program. There is simply a vast collection of “teams”—patterns of neural firings that, like teams
of ants, trigger other patterns of neural firings. The symbols are not “down there” at the level of
the individual firings; they are “up here” where we do our verbalization. We feel those symbols
churning within ourselves in somewhat the same way as we feel our stomach churning; we do
not do symbol manipulation by some sort of act of will, let alone some set of logical rules of
deduction. We cannot decide what we will next think of, nor how our thoughts will progress.

Not only are we not symbol manipulators; in fact, quite to the contrary, we are manipulated by
our symbols!

There are two separable claims here. One is that sub-symbols are active representational elements that
conspire to give rise to symbols. This is shared by LCL theories. The other is that the substrate on which
sub-symbols live is an unstructured medium in which symbols are “floating” and interact with each other
without central control. This is a question of architecture and implementation which may be compatible
with LCL in general (but not ChurIso’s current implementation).

“Meaning” in this sense is emergent because it is not specified by any explicit feature of the design. In-
stead, the meaning emerges out of the LCL combinators’ dynamics as well as the constraints (the data) that
say which specific structures are most appropriate in a given domain. Emergentism from dynamics rather
than architecture may capture why emergent phenomena can be found in many types of models (e.g McClel-
land et al., 2010; Lee, 2010). Recall that part of the motivation for LCL was that we wanted to formalize
how symbols get meaning in order to better handle critiques like Searle’s that “mere” symbol manipulation
cannot explain the semantics of representation. As Chalmers (1992) argues, Searle’s argument fails to apply
to sub-symbolic systems like connectionist models because the computational (syntactic) elements are not
intended to be meaningful themselves. The same logic saves LCL from Searle’s argument: S&K are not meant
to, on their own, possess meaning other than dynamics, so the question of how meaning arises is answered
only at a level higher than symbol manipulation.

4.0.10 LCL theories eagerly find patterns and use them in generalization

An important part of generalization is the ability to infer unobserved properties from those that can be
observed, a task studied as property induction in psychology (Rips, 1975; Carey, 1985; Gelman & Markman,
1986; Osherson, Smith, Wilkie, Lopez, & Shafir, 1990; Shipley, 1993; Tenenbaum et al., 2006). In the
magnetism example above, the attraction relations between an item x was fully and correctly inferred from
only observing its interactions with a single other object. More generally, the ability to detect patterns
may be a key feature of human thought, and many machine learning techniques center on extracting simple
regularities from observed data. Table 7 shows two simple examples where ChurIso is provided with two
properties, dangerous and small applied to to some objects (a, b, x, and c). Note that small doesn’t have to
be a feature per se, but could be a category membership predicate (e.g. is-wolf). In the first row, property
induction, there is a perfect correlation between being dangerous and being small. In this case what we
learn is a representation for these symbols where (dangerous x) → True even though all we know is that x

is small. Being small, in fact, convinces the learner that x will have an identical conceptual role to a. This
happens because in many cases, the easiest way for x to behave the correct way with respect to small is

25

Domain Facts Representation

Property
Induction

True = (small a)
False = (small b)
True = (dangerous a)
False = (dangerous b)

True = (small x)

small := (S K K)
dangerous := ((S K) S)

a := (K K)
b := K
x := (K K)

Exception Induction

True = (small a)
False = (small b)
True = (small c)
True = (dangerous a)
False = (dangerous b)
False = (dangerous c)

True = (small x)

small := ((S (S K K)) (S K))
dangerous := ((S (S K K)) (S K K))

a := (K (K K))
b := (K K)
c := (((S (K (S (K (S S (K K))) K)) S)

↪→(S K K)) (K K))
x := (K (K K))

Table 7: Learners who observe a correlation between dangerousness and size will generalize based on size
(top). Learners who see conflicted data count c as an exception.

to make it the same as a. This illustrates a clear willingness to generalize, even from a small amount of
data, a feature of human induction (Markman, 1991; Li, Fergus, & Perona, 2006; Xu & Tenenbaum, 2007;
Salakhutdinov, Tenenbaum, & Torralba, 2010; Lake et al., 2015). In the second case, the learner observes
a third point, c, that is small but not dangerous. ChurIso decides that small things are still dangerous but
that c is an exception, as shown by the fact that if all we know about x is that it is small, it still maps to the
same combinator structure as a. This is a form of automatic creation of a simple form of a rule plus exception
model, popular in categorization (Nosofsky, Palmeri, & McKinley, 1994; Nosofsky & Palmeri, 1998).

4.0.11 LCL theories supports deduction and simulation

The combinator structures that are learned are useful because they provide a way to derive new information.
By combining operations in new ways (e.g. taking (succ (succ (succ four)))), learners are able to create the
corresponding mental structures. This generative capacity is important in capturing the range of structures
humans internalize. The ability can be viewed through two complementary lenses. The first is that LCL
knowledge provides a deductive system which allows new knowledge to be proved. We can determine, for
instance, whether

(succ (succ (succ three))) = (succ (succ four))

and thereby use our induced representations to learn about the world, since these representations are iso-
morphic to some structure in the world that matters. This view of knowledge is reminiscent of early AI
attempts grounded in logic (see Nilsson, 2009) and cognitive theories of natural reasoning through deduction
(Rips, 1989, 1994).

The second way to view the knowledge of an LCL system is as a means for mental simulation: one step
forward of a combinator evaluation or one composition of two symbols corresponds to one step forward in a
simulation of the relevant system. Simulation has received the most attention in physical understanding (e.g
Hegarty, 2004; Battaglia et al., 2013) and folk psychology (e.g Gordon, 1986; Goldman, 2006), both of which
are controversial (Stone & Davies, 1996; Davis & Marcus, 2016). However, the literature on simulation has
focused on simulations of particular (e.g. physical) processes and not on LCL’s goal of capturing arbitrary,
relational or algorithmic aspects of the world. In general, simulation may be the primary evolutionary
purpose of constructing a representation, as it permits use in novel situations, a phenomenon with clear
behavioral benefits (Bubic, Von Cramon, & Schubotz, 2010).

4.0.12 LCL theories support learning

The mapping from symbols in base facts to combinators is solved by applying a bias for representational sim-
plicity (Feldman, 2003b; Chater & Vitányi, 2003) and speed (Hutter, 2005; Schmidhuber, 2007). LCL theories

26

inherit from the Bayesian LOT, and more generally work on program induction, a coherent computational-
level theory of learning that provably works under a broad set of situations. Roughly, adopting the Bayesian
setting, the data supports a hypothesis that most accurately matches the true generating distribution in
the world. With enough data, then, learners will come to favor a hypothesis which is equivalent to the true
one (see, e.g., Piantadosi, 2011). In this setting where we consider hypotheses to be programs or systems
of knowledge written in a LCL system, with enough data ideal learners will be able to discover hypotheses
that internalize their observed dynamics about the world.

As I have described above, a prior that favors hypotheses with short running times (e.g. exp(−running time))
permits learners to consider in principle hypotheses of arbitrary computational complexity. The trick is that
the non-halting hypotheses have zero prior probability (exp(−∞) = 0) and this can be used to weed them out
from a search or inference scheme that only needs upper-bounds on probability (like the Metropolis-Hastings
algorithm). The ability to learn in such complex systems contrasts with arguments from the poverty of the
stimulus in language learning and other areas of cognition. Note that this learning theory is stated as a
computational theory, not an algorithmic one. There is still a question about how learners actually navigate
the space of theories and hypotheses.

The ability to learn also provides an important consideration to conceptual theories (see Carey, 2015).
When considering cognitive development as a computational process, it might be tempting to think that the
simpler algorithmic components must be “built in” for learners, a perspective shared by many LOT learning
setups. But it may be that developmental studies will not bear this out—it is unlikely, for instance, that
very young children have any ability to handle arbitrary boolean logical structures. But if boolean logic is
not innate, in what sense could it be learned? It seems far too simple a system to be implemented in a
computational system unless the computational system has something equivalent to it to begin with. The
LCL shows how it is possible: what is built-in may be a general system for constructing isomorphisms, and
learners may have to realize a particular structure (like that for Boolean logic) only when it is needed to
explain data they observe.

4.1 Features of the implementation which are not part of the general LCL
theory

Because we have been required to make some (as of yet) under-determined choices in order to implement
an LCL theory, it is important to also describe which of these specific choices are not critical to the general
theory I am advocating. The implementation I describe chooses particular combinators S&K, but there are
infinitely many logically equivalent systems that could be empirically distinguished based on the inductive
biases they imply. Because the brain is noisy and probabilistic, it is likely that probabilities interact with
representations, perhaps even in a foundational way, as in recent work on Church (Goodman, Mansinghka,
et al., 2008). These facts are intentionally ignored here in order to more cleanly articulate how the system
may work more broadly. The primary claim is then that the right system likely shares many of the above
features of combinatory logic.

It is also important to emphasize that many other formal systems have dynamics equivalent to LCL,
some of which drop constraints such as compositionality or tree-structures. Cellular automata, for instance,
rely only on local communication and computation, yet also are Turing-complete. If systems of cellular
automata could be found that implement useful conceptual roles, they would qualify as a system very much
like combinatory logic (although not in all the ways described above). Indeed, a lesson from complex systems
research is that there are a huge variety of simple systems that are capable of universal computation (Wolfram,
2002), suggesting that it would not be hard, in principle, for nature to implement CRS-like representations.

