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Children's acquisition of natural number has taken cen-
ter stage in recent debates about the nature of human 
learning. In the United States, children typically learn 
to correctly use the words “one”, “two”, “three”, etc. by 
about age 3 or 4 (Carey, 2009; Wynn, 1992), but the un-
derlying cognitive capacities that enable them to do this 
have been long debated. Many prominent theories have 
held that the concepts these words map to are innate, 
perhaps based on simple rules that are present in people 
without learning. For example, if both a concept of ONE 
and “plus one” were innate, then combining these oper-
ations would allow one to define all integers. Often the 
“plus one” operation is written as a successor function 
S defined by S(x) = x + 1. Thus, the number concepts 
would be defined through repeated applications of S,

This approach is generative in the sense that what is 
innately given is a set of operations which, when applied 
appropriately, can generate a list of numbers, build-
ing a number n out of the representation of n − 1 (Leslie 
et al., 2008). This view is also motivated by mathematical 
logic, where integers can be defined in mathematical the-
ories through this type of successor rule, dating back to 

Peano (1889). Similarly, it has also been hypothesized that 
number relies on innate (not learned) principles of count-
ing (Gallistel & Gelman, 1992; Gelman & Gallistel, 1978; 
Gelman & Meck,  1983)—for instance, that counting 
words should be aligned one-to-one with objects being 
counted, or knowledge that the order in which a set is 
enumerated does not affect the final answer. Such theo-
ries do not necessarily predict that children know every-
thing about number from birth, but historically they have 
been imprecise about the mechanisms of change, includ-
ing the extent to which maturation and data play a role in 
explaining children's improvements.

Children's exact number representations have also 
been theorized to be closely tied to our ability to ap-
proximately represent and compare different quantities 
(Cantlon,  2012; Dehaene,  2011; Halberda et  al.,  2008; 
Shusterman et al., 2016; van Marle et al., 2018; Whalen 
et al., 1999). For example, Shusterman et al. (2016) show 
that learning a principle behind number meaning is as-
sociated with improvement in estimation. Importantly, 
accounts which hold that approximation plays a key role 
in number representations have not explained the origins 
of exactness in number (Carey & Barner, 2019), nor the 
poor performance of experimental interventions tar-
geting approximation in improving exact mathematics 
(Szkudlarek et al., 2021; Szűcs & Myers, 2017).
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An alternative to proposals that key principles of num-
ber are innate is that number is constructed (e.g., Xu, 2019). 
Proposing a theory of how number might be constructed, 
Carey  (2009) argues that children reason analogically 
about the relationship between the first few number words 
(“one”, “two”, “three”, etc.) and their corresponding car-
dinal meanings (1, 2, 3, etc.). When they discover that one 
more in the verbal list corresponds to one more object in 
the corresponding set, they discover an abstract under-
standing of how verbal counting relates to quantity. This 
analogy is the insight that allows children to understand 
the early number system and extend word meaning beyond 
the small number range. A qualitative shift is required to 
get to large numbers because children have resource-lim-
ited working memory representations of sets that can only 
represent sets exactly up to a cardinality of three or four 
(Carey, 2009; Feigenson & Carey, 2003, 2005). The limita-
tions of memory mean that children must build something 
new—a specific analogical or structural relationship to the 
list of words—in order to go beyond their memory sys-
tems. As this account would predict, people appear unable 
to use number to exactly match cardinality in the absence 
of direct visual cues unless they have the numerical labels 
(Pitt et al., 2022), challenging the notion that learners pos-
sess concepts before learning the words. Constructive the-
ories have the advantage of explaining many of the facts 
about the diversity of number across cultures (Carey & 
Barner,  2019; O'Shaughnessy et al.,  2021), including that 
some cultures have no number words at all, that number 
appears to be difficult for both cultures and children to cre-
ate, and that the forms that number ends up taking are di-
verse, often reliant on local cultural or economic pressures. 
Indeed, members of one indigenous Amazonian group 
have been shown to handle even multiplication by fives 
without robustly understanding addition by one, indicating 
that learning mechanisms are capable of a striking breadth 
of different kinds of number-like systems (O'Shaughnessy 
et al., 2023). Which structures and analogies children build 
will be dependent on their input, although inherent limits 
in cognitive systems like memory play an important role in 
determining how acquisition proceeds.

However, Carey's account has been critiqued for fail-
ing to resolve how children solve the problem of discov-
ering that numbers have an infinite, discrete structure 
like the following (Rips et  al.,  2006; Rips, Asmuth, & 
Bloomfield, 2008; Rips, Bloomfield, & Asmuth, 2008):

as opposed to any other logical possibility, like a circular 
system (e.g., how we label time on a clock): 
One way to phrase this critique is that Carey's account 
does not specify how children pick the right analogy, 
as opposed to any of the infinitely many possibilities. 
Specifically, children often learn other forms of labeling 
in other domains: how we label time, for example, starts 
over again at “one” when we reach “twelve,” so why do not 
children think that's a good hypothesis for number (Rips 

et al., 2006)? Similarly, other lists children learn are finite 
(e.g., the presidents or the alphabet) so children must be ca-
pable of distinguishing finite and infinite lists. What leads 
them to believe that numbers are infinite? It seems that 
children must already know the right structure in order to 
craft the correct analogy, and so perhaps numbers must be 
built-in, in some sense, for any theory.