5 Towards a connectionist implementation

The LCL instantiation presented above lives most naturally at Marr (1982)’s representational and compu-
tational levels. However, it is important to understand how LCL theories may be implemented in a neural
architecture. It turns out, this is relatively straightforward, in large part because the meaning of symbols
arises from dynamics. We need two things: a means of representing tree structures (to represent a combi-
nator composition) and a sequence of operations on those tree structures that implement S&K. Many ways

27

of representing tree structures or predicates in neural dynamics have been considered (e.g. Pollack, 1990;
Touretzky, 1990; Smolensky, 1990; Plate, 1995; Van Der Velde & De Kamps, 2006; Martin & Doumas,
2018), often with the appreciation that such systems will greatly increase the power of these systems (e.g.
Pollack, 1989). Related work has also explored how vector spaces might encode compositional knowledge or
logic (Grefenstette, 2013; Rocktäschel, Bosnjak, Singh, & Riedel, 2014; Bowman, Potts, & Manning, 2014b,
2014a; Bowman, Manning, & Potts, 2015; Neelakantan, Roth, & McCallum, 2015; Gardner, Talukdar, &
Mitchell, 2015; Smolensky et al., 2016).

Here, I will focus on Smolensky (1990)’s tensor product encoding (see Smolensky & Legendre, 2006). Sec-
tion 3.7.2 of Smolensky (1990) showed how the Lisp operations first, rest, and pair could be implemented
in a tensor product system. These are the only operations needed in order to implement an evaluator for
combinatory logic (or something like it). Note that the idea of implementing these operations in a con-
nectionist network is quite distinct from implementing them in S&K above. The above construction in S&K

is meant to explain cognitive manipulation of tree structures as a component of high-level thought. The
implementation in tensor products could be considered to be part of the neural hardware which is “built
in” to human brains—the underlying dynamics from which symbols S&K themselves emerge. These innate
processes could happen at the level of biological neurons, or at higher levels that are still consistent with the
perspective of parallel, distributed processing.

To implement S&K, we can define a function called (reduce t) that computes the next step of the dynamics
(the “→” operation):

(reduce t) := (first (rest t)) if (first t) is K
(reduce t) := (pair (pair (first t) (first (rest (rest t))))

(pair (first (rest t)) (first (rest (rest t))))) if (first t) is S

The left hand side of (reduce t) tell us that we are defining how the computational process of combinator
evaluation may be carried out. The right hand side consists only of first, rest, and pair functions on
binary trees, which, we assume, are here implemented in a connectionist network, following the methods of
Smolensky (1990) or a similar approach. This function operates on data (combinators) that are themselves
encoded with pair.

For instance, the structure (K x y) would be encoded in a connectionist network as (pair K (pair x y)).
Then, following the definition of reduce,

(reduce (K x y)) = (reduce (pair K (pair x y)) → (first (rest (pair K (pair x y)))) → x

The case of S is analogous.
To summarize, Figure 2 shows a schematic of the general setup: tensor product coding (or an alternative)

can be used to encode a tree structure in a connectionist network. The reduce function can then be stated as
tensor operations, and these implement the dynamics of S&K, or a system like it. Then, combinator structures
can be built with pair. The way these structures interact through reduce can give rise to create structured,
algorithmic systems of knowledge through the appropriate Church encoding. In fact, any of the encoding
schemes that supports first, rest, and pair can implement LCL theories, thereby permitting a swath of
symbolic AI and cognitive science to be implemented in neural systems. For instance, abstract concepts like
recursion, repetition, and dominance can be encoded directly using these methods into connectionist
architectures. This, of course, treats connectionism as only an implementational theory of a CRS system.
But this is, just a simplification for the present paper—there are certain to be areas where the parallel
and distributed nature of connectionist theories are critically important (Rumelhart & McClelland, 1986),
particularly at the interfaces of sensation and perception.

Conveniently, reduce is parallelizable. LCL inherits this advantage from functional programming lan-
guages. Taking terminology from computer science, parallel execution is possible because LCL representa-
tions are referentially transparent, meaning that a combinator reduces in the same way, regardless of where
it appears in the tree. As a result, two reductions in the same tree can happen in either order (a theorem
known as the Church-Rosser theorem (Church & Rosser, 1936)). A good implementation might do multiple
reductions at the same time.

It is notable that the move towards unifying high-level symbolic thought with theories of implementation
has been almost entirely one-sided. There are many connectionist approaches that try to explain—or explain
away—symbolic thought. However, almost no work on the symbolic side has sought to push down towards
representations that could more directly be implemented. Many symbolic modelers—myself included—have

28

Neuroscience

Connectionism

Tree structures

and operations

Combinator dynamics

Symbols and concepts

Theories

Tensor product

coding, ...

Conceptual role

semantics

Something like

combinatory logic

reduce

?

?

Figure 2: An overview of the encoding of LCL dynamics into a connectionist architecture. Schemes like
Smolensky (1990)’s tensor product encoding allow tree operations and structure (e.g. first, rest, pair),
which can be used to implement the structures necessary for combinatory logic as well as the evaluator. The
structures built in combinatory logic, as shown in this paper, create symbolic concepts which participate
in theories and whose meaning is derived through conceptual role in those theories. It is possible that the
intermediate levels below LCL are superfluous, and that dynamics like combinatory logic could be encoded
directly in biological neurons (dotted line).

29

considered the problem of implementation to lie squarely in the neural modelers’ domain: connectionist
networks should strive to show where symbols could come from. However, if the view of this section is
correct, the “hard” problem of implementation was solved in principle a quarter century ago and the main
sticking point has actually been on the symbolic side of thinking more carefully about how symbols might
get their meaning.

6 Remaining gaps to be filled

The LCL theory I have presented has intentionally focused on a minimal representational theory for high-
level logical concepts. I have done this because these areas of cognitive psychology seem to be in most
desperate need of a link to implementation. However, it is important to discuss a few limitations of what I
have presented in this paper.

6.1 LCL and the interfaces

Missing from the description of LCL theories is a formalization of how such abstract operations might
interface to perception and action. To some proponents of LOT-like systems for representation, the way
in which representations relate to the outside world is of central concern. Miller and Johnson-Laird (1976)
write,

A dictionary is a poor metaphor for a person’s lexical knowledge. Dictionaries define words
in terms of words. Such definitions, like some semantic theories, may provide plausible accounts
of the intensional relations between words, but their circularity is vicious. There is no escape
from the round of words. Language can apply to the nonlinguistic world, however, and this fact
cannot be ignored by a theory of meaning. It is perhaps the single most important feature of
language; a theory that overlooks it will provide simply a means of translating natural language
into theoretical language. Although such a theory may be extremely useful as a device for
formulating intensional relations, its ultimate value rests on a tacit appeal to its users’ extensional
intuitions.

The CRS itself has also been criticized for its circularity where meanings are defined in terms of each other
(see Greenberg & Harman, 2005; Whiting, 2006). LCL embraces this circularity and shows that it is not
inherently problematic to the construction of a working computational system (see also chapter 4 of Abelson
& Sussman, 1996). For a theory of concepts, the circularity is even desirable because it prevents us from
pushing the problem of meaning off into someone else’s field—linguistic philosophy, neuroscience, robotics,
etc.

To avoid the circularity, many of the theories of where such high-level constructs come from are based
on repeated abstraction of sensory-motor systems, perhaps maintaining tight links between conception and
perception (e.g. Barsalou, 1999, 2008, 2010; Sloutsky, 2010). The challenge with this view is in understand-
ing how concepts come to be distinct from perception, or more abstract, generalizing beyond immediate
experience (Mahon, 2015), a goal with some recent computational progress (Yildirim & Jacobs, 2012). From
the LCL point of view, the primary difficulty with theories closely tied to perception is that they do not
engage with the computational richness of full human cognition—they do not explain how it is that we are
able to carry out such a wide variety of computational processes and algorithms. A good example to consider
might be tangram puzzles, where the goal is to construct a given shape (e.g. a giraffe) from simpler ones (e.g.
triangles, squares, diamonds, etc.). Mental imagery and perception is certain to be involved in solving this
task. However, high-level processes are also required—search algorithms that determine what arrangements
to try next, memory of the geometry of the target shape, knowledge about what transformations are possible
(Can a square be rotated to form a diamond? A triangle?). It is these high level algorithms and knowledge
that the LCL aims to capture.

On the flip-side, the theory I have described does not engage with perception and action, nor which is
sensitive to the type of content its actions manipulate. However, “two-factor” theories of CRS that more
closely connect to perception and action have previously been proposed (Harman, 1987; Block, 1997), with
tight connections to the debate about mental imagery. At the very least, the perceptual systems for shape

30

must interface with high-level concepts–perhaps by speaking languages that are inter-translatable. In the
same way, a computer has a single representation language for its central processor; the various subsystems
—graphics cards and hard drives—must speak languages that are translatable with the central processor so
that they can coordinate complex computation. Thinking a little more concretely, consider some base facts
for a square concept,

(number-of-edges square) → four
(number-of-vertices square) → four
(angles square) → (pair rt-angle (pair rt-angle (pair rt-angle rt-angle)))
(rotate square 45) → diamond
(rotate diamond 45) → square
...