These issues arise in part from stating theories in intu-
itive language, as opposed to formal computational im-
plementations that make explicit the hypothesis space as 
well as the inference mechanisms that choose between hy-
potheses. While models are always motivated by intuition, 
formalization seems critical to make progress generally in 
the field (Devezer et al., 2021; van Rooij & Baggio, 2021). 
Formalization may also help debates and theory move be-
yond the too-simplistic binary distinction between nativ-
ism and empiricism, and toward an integrated approach 
(Elman,  1997; Spelke & Kinzler,  2007), placing nativism 
and empiricism, in the words of Spelke and Kinzler (2009), 
“in dialog, not debate” (p. 96). This is because any learning 
model has parts that are innate (e.g., the learning mech-
anism and system for specifying hypotheses) and parts 
which are learned (e.g., the particular hypothesis chosen).

The goal of the present paper is to provide a tutorial 
overview of how one may construct a formalized learning 
model in this key case study of natural number learning. 
This learning model draws on a number of key theories, 
including Carey's, as well as inductive ideas more gener-
ally about how to learn complex, structured representa-
tions (Rule et al., 2020; Tenenbaum et al., 2011).

A PROGRA M-LEARN ING MODEL 
FOR N U M BER

The basic idea of modeling number acquisition as algo-
rithm learning was outlined by Piantadosi et  al.  (2012) 
(henceforth PTG). They presented a Bayesian model which 
learns a mental representation analogous to a computer 
program to map sets (e.g., {o, o}) to words (e.g., “two”). 
In this view, learners would observe how parents use num-
ber words—what words tend to co-occur with what sets—
and construct a mental procedure to best explain the data 
they see. The space of possible programs such a learner 

∙ → ∙ → ∙ → ∙ → ∙ → …
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considers is broad, motivated in part by the range of algo-
rithmic representations that children develop across child-
hood, everything from learning to tie shoelaces, to playing 
games, to rules and manners, to the ability to do later math-
ematics like arithmetic and fractions (Rule et  al.,  2020). 
Such breadth of ability suggests that children have a fairly 
unconstrained space of possible representations.

One way to formalize this is to follow the general setup 
of both programming languages and mathematical logic, 
where we can assume an initial set of primitive operations 
that are used to build more complex hypotheses. A primi-
tive is an operation which can be treated as a discrete sym-
bol and combined with other symbols. Primitives perform 
functions, for example, in mathematics we might think of 
division as a primitive in arithmetic. Division takes two 
numbers and returns a third (e.g., 28 ÷ 7 = 4). Primitives 
are often assumed to be not learned, perhaps innate or 
the result of maturation. However, number learning takes 
place once children are a few years old, and they may, 
therefore, draw on operations or representations which 
they have learned already. It is convenient to call all of 
these operations primitives as well since the role they play 
in the hypothesis space—at least in current models—is the 
same as primitives that are innate.

Primitives combine into more complex mental rep-
resentations through composition. A composition 
just takes the output of one operation and sends it to 
the input of another. For example, in mathematics, 
exp(sin(x)) sends the output of sin(x) as the input of exp. 
Similarly, standard algebra allows us to build complex 
equations like f = g ⋅m1 ⋅m2∕r

2 by composing simple 
mathematical operations. We could, in fact, write this 
in a way that the functions and compositions were more 
explicit: ������

(
�����

(
g, �����

(
m1,m2

))
, ������(r)

)
.  

Here, the primitive pieces are times, divide, and square, 
and they form the language to express more complex 
hypotheses.

In the context of number learning, we might assume 
that learners have access to an ability to check one-to-one 
correspondence of sets through a function like match 
(Izard et al., 2014), which takes two sets and determines 
if they can be lined up one-to-one. For example:

1 match({x}, {y,z}) 
would evaluate to false but
1 match({x,w}, {y,z}) 
would evaluate to true. Such a function is meant to be 

a mental operation that users can evaluate (“run”) cogni-
tively. While match has some of the content required for 
natural numbers, note that it does not provide a count-
ing algorithm itself—it only outputs a true or false (not 
a mapping from one set to one word). A child learning 
to count might use it to figure out what word to say, but 
doing so requires a bit more.

Learners should be able to use match as a component 
of a more complex hypothesis that includes other opera-
tions too. For example, we might use it in the definition 
of a function (F), combining it with an if statement and 

some representations of linguistic words like “one” and 
“many”:

1 def F(s):
2 	 if match({o}, s):
3 	     return "one"
4 	 else:
5 	      return "many"

Here, F is the right kind of thing for counting: it takes 
a set s and returns a word. This particular F uses match 
to check if s can be put in one-to-one correspondence 
with a single element ({o}), returning “one” if it can (e.g., 
if the if evaluates to true) and “many” otherwise. 
Thus, this function F acts like a “one-many” kind of nu-
merical labeling system.

The hope of PTG was that learners might be able to 
consider essentially all of the different ways that a collec-
tion of primitives could be combined into programs like 
this. For example, using just these same operations we 
could consider a program like

1 def F(s):
2 	 if match({o}, s):
3 	     return "many"
4 	 else:
5 	      return "one"

which labels in the opposite (incorrect) way compared to 
a one-many system, or

1 def F(s):
2 	 if match(s, s):
3 	     return "one"
4 	 else:
5 	      return "two"

which always says “one”, or, if we are willing to allow for 
logical operations like disjunction (or),

1 def F(s):
2 	 if or(match({o}, s), match({o,o,o},s)):
3 	    return "one"
4 	 else:
5 	      return "many"

which labels sets of size one and three “one”, and every-
thing else “many.”

The philosophy of this approach is that a small number 
of built-in operations—perhaps at most a few dozen—ex-
presses a huge number of possible concepts for learners 
to consider. Such compositional systems provide a close 
fit to empirical learning curves (Amalric et  al.,  2017; 
Feldman, 2000; Goodman et al., 2008; Lake et al., 2015; 
Piantadosi et  al.,  2016) and have plausible brain bases 
(Frankland & Greene, 2020). The general idea of learn-
ing over compositional systems is now used across a huge 
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variety of domains. It is a fascinating fact about compu-
tation that there are small collections of primitives that 
are able to express any computation when they are com-
bined via function composition as in these examples. Such 
combinatorial expressiveness is exactly the same as found 
in language, where a small number of words are com-
bined to express sentences, paragraphs, and entire novels; 
or computer programming where a handful of primitive 
operations can be combined to express arbitrarily com-
plex computations. That is why these models are some-
times called “language of thought” models, following 
Fodor (1975). In such models, we need not posit special-
ized innate knowledge for tying shoelaces, fractions, or 
flying the space shuttle, if  those abilities can be expressed 
computationally, and learners can work over this compu-
tationally rich space (Rule et al., 2020).

Types constrain composition

Each primitive operation like match has a type, which is 
just an annotation of what kinds of arguments it requires 
and what kind it returns. match, for example, takes two 
sets and returns a Boolean (true/false) value. We might de-
note this type as Set × Set → Boolean, where the stuff on 
the left-hand side of “→” says what arguments the function 
wants (two sets), and the stuff on the right says what value 
it gives back (a Boolean). The logical function or, for ex-
ample, might be ������� × �������→ ������� . Types 
are useful because they provide a constraint on what com-
positions are semantically coherent or interpretable, and 
implementations use them to constrain what compositions 
of primitives are permitted. For example, we could not 
form a composition like match(or,or) because the ar-
guments to match are not sets (the ors are functions) and 
moreover those bare ors themselves have no arguments. 
Programming languages also have types in this sense, and 
it helps to catch bugs and ensure that the output can be 
computed from the input. Types also play a prominent role 
in theories of linguistic composition in semantics where 
they help specify what kinds of utterances are semantically 
meaningful (Heim & Kratzer, 1998; Steedman, 2000) (e.g., 
“the” is not a verb, so “Mia the” is not a sentence).

Priors, likelihoods, and Bayes' rule

It might seem that an expressive hypothesis space is 
actually bad news: if there are lots of options for what 
representation we could build, how could learners even 
arrive at the right one? Learners will always be given a 
finite dataset, and these data will always be consistent 
with infinitely many generalizations. This problem has 
been emphasized in philosophy as the problem of induc-
tion. It occurs even in the simplest settings: for example, 
if we knew that a function f  yielded f (1) = 2, f (2) = 4, 
f (3) = 6, it would be tempting to infer that the function 

was f (x) = 2 ⋅ x. This is an inference or a generalization 
because f (x) = 2 ⋅ x goes beyond the observed data to 
generate f (x) for any x value, not just those we actually 
saw. But, in fact, even this simple dataset is consistent 
with infinitely many possible computations—it could be 
that f (x) = − 6 + 13 ⋅ x − 6 ⋅ x2 + x3, for example. There 
is no way around the fact that learners who see such a 
dataset must have some way of determining which of the 
infinitely many possible solutions is “best.”

One response to this is to throw up your hands and 
say that learning is impossible. This tack is sometimes 
taken, either in spirit or explicitly, by claims that because 
the data do not uniquely determine a representation, it 
must be that the hypothesis space is constrained innately. 
But innateness does not explain the breadth of things that 
people are actually able to learn. At the same time, the 
problem of induction is often waved off  by empiricist ap-
proaches which sometimes claim not to build in any biases 
one way or the other. But this is impossible—any initial-
ization scheme, for example, neural networks, including 
random or zero initialization, will bias them toward cer-
tain types of representations.

The approach taken by PTG and other Bayesian 
program learning models is to just be explicit about the 
built-in biases. Bayesian biases are present, but often 
weak, meaning that they can be overcome with sufficient 
data. For example, learners might prefer f (x) = 2 ⋅ x to 
another alternative if they had a bias for simplicity (using 
fewer operations). With this bias, both can be present in 
the hypothesis space without ruining the possibility of  
learning. Weak, overcomeable, biases yield the best of 
both worlds: we can solve the fundamental problem  
of induction while remaining flexible enough to acquire 
complex representations when needed.

In Bayesian program learning models, the weak biases 
take on two forms. Typically, we assume that learners prefer 
hypotheses which can be expressed with a small number of 
primitives. Hypotheses with more primitives are possible, 
they just take considerable data to justify. This prior means 
that there is a second way in which these Bayesian program 
models are biased: the set of primitives we choose will im-
pact the representations the model arrives at because the set 
of primitives determines what is short or easy to express. 
This means that if two modelers pick different sets of prim-
itives, they will measure simplicity in different ways, and 
will consequently arrive at different representations and 
generalizations. This fact is a strength of the approach—
not a weakness—because it means that we can empirically 
discriminate proposed sets of primitives by testing which 
ones lead to more human-like generalizations. That kind of 
comparison was undertaken in the context of rule learning, 
for example, by Piantadosi et al. (2016), who showed that 
the primitives that best fit human generalizations included 
quantification (see also Kemp, 2009) as well as non-mini-
mal sets of Boolean operations.