Even if this is the right conceptual role for square, it must also be the case that perception speaks this
language. For instance, when rotate is called, we may rely on perceptual systems in order to execute the
rotation so that rotate is not itself an operation in pure S&K. The key is that whatever dedicated hardware
does do the rotation, it must send back symbols like diamond and square that are interpretable on a high
level. To see this, consider the wide variety of computational processes that square can participate in and
the other theories that it is related to. Here is one: Suppose I have a square-shaped ink stamp �. I stamp
it once, rotate the stamp by 45 degrees, �, stamp it again. If I do that forever, what shape will I have
stamped out? What happens if I rotate it 90 degrees instead? The abstraction we readily handle is even
more apparent in questions like, “If I rotate it 1 degree vs 2 degrees, which will give me a star with more
points?” Likely, we can answer that question without forming a full mental image, relying instead on high-
level properties of numbers, shapes, and their inter-relations. The situation can get even more complex:
what happens if I rotate it

√
2 degrees each time? Solving this last problem in particular seems to require

both an imagistic representation (to picture the stamping) as well as high-level logical reasoning about non-
perceptual theories—in this case, the behavior of irrational numbers. Even simple questions about images
interface with our systems of knowledge.

However, one feature of perception that is notably unlike LCL is that small perceptual changes tend to
correspond to small representational changes, a kind of principle of continuity.8 For instance, the represen-
tation of a rotated symbol “B ” is likely to be very similar to “B”. However, the representations of LCL—and
logical theory learning more generally—appear not to obey this principle. Changing one of the constraints
or one data point might have huge consequences for the underlying representation. In the same way, a single
data point might lead a human to revise an intuitive theory or a scientific theory. As far as I am aware,
there are not yet good general solutions to this problem of finding logic-like representations that have good
continuity properties, or indeed that interface well with perceptual systems.

6.2 Theories of innateness

Much of the LCL theory has been motivated by coming up with a logical formalism which involves just a
few operations and contains no innate high-level content. However, the core knowledge theory from cognitive
development holds that there are at least a few areas of conceptual development where innate representations
should be preferred to logical minimalism (Spelke, 2003; Spelke & Kinzler, 2007; Carey, 2009). For instance,
newborn infants might not be neutral statistical learners of an LCL variety, but might bring biases to
attend to social cues or represent objects and salient properties. Or they might come with some built in
representations in special domains like object perception or number. Other work has sought to discover the
semantic primitives of thought that are shared across languages and cultures (Miller & Johnson-Laird, 1976;
Brown & Wierzbicka, 1997), perhaps good candidates for a non-minimal LOT.

However, there is a strong methodological reason to fully explore the space of minimalist learning setups.
It is important to understand what is possible to learn from data. This provides a useful formal setup for
understanding empirical results. For instance, what might it mean if infants are poor at computing logical
disjunction? Without a theory like LCL, it might not seem possible that something as basic as conjunction
and disjunction could be learned. Second, in many domains, nativist theories have been over-eagerly accepted
due to feeble theories of learning. A problematic example can be found in language acquisition, where early

8A mathematical function, for instance mapping the world to a representation, is continuous if boundedly small changes in
the input give rise to boundedly small changes in the output.

31

work like Gold’s Theorem (Gold, 1967) purported to show that key aspects of language could not be learned
and must therefore be innate. This gave rise to a rich formal theory of learning (e.g. Wexler & Culicover,
1983) but one which ultimately rested on unreasonable assumptions (Johnson, 2004). Informed by machine
learning, probability theory, and computer science, it was later shown that learners could indeed identify all
relevant aspects of language in a precise formal sense, without needing strong innate constraints (Chater &
Vitányi, 2007). The lesson is also demonstrated by LCL here: learning is surprisingly powerful, and theories
of what is likely to be innate must be informed by the most aggressive learning theories.

6.3 Extensions in logic

I have presented a very simplified view of combinatory logic. Here I will discuss a few important points
where prior mathematical work has charted out a useful roadmap for future cognitive theories.

First, as I have described it, any structure built from S&K is evaluable. In the roshambo example,
for instance, we could consider a structure like (win win). To us, this is semantically meaningless, but it
evaluates to draw. The problem of incoherent compositions could be solved in principle by use of a type
system that defines and forbids nonsensical constructs (see Hindley & Seldin, 1986; Pierce, 2002). Each
symbol would be associated with a “type” that function composition would have to respect. For instance,
since rock, paper, and scissors would be one type that is allowed to operate on itself; when it does so, it
produces an outcome (win, lose, or draw) of a different type that should not be treated as a function or
argument (thus preventing constructions like (win win)). The corresponding learning theory would have to
create new types in each situation, but learning could be greatly accelerated by use of types to constrain the
space of possible representations.

The second limitation of combinatory logic is one of expressivity. Combinatory logic is Turing-complete
only in the sense that it can represent any computable function on natural numbers (Turing, 1937). But there
are well-defined operations that it cannot express, in particular about the nature of combinator structures
themselves (see Theorem 3.1 of Jay & Given-Wilson, 2011). There is no combinator that can expression
equivalence of two normal forms (Jay & Vergara, 2014). That is, we cannot construct a combinator E such
that (E x y) reduces to True if and only if x and y are the same combinator structure. There are, however,
formal systems that extend combinatory logic that can solve this problem (Curry & Feys, 1958; Wagner,
1969; Kearns, 1969; Goodman, 1972; Jay & Kesner, 2006; Jay & Given-Wilson, 2011), and these provide
promising alternatives for future cognitive work. These types of logical systems will likely be important to
consider, given the centrality of notions like same/different in cognitive processes, with hallmarks in animal
cognition (Martinho & Kacelnik, 2016).

Finally, the semantics of combinatory logic is deterministic: evaluation always results in the same answer.
However, probabilistic programming languages like Church (Goodman, Mansinghka, et al., 2008) provide
inherently stochastic meanings that support conditioning and probabilistic inference, with nice consequences
for theories of conceptual representation (Goodman et al., 2015), including an ability to capture gradience,
uncertainty, and statistical inference. Combinatory logic could similarly be augmented with probabilistic
semantics, and this may be necessary to capture the statistical aspects of human cognition (Tenenbaum et
al., 2011).

6.4 The architecture itself

The connectionist implementation described above only shows how evaluation can be captured in a con-
nectionist network. However, it does not provide an implementation of the entire architecture. A full
implementation must include at least three other mechanisms.

First an implementation needs a means for observing base facts from the world and representing them.
ChurIso assumes base facts are given as symbolic descriptions of the world. There are many possibilities that
might inform these facts, including basic observation, pedagogical considerations, knowledge of similarity and
features, or transfer and analogy across domains. The mind will likely have to work with these varied types of
information in order to learn the correct theories. Extending the LCL theory beyond explicit relational facts
is an important direction for moving the theory from the abstract into more psychological implementations.
Similarly, a fuller theory will require understanding the level of granularity for base facts. Unless you are a
particle physicist, you don’t have detailed models of particle physics in your head. If we consider an LCL

32

encoding of even an ordinary object, there are many possibilities: we might have an LCL structure for the
whole object (e.g. the rock in roshambo); we might map its component parts to combinators which obey
the right relations; we might map its edges and surfaces to combinator structures; or we might go below
the level of surfaces. The question of granularity for LCL is simply an empirical question, and a goal for
cognitive psychology should be to discover what level of description is correct.

Second, an important next step would be to understand the connectionist or neural implementation of
search and inference. Likely this will be closely connected to a neural theory of probabilities and beliefs.
For LCL, these beliefs must characterize learners’ certainty that a given system of mapping symbols to
combinators is the correct one.

7 General Discussion

One reason for considering LCL theories is that they provide a new riff on a variety of important issues, each
of which I will discuss in turn.

7.1 Isomorphism and representation

First, it is a nontrivial question whether a given physical system—like the brain—is best described as
isomorphic to a computational process. Putnam (1988) argues for instance that even a simple physical
system like a rock can be viewed as implementing essentially any bounded computation because it has a
huge number of states, meaning that we can draw an isomorphism between its states and the states of a fairly
complex computational device (see also Searle, 1990; Horsman, Stepney, Wagner, & Kendon, 2014). LCL
theories are kin to Chalmers’ response to this argument highlighting the combinatorial nature of states which
can be found in a real computational device, but not an inert physical system (Chalmers, 1996, 1994). When
we consider the brain, LCL theories predict that we should be able to find a small number of micro-level
computational states that interact with each other in order to organize structures and dynamics which are
isomorphic to the systems being represented. In this way, scientific theories of how mental representations
work cannot be separated from an understanding of what problems a system solves or which aspects of reality
are most important for it to internalize. When viewed as part of an integrated whole scientific enterprise, the
scientific search for mental representations is therefore not just a search for isomorphisms between physical
systems and abstract computing devices, as Putnam might have use believe. It is a search for relations
which are explanatory about empirical phenomena (e.g. behavior, neural dynamics) and which fit within the
framework of knowledge developed elsewhere in biology, including our understanding of evolution. A good
scientific theory of mental representation would only attribute isomorphic computational states to a rock if
something explanatory could be gained, and that seems very unlikely.