The preference for representations with fewer oper-
ations is typically formalized with a function P(h) that 
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      |  5ALGORITHMIC ORIGINS OF COUNTING

assigns a “prior probability” to each hypothesis (com-
position of primitives) h. This prior, for example, might 
be exponential in the number of primitives in h (e.g., 
P(h) = exp( − l(h)) where l(h) is the number of primitives), 
or it might use a probabilistic context-free grammar which 
penalizes each use of each primitive via a generative prob-
abilistic model (Goodman et  al.,  2008), which is also 
useful for ensuring that compositions follow the allowed 
types. In either case, the key point is that P(h) provides a 
quantification of how preferred any hypothesis is. We can 
prefer simple hypotheses, and preferentially choose them 
as representations, while still admitting complex hypothe-
ses as possible (i.e., P(h) > 0).

The second component of a Bayesian model is a like-
lihood function, written P(d| h), which says for any hy-
pothesis h, how likely are the data d. In most versions of 
Bayesian program models, the data are typically (noisy) 
pairs of inputs and outputs. For instance, in the f (x) exam-
ple above, the data might be the pairs {(1, 2), (2, 4), (3, 6)} . 
Formally specifying the data for counting requires us 
to think about what the right input and outputs are for 
the child's target representation. If  the child is learning 
counting, it is reasonable to think that the input of the 
counting algorithm is a Set and the output is a Word: 
thus, learning counting is learning to do something to a 
set that yields the correct word (i.e., one representing its 
cardinality). Learners would not be told explicitly about 
cardinality, but only given pairs of sets and words and 
asked what function relates to them. Notably, following 
PTG, children may not correctly identify the appropriate 
set when there are multiple items around—they might 
hear “two trees” in a forest (as in, “…those two trees are 

falling over…”). We, therefore, assume that the pairing 
of Sets and Words is noisy. A sample dataset might be, 
d = {({x, x, x}, ‘‘ three’’), ({x, x}, ‘‘ one’’), ({x}, ‘‘ one’’)}.

Bayes' rule is perhaps the least interesting part of 
these models. The rule just says that if we want to score 
how “good” a hypothesis h is we should multiply the prior 
P(h) with the likelihood P(d| h). This may be counterin-
tuitive because these are different kinds of things—the 
prior is the probability of a hypothesis, and the likeli-
hood is the probability of a dataset—but there are good 
theoretical reasons to follow Bayes rule (e.g., McNamara 
et al., 2006; Stamps & Frankenhuis, 2016). While there 
are many logically possible ways of combining two such 
terms, Bayes rule is the only way to update which yields 
a coherent interpretation in terms of beliefs. If P(h) is 
our belief that h is the correct one before we see data, 
the posterior P(h| d) ∝ P(h) ⋅ P(d| h) is the belief that h 
is the correct one after we see d. Intuitively, multiplying 
the prior with the likelihood has the result that we only 
strongly believe h is correct if it has high prior and likeli-
hood, relative to other hypotheses. Multiplication forces 
us to incorporate both of these parts into our new be-
lief, meaning that we should prefer hypotheses which, as 
much as possible, are simple (high P(h)) and which do a 
good job of explaining the data (high P(d| h)).

Learning in PTG

PTG examined the case of number learning with a simple 
set of basic primitive operations shown in Table 1. This 
spans several simple classes of operations: representing 

TA B L E  1   Table of primitive operations used in PTG. The counting words (“one”, “two”, “three”, etc.) and the argument to the function are 
also allowed to be used in hypotheses.

Primitive Types Gloss

singleton Set → Boolean Check if a set has one element

doubleton Set → Boolean Check if a set has two elements

tripleton Set → Boolean Check if a set has three elements

select Set → Set Choose an element from a set

union Set × Set → Set Union of two sets

intersection Set × Set → Set Intersection of two sets

difference Set × Set → Set Set-difference

complement Set → Set Complement of a set

and Boolean × Boolean → Boolean Logical conjunction

or Boolean × Boolean → Boolean Logical disjunction

not Boolean → Boolean Logical negation

if Boolean × Set × Set → Set Conditional

if Boolean × Word × Word → Word Conditional

recurse Set → Word Evaluation of current hypothesis

next Word → Word Return the next word in the count list

prev Word → Word Return the preceding word in the count list
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6  |      PIANTADOSI

and manipulating sets (Carey, 2009), Boolean logic (e.g., 
if ), producing the verbal counting routine (Fuson, 1988), 
and recursive calls (Corballis, 2014; Ferrigno et al., 2020; 
Hauser et  al.,  2002). At present, any set of primitives 
(here or for the next model) are primarily a conjecture 
about what kinds of operations are plausible for children 
to possess before knowing number, and could potentially 
support constructing the kinds of knowledge that they 
arrive at. It is important to note that the choice of primi-
tives here is a real empirical claim in the sense that this 
model predicts that children should be able to compute 
these operations antecedently to knowing how count-
ing works. Other work has examined empirical com-
parisons between logically equivalent sets of operations 
(Piantadosi et al., 2016), but that work has yet to be done 
for these kinds of operations.

As described, the hypothesis space consisted of all 
the possible ways of combining these operations into 
functions that mapped sets to words. The basic finding 
of PTG was that even out of a relatively unrestricted 
collection of options, learners could narrow in on the 
right hypothesis, and moreover, in doing so they went 
through developmentally attested “knower-level” stages 
(Sarnecka & Lee,  2009; Wynn, 1992). A “two-knower” 
child, for example, is one who is correct on the first two 
numbers but not higher ones. Learners might construct 
a “two-knower” hypothesis as:

1 def F(s):
2 	 if singleton(s):
3 	      return "one"
4 	 else:
5 	      if doubleton(s):
6 		    return "two"
7	       else:
8 		    return "many"

One-knowers and three-knowers are constructed sim-
ilarly from if statements. But the correct system counted 
recursively: it removes one element from the set of s of 
things to be counted, and for each removed element, it 
goes forward one position in the counting routine using 
next, and uses recursion (calling itself via recurse):

1 def F(s):
2 	 if singleton(s):
3 	      return "one"
4 	 else:
5 	      return next(recurse(difference​
(s,select(s))))

Note that this program itself is consistent with several 
evaluation strategies to actually “run” it. For example, 
children are more proficient at computing next start-
ing from “one” (rather than in the middle of the list) 
(Fuson, 1988), and they could do so with this hypothe-
sis by greedily evaluating next every time they recurse. 

Thus, while we can view this as a procedure, we can also 
view it as a formalization of knowledge or theory, which 
is subject to different kinds of evaluation, depending on 
the context. The same thing happens in your computer: 
when you write a for loop, for example, sometimes it 
describes the actual steps the computer takes, but some-
times—particularly in compiled languages—the com-
puter can recognize a more efficient, but mathematically 
equivalent, way to evaluate it that may involve no loops 
at all. Thus, these programs are best thought of as for-
malizations of knowledge on an abstract level.

Second, note also that this hypothesis correctly gen-
erates the word for both small and large sets, and uses 
completely different operations than the two-knower 
hypothesis: this shift reflects the required conceptual 
change, or insight.

PTG showed that as learners accumulate data, they 
shift hypotheses between knower-levels, before even-
tually arriving at a counting process like that shown 
above. The shift intuitively results from the joint forces 
of the prior and likelihood: counting algorithms that 
were very simple would only get the first few numbers 
right, and more data were required to justify moving to 
complex ones, assuming that recursive processes (like 
the correct counting system) were especially complex. 
PTG showed that the cost of recursion—intuitively a 
difficult operation—had a strong influence on when 
the model predicted children would learn a full count-
ing procedure.

This kind of program learning approach addresses 
Rips et  al.'s challenge of saying how learners acquire 
the right system by demonstrating a concrete, imple-
mented model in which the correct system followed from 
Bayesian inference, namely, trying to find a system that 
explains the observed data while being as simple as pos-
sible. While PTG showed that the model could learn 
other structures (like clock-like systems, or singular/plu-
ral systems), these hypotheses were dispreferred because 
they took more primitives to express. This approach 
nicely sits at a Bayesian middle ground in the debate be-
tween nativism and empiricism: many representational 
systems were possible, but some, like circular systems, 
are more strongly dispreferred due to complexity. Rips 
et al. are right that there is a sense in which learners must 
somehow prefer the right system, but there is also an im-
portant sense in which this preference is soft since the 
model can acquire other structures when necessary (see 
Piantadosi et al., 2012).

A N U PDATED PTG

The discussion in the literature about PTG raised a num-
ber of important issues. One was whether PTG examined 
learning in too simplistic of a setting. In particular, the 
model had “built in” small set representations but not 
approximate number operations. A basic prediction of 
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      |  7ALGORITHMIC ORIGINS OF COUNTING

program learning is that enriching the possible hypoth-
esis space should not impede the model's success because 
the whole philosophy was to construct a learner that did 
not need to be restricted to start with. The question of 
whether the same model succeeds in a more complex 
setting is easily tested with an implementation. Here, 
we consider three primary ways of making the learning 
problem harder and more realistic, motivated by prior 
discussion: allowing objects of multiple kinds, requiring 
learners to construct representations for small sets, and 
including approximate hypotheses.

Object kinds

First, we consider a setting in which learners are in 
multi-object environments and must learn that num-
ber combines with a specific object kind. The data the 
learner receives are, therefore, a number word with a 
head noun (e.g., “two accordions”) in the context of 
a variety of objects (e.g., two accordions, five music 
stands, two stools). This brings the learning setup one 
step closer to naturalistic types of data children ob-
serve including multiple kinds of information, some of 
which is not relevant.

In turn, the learning model faces a more difficult 
challenge of having to encode in the program how to se-
lect the appropriate subset of nouns from their current 
scene. Learners in this setup might consider then that 
“two” means “two accordions”, or even “two apples” or 
“two non-accordions.”

Working memory model with 
one-to-one matching

Second, instead of innate functions for small cardinalities 
like singleton in PTG, the new version of the model 
uses one-to-one matching with a system that represents 
objects with a capacity limit (e.g., up to three or four), 
closer to the proposal of Carey (2009). For example, the 
model would write a function that checks if  a set x has a 
single element as match({o}, x). Note that in the rep-
resentations below, this matching function only needs to 
apply to small sets (there is evidence against matching for 
large sets without the number system, at least when there 
are no clear visual cues available, Pitt et al., 2022). The re-
sulting model is equivalent to PTG's model under certain 
priors for sets and matching. Thus, the question addressed 
by using this matching operation is whether making these 
subset-knower levels more compositional (e.g., built out 
of match and sets) introduces a level of complexity that 
renders the learning problem impossibly hard. If  learning 
can succeed in this setup, it is more clear that the basic 
primitives in this model really do not have numerical  
content—they are just operations on sets.

Approximation primitives

Third, responding to points from Carey (2014), the model 
includes approximate hypotheses in its representational 
space. This means that it could potentially learn that 
“four” meant “approximately four.”