7.2 Critiques of CRS

CRS is not without its critics (see Greenberg & Harman, 2005; Whiting, 2006). One argument from Fodor
and Lepore (1992) holds that conceptual/inferential roles are not compositional, but meaning in language
are. Therefore, meanings cannot be determined by their role. To illustrate, the meaning of “brown cow” is
determined by “brown” and “cow”. However, if we also know in our conceptual/inferential role that brown
cows are dangerous (but white cows are not) then this is not captured compositionally. To translate this
idea into LCL, imagine that composition is simply pairing together brown and cow to form (pair brown

↪→ cow). How might our system know that the resulting structure is dangerous, if danger is not a part
of the meanings (combinator structures) for brown or cow? A simple answer is that (pair brown cow) the
information is encoded in the meaning of either is-dangerous or pair (not brown and cow, as Fodor assumes).
More concretely, the following base facts roughly capture this example:

(is-dangerous cow) → False
(is-dangerous brown) → False
(is-dangerous (pair brown cow)) → True ; brown cows are dangerous
(is-brown brown) → True
(is-brown cow) → False ; Cows are not generally brown
(is-brown (pair brown y))) → True ; anything brown is brown

33

Given these facts and the standard definitions of True, False, and pair, ChurIso finds

is-brown := ((S (S K K)) (S K))
cow := ((S (S K K)) (K K))
brown := (K (K K))
is-dangerous := ((S ((S S) K)) S)

Because these facts can be encoded into a compositional system like combinatory logic, this shows at a
minimum that issues of compositionality and role are not so simple: when “role” is defined in a system
like this, compositionality can become subtle. Contrary to the misleadingly informal philosophical debate,
consideration of a real system shows that it is in principle straightforward for a system to satisfy the required
compositional roles.

Of course, it is unlikely that memory speaks logic in this way. The reason is that it would be very difficult
to add new information since doing so would require changing the internals of a concept’s representational
structure. If suddenly we learned that we were mistaken and brown cows were not dangerous, we’d have
to alter the meaning of one of the symbols rather than simply encode a new fact. Much better would be
to have memory function as a look-up table, where combinator structures provide the index. Equivalently,
is-dangerous might not be a combinator structure, but a special interface to a memory system (for an
argument on the importance of memory architectures, see Gallistel & King, 2009). In this way, is-dangerous
↪→ might be a fundamentally different kind of thing than a statement which is true because of the inherent
properties of brown and cow (like a predicate is-brown). The argument therefore requires that we accept that
there different kinds of statements—some of which are true in virtue of their meaning (“Brown cows are
brown”) and some of which are true in virtue of how the world happens to be (“Brown cows are dangerous”),
and perhaps only the necessary truths are derived in a LCL way.9

Fodor and Lepore (1992) also argue that CRS commits one holism, where meaning depends critically on
all other aspects of knowledge, since these other aspects factor into conceptual role. Holism is considered
harmful in part because it would be unclear how two people could hold the same beliefs or knowledge since
it is unlikely that all components of their inferential system are the same. The difficulty with learning very
complex systems of knowledge is also made clear in ChurIso: larger systems that have many symbols and
relations tend to present a tougher constraint-satisfaction problem. One solution here is to favor modularity:
in a real working computational system, the set of defining relations for a symbol might be small and
circumspect. The logical operators, for instance, may only be defined with respect to each other, and not
to combinator structures that represent an entirely different domain. Even a single object—for instance a
representation of a square—could have different sets of combinators to interface with different operations
(e.g. rotation vs. flipping). Such modularity of roles and functions is a desirable feature of computational
systems in general, and the search to manage such complexity can be considered one of the defining goals of
computer science (Abelson & Sussman, 1996).

A third challenge to CRS is in its handling of meaning and reference. There is a titanic literature
on the role of reference in language and cognition, including work arguing for its centrality in conceptual
representation (e.g. Fodor & Pylyshyn, 2014). To illustrate the importance of reference, Putnam (1975)
considers a “twin earth” where there exists as substance that behaves in every way like water (H2O) but
is in fact composed of something else (XY Z). By assumption, XY Z plays the same role in conceptual
systems as H2O and yet is must be a different meaning since it refers to an entirely different substance.
Any characterization of conceptual systems entirely by conceptual roles and relations will miss an important
part of meaning. The problem leads others like Block (1997) discusses a two-factor theory of CRS in which
concepts are identified by both their conceptual role and their reference (see also Harman, 1987). Critiques
of the two-factor CRS are provided in Fodor and Lepore (1992) and discussed in Block (1997); a deflationary
argument about the whole debate can be found in Gertler (2012).10

9Famously, Quine (1951) rejected the distinction between these kinds of properties, a view followed by Fodor and Lepore
(1992) in their critique of CRS (see Block (1997) for a discussion of these issues in CRS and Fodor and Pylyshyn (2014) for more
critiques). But to a psychologist, it’s hard to see how a cognitive system that has both memory of the world and compositional
meanings could be any other way; in fact, the mismatch between memory and compositional concepts is what drives us to learn
and change conceptual representations themselves. Computers, too, certainly have some properties that can be derived from
objects themselves and objects that can index facts in a database.

10My inclination is that Putnam’s argument tells us primarily about the meaning of the word “meaning” rather than anything
substantive about the nature of mental representations (for a detailed cognitive view along these lines in a different setting, see
Piantadosi, 2015). It is true that intuitively the meaning of a term should include something about its referent; it is not clear

34

7.3 The origin of novelty and conceptual change

A strange argument in philosophy of mind comes from Fodor (1975), who holds that there is an important
sense in which most of our concepts must be innate. The argument goes, roughly, that the only way we
learn new concepts is through composition of existing concepts. Thus, if we start with GO and UP, we can
learn “lift” as CAUSE(x, GO(y, UP)). Fodor notes, however, that almost none of our concepts appear to
have compositional formulations like these (see Margolis & Laurence, 1999). He concludes, therefore, that
learning cannot create most of our concepts. The only possibility then is that almost all of our concepts
are innate, including famously concepts as obscure as carburetor. While some of taken this as a reductio ad
absurdum of the LOT or of compositional learning, it’s hard to ignore the suspicion that Fodor’s argument
is simply mistaken in some way. Indeed combinatory logic and other computational formalisms based on
function composition show that it is: any computational process can be expressed as a composition in a formal
language or LOT (see Piantadosi & Jacobs, 2016). The present paper shows that the LOT need not have
any innate meanings—just innate dynamics. This means that if a computational theory of mind is correct—
computations are the appropriate description for concepts like carburetor—then these must be expressible
compositionally and therefore can be learned in Fodor’s sense. A compositional CRS like LCL solves, at
least in principle, the problem of explaining how an organism could learn so many different computations
without requiring innate content on a cognitive level.

A corollary is that LCL theories can coherently formalize a notion of conceptual change, and that the
processes of novel conceptual creation are inherently linked to the creation of systems of concepts, following
(Laurence & Margolis, 2002; Block, 1987). One key question motivating this work is how learning could work
if children lack knowledge of key computational domains like logic, number, or quantification. The idea that
mental representations are like programs—a modern version of the LOT—has an implicit assumption that
the primitives of these programs are the genetic endowment that humans are born with. We might be born
with the ability to execute very elementary computations like if statements and logical disjunction, and
put together those operations in order to express more complex cognitive content. However, this metaphor
requires that infants—and newborns!—already have an ability to execute these abstract computations.

LCL shows one way in which this metaphor can be revised to include the possibility that such fundamental
logical abilities are not innate, but built through experience. Learners could come with an ability to execute
only underlying dynamical operations like S&K, thus possessing a system for potentially building theories
and representations. In terms of cognitive content, this system would be a blank slate. Knowledge of S&K is
not cognitive because they correspond to dynamical operations below the level of symbols, algorithms, and
structures. Thus, theories of the world (e.g. systems of combinator structures) would be constructed in this
universal system, rather than innately provided. To manage construction, learners would take perceptual
observations (here, base facts), and use these to build internal models of the observed relationships between
observed symbols. LCL therefore provides one concrete metaphor for what starting point could be cognitively
minimal, yet still permit learners to discover arbitrarily rich systems of knowledge.

8 Conclusion: Towards a synthesis

Cognitive science enjoys an embarrassment of riches. There are many seemingly incompatible approaches
to understanding cognitive processes and no consensus view on which is right or even how they relate to
each other. The major debates seem to be in large part disagreements of which metaphor is right for
thinking about the brain. These debates have made two things clear: none of our metaphors are yet
sufficient, and none of them is completely misguided. Cognitive systems are dynamical systems; they give
rise to structured manipulation of symbols; they also are implemented in physical/biological systems whose
dynamics are determined far below the level of mental algorithms. Our learning supports inference of
broad classes of computations, yet clearly we have something built in that differs from other animals. The
LCL can be thought of as a new metaphor—a sub-meaningful symbolic-dynamical system that gives rise

that our intuitions about this word tell us anything about how brains and minds actually work. In other words, Putnam may
just be doing lexical semantics, a branch of psychology, here—if his point is really about the physical/biological system of the
brain, it would be good to know what evidence can be presented that convincingly shows so. Moreover, a difficult problem with
theories based on reference is that there is no idea about what reference might mean computationally or scientifically—how we
might tell if a system does or does not have the required referential properties.

35

straightforwardly to the types of structures, representations, and algorithms that permeate cognitive science,
and that is implementable directly in neural architectures. In spanning these levels, it avoids dodging
questions about meaning.

If anything like the resulting theory is correct, there are important consequences for theories of conceptual
change as the LOT. Conceptual change from a strikingly minimal basis to arbitrarily systems of knowledge is
possible if learners come with built-in dynamical objects and learning mechanisms. Theories of learning need
not assume any cognitive content in principle, not even the basics of familiar computational systems, like
logic and number. The key is in formalizing a theory of the meaning of mental content; if CRS is chosen, it
permits construction of these systems of knowledge from much less. The framework I have described follows
the LOT in positing a structured, internal language for mentalese. But it differs from most instantiations
of the LOT in that the primitives of the language aren’t cognitive at all. S&K formalize the underlying
neural (sub-cognitive) dynamics and it is only in virtue how structures built of these dynamics interact that
meaningful systems of thought can arise. Thus, the idea of a formal language for thinking was right; the
idea that the language has primitives with intrinsic meaning—beyond their dynamics—was not.