Despite interest in connections between approxima-
tion and counting (e.g., Cantlon, 2012; Dehaene, 2011; 
Halberda et al., 2008; Shusterman et al., 2016; van Marle 
et al., 2018; Whalen et al., 1999), prior theories have not 
been precise about how approximation may be used by 
learners trying to acquire the exact counting system. 
Here, we make a simple assumption that there are two 
approximate primitives, one to approximately check 
equality between outcomes and one to approximately 
compare set sizes. Approximate number estimation 
is often formalized as following a psychophysical law 
where a number n is represented as a Gaussian vari-
able with standard deviation w ⋅ n (Dehaene,  2011). 
Thus, larger numbers are represented with a standard 
deviation that increases linearly with numerosity. The 
parameter w is known as a Weber fraction (Halberda 
& Odic, 2015) and here we assume w = 0.2. This value 
is toward the higher end of performance for children 
(Odic et al., 2013), but higher precision makes the ap-
proximate operations closer to the exact ones, and 
therefore provides a stronger test of whether learners 
could rule out approximate systems. The first opera-
tion we assume computes the probability that, under 
a standard Weber model, the difference between two 
terms is approximately zero (e.g., between − 1

2
 and 1

2
), 

while the latter uses the same model to compute the 
probability that one quantity represented with Weber 
noise is greater than another. Notably, because the 
comparison returns probabilities, these functions are 
used in conditionals, much like the matching function, 
which will stochastically return each outcome.

Example hypotheses

A nice feature of this modeling approach is that to test 
a model with these kinds of operations, we can sim-
ply add them as primitives and follow the same logic 
as PTG. Table  2 shows a summary of the primitives 
included in the new model. These changes are note-
worthy in that each should make the learning problem 
substantially harder: instead of learners who only con-
sider functions on abstracted sets, the learning model 
now must sort out that number is abstractly a prop-
erty of objects (e.g., not specific nouns), that number 
is exact, and learn how to compose mental representa-
tions of small sets with matching in order to express 
small number concepts.

To illustrate these primitives, a two-knower might 
look like,
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8  |      PIANTADOSI

1 def F(s,k):
2 	 if match({o}, filter(s,k)):
3 	      return "one"
4 	 else if match({o,o}, filter(s,k)):
5 	      return "two"
6 	 else:
7 	      return undefined

where “one” and “two” are checked by evaluating one-
to-one correspondence (match) with memorized sets 
(e.g., {o,o}), after filtering (filter) the observed set 
of objects s in the environment for the appropriate type 
t. This filtering operation allows the model to take a set 
and a kind (e.g., “two accordions” with a set s of things in 
the environment and t = accordions) and only pay atten-
tion to the accordions in the current context s.

To compare, another possible hypothesis for this 
model is one where “one” could refer to any kind of ob-
ject, and “two” refers only to accordions:

1 def F(s,k):
2 	 if match({o}, s):
3 	      return "one"
4 	 else if match({o,o}, filter(s,ACCORDION)):
5 	      return "two"
6 	 else:
7 	      return undefined

An approximate two-knower might look identical 
except for using an approximate equality. We will write 
approximate primitives with “ANS” for approximate 
number system. For example,

1 def F(s,k):
2 if ANS-approximately-equal({o}, 
filter(s,k)):
3 	      return "one"
4 	 else if ANS-approximately-equal({o,o},  
filter(s,k)):
5 	      return "two"
6 	 else:
7 	      return undefined

where ANS-approximately-equal returns true 
with probabilities determined by approximation  
psychophysics described above. This particular hy-
pothesis is approximate for “one” and “two,” but 
because the model considers free composition of 
primitives, note that learners could consider one or 
the other to be exact, or even more complex struc-
tures and compositions of exact and approximate 
operations.

When the model learns to count, it constructs a re-
cursive algorithm very much like PTGs but involving 
kinds:

TA B L E  2   Table of primitive operations used in PTG. The counting words (“one”, “two”, “three”, etc.), memorized small sets, approximate 
magnitudes, object types, and the argument to the function are also allowed to be used in hypotheses.

Primitive Types Gloss

match Set × Set → Boolean Check if two sets can be put in 1-1 correspondence

select Set → Set Choose an element from a set

selectO Set × Kind → Set Choose an element from a set of a specific kind

filter Set × Kind → Set Select only objects of a given kind from a set

ANS-equal Set × Set → Boolean Are two sets approximately equal

ANS-less Set × Set → Boolean Is the first set approximately smaller than the second

flip ∅ → Boolean Random coin flip

union Set × Set → Set Union of two sets

intersection Set × Set → Set Intersection of two sets

difference Set × Set → Set Set-difference

complement Set → Set Complement of a set

and Boolean × Boolean → Boolean Logical conjunction

or Boolean × Boolean → Boolean Logical disjunction

not Boolean → Boolean Logical negation

if Boolean × T × T → T Conditional (one for each type T)

recurse Set → Word Evaluation of current hypothesis

next Word → Word Return the next word in the count list

prev Word → Word Return the preceding word in the count list

{} Set The empty set

{o} Set A set with one object

{o, o} Set A set with two objects

{o, o, o} Set A set with three objects
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      |  9ALGORITHMIC ORIGINS OF COUNTING

1 def F(s,k):
2 	 if match({o}, filter(s,k)):
3 	      return "one"
4 	 else:
5 	      return next(F(difference(s,se-
lect​(s,k)),k))

This works by checking if there is one object of the ap-
propriate kind in the set s (computed via match({o},-
filter(s,k))). If so, it says “one”; otherwise, it 
returns the word (next) after removing an element of kind 
k (difference(s,select(s,k))) and recursing (F). 
Note the free composition of primitives allows many hy-
potheses to be formed—for example, a learner who only 
calls everything approximately greater than two “three”:

1 def F(s,k):
2 	 if  ANS-approximately-greater(2, 
filter​(s,k)):
3 	      return "three"
4 	 else:
5 	      return undefined

All approximate functions are stochastic, meaning 
they return a distribution over outcomes, which is han-
dled in the likelihood of the model.