A trope in cognitive science is that we need more constraints in order to narrow the space of possible
theories. Each subfield chooses its own constraints—architectural, rational, neural, computational etc. One
idea that broading our view to consider LCL systems is that the idea of wanting more constraints—e.g.
narrowing in on a single kind of hypothesis—might be premature. Additional constraints are useful when
the pool of theories is too large and must be culled. But it might be the case that we have too few theories in
circulation, in that none of our approaches satisfactorily handle all that we know about cognitive processes.
In this case, our search might benefit from expanding its set of metaphors—fewer constraints—to consider
new kinds of formal systems as possible cognitive theories. And in the case of LCL, useful kinds of theories
have been developed in mathematical logic that might provide a good foundation for cognition. But of
course, LCL is just one attempt, with clear strengths and clear weaknesses.

Perhaps the single greatest strength of the resulting framework is that it unifies a variety of ideas in
cognition. None of the formal machinery used here is original to this paper—all of it comes from allied
fields. The motivating ideas then conspire to create a theory that is extraordinarily simple: a few elementary
operations on trees are composed productively, giving rise to a huge variety of possible cognitive structures
and operations—and computational richness that distinguishes human-like thinking. Puzzles of meaning
are resolved as symbols come to have meaning by the way these structures interact under the elementary
operations’ dynamics. This metaphor promising foundation on which to build a theory of mental representa-
tion, with a clear road map for further progress. This paper made assumptions to show how a system could
actually work, but the general theory is not about any particular logical system, representational formalism,
or cognitive architecture. Instead, I have tried to present arguments that combinatory logic captures a few
general properties of thought, suggesting that mental representations, whatever they happen to be, will be
like combinatory logic in a few key ways.

36

Acknowledgements

I am extremely grateful to Goker Erdogan, Hayley Clatterbuck, and Ernest Davis for providing detailed
comments and suggesting improvements on an earlier draft of this work. Josh Rule contributed greatly to this
work by providing detailed comments on an early draft, important discussion, and important improvements
to ChurIso’s implementation. Noah Goodman, Ralf Haefner, Josh Tenenbaum, Chris Bates, Matt Overlan,
and members of the computation and language lab and kidd lab provided useful discussions relevant to these
ideas.

Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of
Child Health & Human Development of the National Institutes of Health under award number R01HD085996-
01. The content is solely the responsibility of the authors and does not necessarily represent the official views
of the National Institutes of Health. The author is also grateful to support from the network grant provided
by the James S. McDonnell Foundation to S. Carey, “The Nature and Origins of the Human Capacity for
Abstract Combinatorial Thought.”

37

A Sketch of universality

It may or may not be obvious to readers that any statement about the relation between objects can be
encoded into an LCL system. Here, I sketch a simple proof that this is possible when we are allowed to
define what function composition means. My focus is on the high-level logic of the proof while attempting
to minimize the amount of notation required. Let’s suppose that we are given an arbitrary base fact like,

(a (b x)) → (c (d e f))

We may re-write this into binary constraints, with a single variable on the left and a single function application
on the right, by introducing “dummy” variables D1, D2, etc:

(d e) → D1 ; right hand term is D1-D3
(D1 f) → D2
(c D2) → D3 ; D3 enforces the equality between the sides
(b x) → D4 ; left hand term is D3-D4
(a D4) → D3

This is akin to Chomsky normal form for a context-free grammar.
The challenge then is to find a mapping from symbols to combinators that satisfies these expressions. A

difficulty to note is that some variables, like D1, may appear on the left and the right, meaning that their
combinator structure must be the output of a function (appearing on the left) as well as a function that itself
does something useful (on the right). To address this, the proof sketch here will assume that we are allowed
to define the way functions are applied. For instance, instead of requiring (d e) → D1, we will replace the
function application (d e) with our own custom one, (evluate d e). When evaluate = I, we are left with
ordinary function application. I do not determine here if requiring evaluate=I permits universal isomorphism
(I suspect not). But we can show that if we are free to choose evaluate, we can satisfy any constraints.

With this change, we can re-write our base facts as,

(evaluate d e) → D1 ; right hand term is D1-D3
(evaluate D1 f)→ D2
(evaluate c D2) → D3 ; D3 enforces the equality between the sides
(evaluate b x) → D4 ; left hand term is D3-D4
(evaluate a D4)→ D3

With this addition, we can take each of the symbols (a b c d e f x and D1 D2 D3 D4) and give them each an
integer with Church encoding. Standard schemes for this can be found in Pierce (2002). Integers in Church
encoding also support addition, subtraction, and multiplication. We may therefore view these facts as a set
of integer-values, where evaluate is a function from two (integer) arguments to a single (integer) outcome:

(evaluate 4 5) → 8 ; (evaluate d e)
(evaluate 8 6) → 9 ; (evaluate D1 f)
(evaluate 3 9) → 10 ; (evaluate c D2)
(evaluate 2 7) → 11 ; (evaluate b x)
(evaluate 1 11) → 10; (evaluate a D4)

Note that at this point we may check if the facts are logically consistent—they may not state, for instance,
that (f x y) → z, (f x y) → w, and z 6= w.

Assuming consistency, we may then explicitly encode the facts by setting evaluate to be a polynomial
which encodes these facts. To see how this is possible, suppose we have constraints

(evaluate α1 β1) → γ1
(evaluate α2 β2) → γ2
(evaluate α3 β3) → γ3
. . .

It is well-known that in one dimension, any set of x, y points can be approximated by a polynomial. The
same holds for two dimensions, with a variety of available techniques. This means that we can set evaluate

to be the combinator that implements the polynomial mapping each αi, βi to γi with the desired accuracy.
An alternative to 2D polynomials is to use Gödel numbering to convert the two-dimensional problem to

a one-dimensional one. If evaluate first converts its arguments to a single integer, for instance 2αi3βi , then
the problem of finding the right polynomial reduces to a one-dimensional interpolation problem. Explicit

38

solutions then exist, such as this version of Lagrange’s solution to the general problem,

(evaluate αi βi) :=

n∑
j=1

γj
∏

1≤m≤k
m 6=j

2αi3βi − 2αm3βm

2αj3βj − 2αm3βm
. (2)

To check this, note that when i = j, the fractions inside the product cancel and the coefficient for γj becomes
1. However, when i 6= j, then there will be some numerator term which is zero, canceling out all of the other
γm. Together, these give the output of evaluate as γi when given αi and γi as input.

Note that this construction does not guarantee sensible generalizations when running evaluate on new
symbols. The specific patterns of generalization will depend on how symbols are mapped to integers, but
more problematically, polynomial interpolation famously exhibits chaotic or wild behavior on points other
than those that are fixed, a fact known as Runge’s phenomenon (Runge, 1901). As a result, the polynomial
mapping should be taken only as an existence proof that some mapping of combinators will be able to satisfy
the base facts, or the combinatory logic can in principle encode any isomorphism when we define function
application with evaluate.

39

References

Abe, H., & Lee, D. (2011). Distributed coding of actual and hypothetical outcomes in the orbital and
dorsolateral prefrontal cortex. Neuron, 70 (4), 731–741.

Abelson, H., & Sussman, G. (1996). Structure and interpretation of computer programs. Cambridge, MA:
MIT Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated
theory of the mind. Psychological review , 111 (4), 1036.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-r: A theory of higher level cognition and its relation
to visual attention. Human-Computer Interaction, 12 (4), 439–462.

Aydede, M. (1997). Language of thought: The connectionist contribution. Minds and Machines, 7 (1),
57–101.

Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and brain sciences, 22 (04), 637–660.
Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol., 59 , 617–645.
Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in cognitive science, 2 (4),

716–724.
Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene

understanding. Proceedings of the National Academy of Sciences, 110 (45), 18327–18332.
Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in cognitive sciences, 4 (3), 91–99.
Bennett, C. H. (1995). Logical depth and physical complexity. The Universal Turing Machine A Half-Century

Survey , 207–235.
Blackburn, P., & Bos, J. (2005). Representation and inference for natural language: A first course in

computational semantics. Center for the Study of Language and Information.
Block, N. (1987). Advertisement for a semantics for psychology. Midwest studies in philosophy , 10 (1),

615–678.
Block, N. (1997). Semantics, conceptual role. The Routledge Encylopedia of Philosophy .
Bonawitz, E. B., Schijndel, T. J. van, Friel, D., & Schulz, L. (2012). Children balance theories and evidence

in exploration, explanation, and learning. Cognitive psychology , 64 (4), 215–234.
Boole, G. (1854). An investigation of the laws of thought: on which are founded the mathematical theories

of logic and probabilities. London, UK: Walton and Maberly.
Bowman, S. R., Manning, C. D., & Potts, C. (2015). Tree-structured composition in neural networks without

tree-structured architectures. arXiv preprint arXiv:1506.04834 .
Bowman, S. R., Potts, C., & Manning, C. D. (2014a). Learning distributed word representations for natural

logic reasoning. arXiv preprint arXiv:1410.4176 .
Bowman, S. R., Potts, C., & Manning, C. D. (2014b). Recursive neural networks can learn logical semantics.

arXiv preprint arXiv:1406.1827 .
Brigandt, I. (2004). Conceptual role semantics, the theory theory, and conceptual change.
Brown, C. H., & Wierzbicka, A. (1997). Semantics: Primes and universals. JSTOR.
Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in

human neuroscience, 4 , 25.
Cardone, F., & Hindley, J. R. (2006). History of lambda-calculus and combinatory logic. Handbook of the

History of Logic, 5 , 723–817.
Carey, S. (1985). Conceptual change in childhood.
Carey, S. (2009). The Origin of Concepts. Oxford: Oxford University Press.
Carey, S. (2015). Why theories of concepts should not ignore the problem of acquisition. Disputatio:

International Journal of Philosophy , 7 (41).
Chalmers, D. (1990). Why fodor and pylyshyn were wrong: The simplest refutation. In Proceedings of the

twelfth annual conference of the cognitive science society, cambridge, mass (pp. 340–347).
Chalmers, D. J. (1992). Subsymbolic computation and the chinese room. The symbolic and connectionist

paradigms: Closing the gap, 25–48.
Chalmers, D. J. (1994). On implementing a computation. Minds and Machines, 4 (4), 391–402.
Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108 (3), 309–333.
Chater, N., & Oaksford, M. (1990). Autonomy, implementation and cognitive architecture: A reply to fodor

and pylyshyn. Cognition, 34 (1), 93–107.