Model implementation

This model is implemented in Fleet (Yang & 
Piantadosi,  2022) which is a free and open source li-
brary for creating “language of thought” models. 
Code for this implementation can be found at https://​
github.​com/​piant​ado/​Fleet​. In Fleet, users specify the 
assumed primitive operations. From these primitive 
functions, Fleet automatically implements a Markov-
Chain Monte Carlo (MCMC) sampler (Hastings, 1970) 
over tree expressions of compositions of these func-
tions. This uses a technique proposed in concept 
learning by Goodman et al. (2008). Briefly, MCMC is a 
numerical technique that takes a random walk around 
the space of hypotheses, biased to find hypotheses 
which score well on the product P(h) ⋅ P(d| h) . The al-
gorithm works by starting from some hypothesis and 
proposing a change to it. Usually, this change is replac-
ing part of its program with something random from 
the grammar. For example, at one time step we might 
represent

1 def F(s,k):
2 	 if match({o}, filter(s,k)):
3 	      return "one"
4 	 else:
5 	      return next(F(select(s),k))

and at the next we might propose

1 def F(s,k):
2 	 if match({o}, filter(s,k)):
3 	      return "one"
4 	 else:
5 	      return next(F(complement(select​
(s)),k))

replacing the select in the recursive call on the last 
line with a different composition of primitives. This pro-
posal is entirely random (though constrained to satisfy 
the types) and therefore it requires no insight or reason-
ing about the hypothesis. If the change improved the 
score P(h) ⋅ P(d| h), it would be accepted, and the new 
hypothesis would be adopted as the starting point for fu-
ture proposals. If the proposal made the score worse, it 
would be accepted with a probability proportional to the 
relative scores, following a standard MCMC algorithm.

Note that in general, most changes will be unlikely 
to be accepted because they often will make hypotheses 
much worse. For example, we might propose changing 
something nonsensical,

1 def F(s,k):
2 	 if match({o}, {o,o}):
3 	      return "one"
4 	 else:
5 	      return next(F(select(s),k))

Just as a random edit to a program, a novel, or a ge-
nome probably will not improve it, a random change to a 
program probably will not help. But just as in evolution, 
sometimes a change will work, and because we tend not 
to accept worse proposals, these changes accumulate to 
yield effective hypotheses.

This should give the intuition that as the algorithm 
works, it is stochastically optimizing subtrees of the hy-
pothesis, endlessly proposing changes to each part of a 
hypothesis to try to find something that works better. 
However, MCMC will sometimes accept changes to hy-
potheses that are worse, and this is desirable to stop it 
from getting stuck in a local maximum. In fact, the above 
algorithm is a sampling algorithm (see MacKay,  2003), 
meaning that if it is run for long enough, the (relative) 
amount of time it spends on each hypothesis will approx-
imate the posterior probability, which is proportional to 
P(h) ⋅ P(d| h). This means not only that MCMC searches 
the hypothesis space for us, but it also does proper statis-
tical inference of computing how strongly we should be-
lieve that any hypothesis is the correct one. Importantly, 
MCMC does this while only representing a single hy-
pothesis and proposal at any one time: we can learn over 
an infinite hypothesis space without needing to actively 
represent all of the hypotheses.

The Fleet implementation is extremely fast, drawing 
around 200k samples per second for this model. We em-
phasize, however, that MCMC is not intended to neces-
sarily be how learners solve the search problem, although 
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10  |      PIANTADOSI

it may be a compelling possibility (Ullman et al., 2012). 
Rather, our model is meant to provide a computational 
level analysis (Marr, 1982) which maintains that people 
pick a hypothesis according to the same criteria that 
matter for the model, namely, approximately trading off 
between complexity P(h) and fit to data P(d|H) by look-
ing for hypotheses which score well on the product of 
these terms. This might occur, for instance, by making 
smarter proposals and reasoning about the content of 
the representations themselves, processes that develop-
mental theorists have not yet formalized.

RESU LTS

Figure  1 shows learning curves in the model, with the  
x-axis showing an amount of data and the y-axis show-
ing the model's belief (posterior probability) given to 
different kinds of hypotheses. These plots are made by 
simulating a given amount of data from a correct target 
hypothesis, and then running the model's search pro-
cess to find hypotheses which score highly (in terms of 
P(h) ⋅ P(d| h)). The hypotheses that are found are then 
grouped into “knower-level” stages (Wynn,  1992) by 
running them on data and seeing what responses they 
provide. For example, the “two-knower” line shows all 
hypotheses where the model responds correctly to “one” 
and “two” but not “three” and higher. The data for this 
figure are generated by sampling sets of objects, with ob-
ject kinds, from a distribution that roughly matches the 
empirical distribution of numbers, and noisily pairing 
them with number words.

In Figure 1, the y-axis values are posterior probabili-
ties, given how strongly a learner would believe that any 
particular kind of hypothesis is correct, given the noisy 
training data. For example, at 250 data points, the model 
strongly believes that two-knowers are the “best” hy-
pothesis, but the three-knowers are starting to rise. In 
this figure, approximate hypotheses are grouped by the 
most likely outcome, averaging across input sets. The 

line type in Figure 1 shows whether or not the model in-
corporates approximate primitives.