40

Chater, N., & Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in Cognitive
Sciences, 7 (1), 19–22.

Chater, N., & Vitányi, P. (2007). Ideal learning of natural language: Positive results about learning from
positive evidence. Journal of Mathematical Psychology , 51 (3), 135–163.

Chomsky, N. (1956). Three models for the description of language. Information Theory, IRE Transactions
on, 2 (3), 113–124.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.
Church, A. (1936). An unsolvable problem of elementary number theory. American journal of mathematics,

58 (2), 345–363.
Church, A., & Rosser, J. B. (1936). Some properties of conversion. Transactions of the American Mathe-

matical Society , 39 (3), 472–482.
Conant, R., & Ashby, R. (1970). Every good regulator of a system must be a model of that system.

International journal of systems science, 1 (2), 89–97.
Craik, K. J. W. (1967). The nature of explanation. CUP Archive.
Curry, H. B., & Feys, R. (1958). Combinatory logic, volume i of studies in logic and the foundations of

mathematics. North-Holland Amsterdam.
Davies, D., & Isard, S. D. (1972). Utterances as programs. Machine intelligence, 7 , 325–339.
Davis, E. (1990). Representations of commonsense knowledge. Morgan Kaufmann Publishers, Inc: San

Mateo, CA.
Davis, E., & Marcus, G. (2016). The scope and limits of simulation in automated reasoning. Artificial

Intelligence, 233 , 60–72.
Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal of the ACM

(JACM), 7 (3), 201–215.
Ditto, W. L., Murali, K., & Sinha, S. (2008). Chaos computing: ideas and implementations. Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
366 (1865), 653–664.

Drews, C. (1993). The concept and definition of dominance in animal behaviour. Behaviour , 125 (3),
283–313.

Ebbinghaus, H.-D., & Flum, J. (2005). Finite model theory. Springer Science & Business Media.
Ediger, B. (2011). cl - a combinatory logic interpreter. http://www.stratigery.com/cl/.
Erdogan, G., Yildirim, I., & Jacobs, R. A. (2015). From sensory signals to modality-independent conceptual

representations: A probabilistic language of thought approach. PLoS Comput Biol , 11 (11), e1004610.
Falkenhainer, B., Forbus, K. D., & Gentner, D. (1986). The structure-mapping engine. Department of

Computer Science, University of Illinois at Urbana-Champaign.
Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407 (6804),

630–633.
Feldman, J. (2003a). Simplicity and complexity in human concept learning. The General Psychologist ,

38 (1), 9–15.
Feldman, J. (2003b). The simplicity principle in human concept learning. Current Directions in Psychological

Science, 12 (6), 227.
Feldman, J. (2012). Symbolic representation of probabilistic worlds. Cognition, 123 (1), 61–83.
Field, H. H. (1977). Logic, meaning, and conceptual role. The Journal of Philosophy , 74 (7), 379–409.
Fitch, W. T. (2014). Toward a computational framework for cognitive biology: unifying approaches from

cognitive neuroscience and comparative cognition. Physics of life reviews, 11 (3), 329–364.
Florêncio, C. (2002). Learning generalized quantifiers. In Proceedings of Seventh ESSLLI Student Session.
Fodor, J. (1975). The language of thought. Cambridge, MA: Harvard University Press.
Fodor, J. (1997). Connectionism and the problem of systematicity (continued): Why smolensky’s solution

still doesn’t work. Cognition, 62 (1), 109–119.
Fodor, J. (2008). LOT 2: The language of thought revisited. Oxford: Oxford University Press.
Fodor, J., & Lepore, E. (1992). Holism: A shopper’s guide.
Fodor, J., & McLaughlin, B. P. (1990). Connectionism and the problem of systematicity: Why Smolensky’s

solution doesn’t work. Cognition, 35 (2), 183–204.
Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a critical analysis, Connections

and symbols. Cognition, 28 , 3–71.

41

Fodor, J., & Pylyshyn, Z. W. (2014). Minds without meanings: An essay on the content of concepts. MIT
Press.

Frege, G. (1892). Über sinn und bedeutung. Wittgenstein Studien, 1 (1).
French, R. M. (2002). The computational modeling of analogy-making. Trends in cognitive Sciences, 6 (5),

200–205.
Gallistel, C., & King, A. (2009). Memory and the computational brain. New York: Wiley Blackwell.
Gallistel, C. R. (1998). Symbolic processes in the brain: The case of insect navigation. An invitation to

cognitive science, 4 , 1–51.
Gardner, M., Talukdar, P., & Mitchell, T. (2015). Combining vector space embeddings with symbolic logical

inference over open-domain text. In 2015 aaai spring symposium series (Vol. 6, p. 1).
Gayler, R. W. (2004). Vector symbolic architectures answer jackendoff’s challenges for cognitive neuroscience.

arXiv preprint cs/0412059 .
Gayler, R. W. (2006). Vector symbolic architectures are a viable alternative for jackendoff’s challenges.

Behavioral and Brain Sciences, 29 (01), 78–79.
Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. Cognition, 23 (3),

183–209.
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive science, 7 (2),

155–170.
Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American psychologist ,

52 (1), 45.
Gentner, D., & Stevens, A. L. (1983). Mental models.
Gertler, B. (2012). Understanding the internalism-externalism debate: What is the boundary of the thinker?

Philosophical Perspectives, 26 (1), 51–75.
Gierasimczuk, N. (2007). The problem of learning the semantics of quantifiers. Logic, Language, and

Computation, 117–126.
Gold, E. (1967). Language identification in the limit. Information and control , 10 (5), 447–474.
Goldman, A. I. (2006). Simulating minds: The philosophy, psychology, and neuroscience of mindreading.

Oxford University Press.
Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., & Tenenbaum, J. (2008). Church: A language for

generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence, uai
2008 (pp. 220–229).

Goodman, N., Tenenbaum, J., Feldman, J., & Griffiths, T. (2008). A Rational Analysis of Rule-Based
Concept Learning. Cognitive Science, 32 (1), 108–154.

Goodman, N. D. (1972). A simplification of combinatory logic. The Journal of Symbolic Logic, 37 (02),
225–246.

Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2015). Concepts in a probabilistic language
of thought. In Margolis & Lawrence (Eds.), The conceptual mind: New directions in the study of
concepts. MIT Press.

Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality. Psychological
review , 118 (1), 110.

Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theories. Mit Press.
Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, bayesian learning

mechanisms, and the theory theory. Psychological bulletin, 138 (6), 1085.
Gordon, R. M. (1986). Folk psychology as simulation. Mind & Language, 1 (2), 158–171.
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint arXiv:1410.5401 .
Greenberg, M., & Harman, G. (2005). Conceptual role semantics.
Grefenstette, E. (2013). Towards a formal distributional semantics: Simulating logical calculi with tensors.

arXiv preprint arXiv:1304.5823 .
Griffiths, T., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. (2010). Probabilistic models of cognition:

exploring representations and inductive biases. Trends Cogn. Sci , 14 (10.1016).
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone.

Nature, 445 (7126), 429–432.
Grünwald, P. D. (2007). The Minimum Description Length Principle. MIT press.
Hadley, R. F. (2009). The problem of rapid variable creation. Neural computation, 21 (2), 510–532.

42

Harman, G. (1987). (Non-solipsistic) Conceptual Role Semantics. In E. Lepore (Ed.), New directions in
semantics. London: Academic Press.

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and
how did it evolve? Science, 298 (5598), 1569–1579.

Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in cognitive sciences, 8 (6), 280–285.
Heim, I., & Kratzer, A. (1998). Semantics in generative grammar. Malden, MA: Wiley-Blackwell.
Hindley, J., & Seldin, J. (1986). Introduction to combinators and λ-calculus. Cambridge, UK: Press Syndicate

of the University of Cambridge.
Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic bulletin

& review , 22 (6), 1480–1506.
Hofstadter, D. R. (1980). Gödel Escher Bach. New Society .
Hofstadter, D. R. (1985). Waking up from the boolean dream. Metamagical Themas, 631–665.
Hofstadter, D. R. (2008). I am a strange loop. Basic books.
Hopcroft, J., Motwani, R., & Ullman, J. (1979). Introduction to automata theory, languages, and computation

(Vol. 3). Addison-wesley Reading, MA.
Horsman, C., Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? In

Proc. r. soc. a (Vol. 470, p. 20140182).
Hsu, A., & Chater, N. (2010). The logical problem of language acquisition: A probabilistic perspective.

Cognitive science, 34 (6), 972–1016.
Hsu, A., Chater, N., & Vitányi, P. (2011). The probabilistic analysis of language acquisition: Theoretical,

computational, and experimental analysis. Cognition, 120 (3), 380–390.
Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical

access and mapping. Psychological review , 104 (3), 427.
Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability.

Springer Science & Business Media.
Jackendoff, R. (2002). Foundation of language-brain, meaning, grammar, evolution. Oxford: Oxford univer-

sity press.
Jacobson, P. (1999). Towards a variable-free semantics. Linguistics and philosophy , 22 (2), 117–185.
Jay, B., & Given-Wilson, T. (2011). A combinatory account of internal structure. The Journal of Symbolic

Logic, 76 (03), 807–826.
Jay, B., & Kesner, D. (2006). Pure pattern calculus. In Programming languages and systems (pp. 100–114).

Springer.
Jay, B., & Vergara, J. (2014). Confusion in the church-turing thesis. arXiv preprint arXiv:1410.7103 .
Johnson, K. (2004). Gold’s theorem and cognitive science. Philosophy of Science, 71 (4), 571–592.
Johnson-Laird, P. N. (1977). Procedural semantics. Cognition, 5 (3), 189–214.
Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and

consciousness (No. 6). Harvard University Press.
Katz, Y., Goodman, N., Kersting, K., Kemp, C., & Tenenbaum, J. (2008). Modeling semantic cognition as

logical dimensionality reduction. In Proceedings of Thirtieth Annual Meeting of the Cognitive Science
Society.

Kearns, J. T. (1969). Combinatory logic with discriminators. The Journal of symbolic logic, 34 (4), 561–575.
Kemp, C. (2012). Exploring the conceptual universe. Psychological Review , 119 , 685–722.
Kemp, C., & Tenenbaum, J. (2008). The discovery of structural form. Proceedings of the National Academy

of Sciences, 105 (31), 10687.
Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006). Learning systems of concepts

with an infinite relational model. In Aaai (Vol. 3, p. 5).
Kemp, C., Tenenbaum, J. B., Niyogi, S., & Griffiths, T. L. (2010). A probabilistic model of theory formation.

Cognition, 114 (2), 165–196.
Koopman, P., Plasmeijer, R., & Jansen, J. M. (2014). Church encoding of data types considered harmful

for implementations.
Kwiatkowski, T., Goldwater, S., Zettlemoyer, L., & Steedman, M. (2012). A probabilistic model of syntactic

and semantic acquisition from child-directed utterances and their meanings. In Proceedings of the 13th
conference of the european chapter of the association for computational linguistics (pp. 234–244).

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., & Steedman, M. (2010). Inducing probabilistic ccg

43

grammars from logical form with higher-order unification. In Proceedings of the 2010 conference on
empirical methods in natural language processing (pp. 1223–1233).

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through proba-
bilistic program induction. Science, 350 (6266), 1332–1338.

Laurence, S., & Margolis, E. (2002). Radical concept nativism. Cognition, 86 (1), 25–55.
Lee, M. D. (2010). Emergent and structured cognition in bayesian models: comment on griffiths et al. and

mcclelland et al. Update, 14 (8).
Levin, L. A. (1973). Universal sequential search problems. Problemy Peredachi Informatsii , 9 (3), 115–116.
Levin, L. A. (1984). Randomness conservation inequalities; information and independence in mathematical

theories. Information and Control , 61 (1), 15–37.
Li, F.-F., Fergus, R., & Perona, P. (2006). One-shot learning of object categories. IEEE transactions on

pattern analysis and machine intelligence, 28 (4), 594–611.
Liang, P., Jordan, M., & Klein, D. (2010). Learning Programs: A Hierarchical Bayesian Approach. In

Proceedings of the 27th International Conference on Machine Learning.
Libkin, L. (2013). Elements of finite model theory. Springer Science & Business Media.
Lind, D., & Marcus, B. (1995). An introduction to symbolic dynamics and coding. Cambridge University

Press.
Loar, B. (1982). Conceptual role and truth-conditions: comments on harman’s paper:“conceptual role

semantics”. Notre Dame Journal of Formal Logic, 23 (3), 272–283.
Lu, Z., & Bassett, D. S. (2018). A parsimonious dynamical model for structural learning in the human

brain. arXiv preprint arXiv:1807.05214 .
Mahon, B. Z. (2015). What is embodied about cognition? Language, cognition and neuroscience, 30 (4),

420–429.
Marcus, G. F. (2003). The algebraic mind: Integrating connectionism and cognitive science. MIT press.
Margolis, E., & Laurence, S. (1999). Concepts: core readings. The MIT Press.
Markman, E. M. (1991). Categorization and naming in children: Problems of induction. Mit Press.
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of

Visual Information. W.H. Freeman & Company.
Martin, A. E., & Doumas, L. A. (2018). Predicate learning in neural systems: Discovering latent generative

structures. arXiv preprint arXiv:1810.01127 .
Martinho, A., & Kacelnik, A. (2016). Ducklings imprint on the relational concept of same or different.

Science, 353 (6296), 286–288.
McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et

al. (2010). Letting structure emerge: connectionist and dynamical systems approaches to cognition.
Trends in cognitive sciences, 14 (8), 348–356.

McNamee, D., & Wolpert, D. M. (2019). Internal models in biological control. An-
nual Review of Control, Robotics, and Autonomous Systems, 2 (1), 339-364. Retrieved from
https://doi.org/10.1146/annurev-control-060117-105206

Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception. Belknap Press.
Mollica, F., & Piantadosi, S. T. (2015). Towards semantically rich and recursive word

learning models. In Proceedings of the Cognitive Science Society. Retrieved from
http://colala.berkeley.edu/papers/mollica2015towards.pdf

Montague, R. (1973). The Proper Treatment of Quantification in Ordinary English. Formal Semantics,
17–34.

Mostowski, M. (1998). Computational semantics for monadic quantifiers. Journal of Applied Nonclassical
Logics, 8 , 107–122.

Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological review ,
92 (3), 289.

Neelakantan, A., Roth, B., & McCallum, A. (2015). Compositional vector space models for knowledge base
inference. In 2015 aaai spring symposium series.

Newell, A. (1994). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Commu-

nications of the ACM , 19 (3), 113–126.

44

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving sat and sat modulo theories: From an abstract
davis–putnam–logemann–loveland procedure to dpll (t). Journal of the ACM (JACM), 53 (6), 937–977.

Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press.
Nosofsky, R., Palmeri, T., & McKinley, S. (1994). Rule-plus-exception model of classification learning.

Psychological review , 101 (1), 53.
Nosofsky, R. M., & Palmeri, T. J. (1998). A rule-plus-exception model for classifying objects in continuous-

dimension spaces. Psychonomic Bulletin & Review , 5 (3), 345–369.
Okasaki, C. (1999). Purely functional data structures. Cambridge University Press.
Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category-based induction.

Psychological review , 97 (2), 185.
Overlan, M. C., Jacobs, R. A., & Piantadosi, S. T. (2016). A hierarchical probabilistic language-of-thought

model of human visual concept learning. In Proceedings of the Cognitive Science Society. Retrieved
from http://colala.berkeley.edu/papers/overlan2016hierarchical.pdf

Overlan, M. C., Jacobs, R. A., & Piantadosi, S. T. (2017). Learning abstract visual concepts via prob-
abilistic program induction in a language of thought. Cognition, 168 , 320–334. Retrieved from
http://colala.berkeley.edu/papers/overlan2017learning.pdf

Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity
between human and nonhuman minds. Behavioral and Brain Sciences, 31 (02), 109–130.

Piantadosi, S. T. (2011). Learning and the language of thought. Unpublished doctoral dissertation, MIT.
Retrieved from http://colala.berkeley.edu/papers/piantadosi thesis.pdf

Piantadosi, S. T. (2015). Problems in the philosophy of mathematics: A view from cog-
nitive science. In E. Davis & P. J. Davis (Eds.), Mathematics, substance and sur-
mise: Views on the meaning and ontology of mathematics. Springer. Retrieved from
http://colala.berkeley.edu/papers/piantadosi2015problems.pdf

Piantadosi, S. T., & Jacobs, R. (2016). Four problems solved by the probabilistic Lan-
guage of Thought. Current Directions in Psychological Science, 25 , 54–59. Retrieved from
http://colala.berkeley.edu/papers/piantadosi2016four.pdf

Piantadosi, S. T., Tenenbaum, J., & Goodman, N. (2012). Bootstrapping in a language of thought:
a formal model of numerical concept learning. Cognition, 123 , 199–217. Retrieved from
http://colala.berkeley.edu/papers/piantadosi2012bootstrapping.pdf

Piantadosi, S. T., Tenenbaum, J., & Goodman, N. (2016). The logical primitives of thought: Empirical
foundations for compositional cognitive models. Psychological Review , 123 , 392–424. Retrieved from
http://colala.berkeley.edu/papers/piantadosi2016logical.pdf

Pierce, B. C. (2002). Types and programming languages. MIT press.
Plate, T. A. (1995). Holographic reduced representations. Neural networks, IEEE transactions on, 6 (3),

623–641.
Pollack, J. B. (1989). Implications of recursive distributed representations. In Advances in neural information

processing systems (pp. 527–536).
Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46 (1), 77–105.
Putnam, H. (1975). The meaing of meaning. In Philosophical Papers, Volume II: Mind, Language, and

Reality. Cambridge: Cambridge University Press.
Putnam, H. (1988). Representation and reality (Vol. 454). Cambridge Univ Press.
Quine, W. V. (1951). Main trends in recent philosophy: Two dogmas of empiricism. The philosophical

review , 20–43.
Rips, L., Asmuth, J., & Bloomfield, A. (2006). Giving the boot to the bootstrap: How not to learn the

natural numbers. Cognition, 101 , 51–60.
Rips, L., Asmuth, J., & Bloomfield, A. (2008). Do children learn the integers by induction? Cognition, 106 ,

940–951.
Rips, L., Asmuth, J., & Bloomfield, A. (2013). Can statistical learning bootstrap the integers? Cognition,

128 (3), 320–330.
Rips, L., Bloomfield, A., & Asmuth, J. (2008). From numerical concepts to concepts of number. Behavioral

and Brain Sciences, 31 , 623–642.
Rips, L. J. (1975). Inductive judgments about natural categories. Journal of verbal learning and verbal

behavior , 14 (6), 665–681.

45

Rips, L. J. (1989). The psychology of knights and knaves. Cognition, 31 (2), 85–116.
Rips, L. J. (1994). The psychology of proof: Deductive reasoning in human thinking. Mit Press.
Rocktäschel, T., Bosnjak, M., Singh, S., & Riedel, S. (2014). Low-dimensional embeddings of logic. In Acl

workshop on semantic parsing.
Rothe, A., Lake, B. M., & Gureckis, T. (2017). Question asking as program generation. In Advances in

neural information processing systems (pp. 1046–1055).
Rumelhart, D., & McClelland, J. (1986). Parallel distributed processing. Cambridge, MA: MIT Press.
Runge, C. (1901). Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten.

Zeitschrift für Mathematik und Physik , 46 (224-243), 20.
Salakhutdinov, R., Tenenbaum, J., & Torralba, A. (2010). One-shot learning with a hierarchical nonpara-

metric bayesian model.
Schmidhuber, J. (1995). Discovering solutions with low kolmogorov complexity and high generalization

capability. In Machine learning proceedings 1995 (pp. 488–496). Elsevier.
Schmidhuber, J. (2002). The speed prior: a new simplicity measure yielding near-optimal computable

predictions. In International conference on computational learning theory (pp. 216–228).
Schmidhuber, J. (2007). Gödel machines: Fully self-referential optimal universal self-improvers. In Artificial

general intelligence (pp. 199–226). Springer.
Scholten, D. (2010). A primer for conant and ashbys good-regulator theorem. Unpublished .
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and brain sciences, 3 (03), 417–424.
Searle, J. R. (1990). Is the brain a digital computer? In Proceedings and addresses of the american

philosophical association (Vol. 64, pp. 21–37).
Sellars, W. (1963). Science, perception, and reality.
Shalizi, C. R., & Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and

simplicity. Journal of statistical physics, 104 (3-4), 817–879.
Shastri, L., Ajjanagadde, V., Bonatti, L., & Lange, T. (1996). From simple associations to systematic

reasoning: A connectionist representation of rules, variables, and dynamic bindings using temporal
synchrony. Behavioral and Brain Sciences, 19 (2), 326–337.

Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of
states. Cognitive psychology , 1 (1), 1–17.

Shipley, E. F. (1993). Categories, hierarchies, and induction. The psychology of learning and motivation,
30 , 265–301.

Sinha, S., & Ditto, W. L. (1998). Dynamics based computation. Physical Review Letters, 81 (10), 2156.
Siskind, J. (1996). A Computational Study of Cross-Situational Techniques for Learning Word-to-Meaning

Mappings. Cognition, 61 , 31–91.
Sloutsky, V. M. (2010). From perceptual categories to concepts: What develops? Cognitive science, 34 (7),

1244–1286.
Smolensky, P. (1988). The constituent structure of connectionist mental states: A reply to fodor and

pylyshyn. The Southern Journal of Philosophy , 26 (S1), 137–161.
Smolensky, P. (1989). Connectionism and constituent structure. Connectionism in perspective, 3–24.
Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in

connectionist systems. Artificial intelligence, 46 (1), 159–216.
Smolensky, P., Lee, M., He, X., Yih, W.-t., Gao, J., & Deng, L. (2016). Basic reasoning with tensor product

representations. arXiv preprint arXiv:1601.02745 .
Smolensky, P., & Legendre, G. (2006). The Harmonic Mind. Cambridge, MA: MIT Press.
Solomonoff, R. J. (1964a). A formal theory of inductive inference. Part I. Information and control , 7 (1),

1–22.
Solomonoff, R. J. (1964b). A formal theory of inductive inference. Part II. Information and control , 7 (2),

224–254.
Spelke, E. (2003). What makes us smart? Core knowledge and natural language. In D. Gentner & S. Goldin-

Meadow (Eds.), Language in Mind. Cambridge, MA: MIT Press.
Spelke, E., & Kinzler, K. (2007). Core knowledge. Developmental Science, 10 (1), 89–96.
Stay, M. (2005). Very simple chaitin machines for concrete ait. Fundamenta Informaticae, 68 (3), 231–247.
Steedman, M. (2001). The syntactic process. Cambridge MA: MIT Press.

46

Steedman, M. (2002). Plans, affordances, and combinatory grammar. Linguistics and Philosophy , 25 (5-6),
723–753.

Stone, T., & Davies, M. (1996). The mental simulation debate: A progress report. Theories of theories of
mind , 119–137.

Tabor, W., Juliano, C., & Tanenhaus, M. K. (1997). Parsing in a dynamical system: An attractor-based
account of the interaction of lexical and structural constraints in sentence processing. Language and
Cognitive Processes, 12 (2-3), 211–271.

Tenenbaum, J., Kemp, C., Griffiths, T., & Goodman, N. (2011). How to grow a mind: Statistics, structure,
and abstraction. science, 331 (6022), 1279–1285.

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based bayesian models of inductive learning
and reasoning. Trends in cognitive sciences, 10 (7), 309–318.

Tenenbaum, J. B., Kemp, C., & Shafto, P. (2007). Theory-based bayesian models of inductive reasoning.
Inductive reasoning: Experimental, developmental, and computational approaches, 167–204.

Tiede, H. (1999). Identifiability in the limit of context-free generalized quantifiers. Journal of Language and
Computation, 1 (1), 93–102.

Touretzky, D. S. (1990). Boltzcons: Dynamic symbol structures in a connectionist network. Artificial
Intelligence, 46 (1), 5–46.

Tromp, J. (2007). Binary lambda calculus and combinatory logic. Randomness and Complexity, from Leibniz
to Chaitin, 237–260.

Turing, A. M. (1937). Computability and λ-definability. The Journal of Symbolic Logic, 2 (04), 153–163.
Ullman, T., Goodman, N., & Tenenbaum, J. (2012). Theory learning as stochastic search in the language

of thought. Cognitive Development .
van Benthem, J. (1984). Semantic automata. In J. Groenendijk, D. d. Jongh, & M. Stokhof (Eds.), Studies in

discourse representation theory and the theory of generalized quantifiers. Dordrecht, The Netherlands:
Foris Publications Holland.

Van Der Velde, F., & De Kamps, M. (2006). Neural blackboard architectures of combinatorial structures in
cognition. Behavioral and Brain Sciences, 29 (01), 37–70.

Van Gelder, T. (1990). Compositionality: A connectionist variation on a classical theme. Cognitive Science,
14 (3), 355–384.

Van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy , 92 (7),
345–381.

Van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and brain sciences,
21 (05), 615–628.

Wagner, E. G. (1969). Uniformly reflexive structures: on the nature of gödelizations and relative com-
putability. Transactions of the American Mathematical Society , 144 , 1–41.

Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains.
Annual review of psychology , 43 (1), 337–375.

Wexler, K., & Culicover, P. (1983). Formal principles of language acquisition. Cambridge, MA: MIT Press.
Whiting, D. (2006). Conceptual role semantics.
Wisniewski, E. J., & Medin, D. L. (1994). On the interaction of theory and data in concept learning.

Cognitive Science, 18 (2), 221–281.
Wolfram, S. (2002). A new kind of science (Vol. 1). Wolfram Media Champaign, IL.
Wong, Y. W., & Mooney, R. J. (2007). Learning synchronous grammars for semantic parsing with lambda

calculus. In Annual meeting-association for computational linguistics (Vol. 45, p. 960).
Woods, W. A. (1968). Procedural semantics for a question-answering machine. In Proceedings of the

December 9-11, 1968, fall joint computer conference, part I (pp. 457–471).
Woods, W. A. (1981). Procedural semantics as a theory of meaning. (Tech. Rep.). DTIC Document.
Xu, F., & Tenenbaum, J. (2007). Word learning as Bayesian inference. Psychological Review , 114 (2),

245–272.
Yildirim, I., & Jacobs, R. A. (2012). A rational analysis of the acquisition of multisensory representations.

Cognitive science, 36 (2), 305–332.
Yildirim, I., & Jacobs, R. A. (2013). Transfer of object category knowledge across visual and haptic

modalities: Experimental and computational studies. Cognition, 126 (2), 135–148.
Yildirim, I., & Jacobs, R. A. (2014). Learning multisensory representations for auditory-visual transfer of

47

sequence category knowledge: a probabilistic language of thought approach. Psychonomic bulletin &
review , 1–14.

Zettlemoyer, L. S., & Collins, M. (2005). Learning to Map Sentences to Logical Form: Structured Classifi-
cation with Probabilistic Categorial Grammars. In UAI (pp. 658–666).

48