The figure makes it clear that even with the changes 
outlined above, the model is able to explain the develop-
mental trajectory of transitioning between subset-knower 
stages before eventually arriving at a fully correct count-
ing algorithm, just as in PTG. This kind of learning 
occurs in the present model in spite of the increased dif-
ficulty of sorting out possible approximate meanings, 
kind of objects, and the noun kind. Interestingly, theo-
ries using approximate numbers are not high probability 
at any stage. This is because, for any such theory, there 
is a nearby exact theory which does a better job of ex-
plaining the data (since the data are exact); the model 
shows, however, that it does not take much data to sort 
out these alternatives. This model, therefore, provides an 
implemented learning theory that aligns with the data 
analyses of Lee & Sarnecka (Lee & Sarnecka, 2010, 2011; 
Sarnecka & Lee, 2009) showing that the ANS does not 
support early word meanings.

The next section discusses several points related to 
PTG and the present model which have been made in the 
prior literature. These points are informative not just in 
the case of number, but because they highlight several 
typical kinds of critiques and responses to compositional 
models.

Examination of examples of common critiques

One common question is about the size of the hypoth-
esis space, which is typically infinite since it corresponds 
to all ways of combining primitives. Carey (2014) argues 
that the hypothesis space for PTG's model is too large, 
covering thousands of possible algorithms; the current 
space is even larger. Both PTG and the present model 
were meant to address the simpler challenge of showing 
how idealized learners might solve Rips et  al.  (2006)'s 
inductive puzzle about how children could discover 
the right structure of numbers. Showing that the right 

F I G U R E  1   Learning curves for the new PTG model, showing knower-levels as well as whether the program uses any approximate 
primitives (dashed) or not (solid).
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      |  11ALGORITHMIC ORIGINS OF COUNTING

hypotheses are selected out of the infinitely many that 
are possible is the necessary step in constructing a com-
putational-level answer to Rips et al.'s challenge.

In my own view, Carey's critique arises from a misun-
derstanding that PTG were proposing an algorithmic ac-
count, where learners must actively represent all of these 
hypotheses. But because the hypothesis space is gener-
ative—it lets you propose a new hypothesis at random 
by putting together primitives—MCMC can search the 
space without actively representing all hypotheses. For 
both PTG's and the present model, the learner only needs 
to represent a single hypothesis and alternative at a given 
point in time, and in fact, the sampling algorithm used in 
Fleet does just that. This is the surprising and powerful 
nature of Markov-Chain Monte-Carlo, that it is able to 
sample a hypothesis space without needing to enumerate 
or represent all of the possible options. This algorithm 
is the basis for much of modern statistical inference and 
has been suggested as a bona fide developmental pro-
cess (Bonawitz, Denison, Gopnik, et al., 2014; Bonawitz, 
Denison, Griffiths, et al., 2014; Ullman et al., 2012).

Moreover, it is simply a fact that children must be 
able to navigate large spaces of hypotheses—we know 
this because there are many structures and algorithms 
children can acquire (Rule et al., 2020). So, the critique 
that there are too many possibilities for this model is a 
bit like claiming that no human could be the author of 
In The Night Kitchen because there are too many options 
for what an author could have written on the blank page. 
How could Maurice Sendak have selected the right text 
out of the essentially infinite space of possibilities if 
there are more than ten thousand choices for him to nav-
igate? The answer is the same for Sendak as our model: 
the space of choices may be large, but the space of op-
tions which any learner—or writer—needs to consider at 
any moment in time can be quite small.

One way to visualize what a learner needs to do is 
shown in Figure  2, which plots a single point for each 
hypothesis computed in one run of the model. The x

-location of each point is given by its log prior (logP(h));  
the y-location is given by its log likelihood (logP(d| h)) 
on a number dataset. Learners in these models trade off 
complexity and fit to data, and so will naturally be pulled 
to hypotheses close to the origin (lower left). How much 
they care about being vertically far away from the origin 
as opposed to horizontally far away from the origin will 
depend on the amount of data they have seen: as amount 
of data increases, they will move along the set of possible 
hypotheses from the upper left to the lower right—thus, 
with lots of data, they will not care about being far away 
from the origin on the x-axis, but will care about being 
far away on the y-axis. The left curved edge is an opti-
mal Pareto frontier, meaning learners along this frontier 
cannot improve their fit to data without increasing com-
plexity, nor reduce complexity without sacrificing fit to 
the data.

An efficient learner could “walk” along this frontier 
from top left to bottom right as the amount of data in-
creases, considering only hypotheses that are simple and 
explain the data. This occurs, at least approximately, 
because the frontier will contain the highest probability 
hypotheses for a fixed amount of data, and the inference 
algorithm is a sampler which means that it will tend to 
generate the high probability hypotheses. Less efficient 
learners—maybe those who make random proposals—
might need to consider more hypotheses over time. Thus, 
the number of hypotheses a learner must traverse de-
pends on how efficiently they can propose hypotheses. 
If they are efficient at proposing new hypotheses, they 
might hop along 10 − 25 different hypotheses along this 
frontier. If they are inefficient, they may take a random 
walk along the frontier and consider more. But in either 
case, most of the hypotheses in this space need not be 
actively represented at all because they are not on the 
frontier, meaning they are either too complex or poorly 
fit the data. One way to think about this is that the data 
are exponentially informative about the underlying hy-
pothesis. For example, we might expect that on average 

F I G U R E  2   Visualization of the learner's hypothesis space. Each point is a hypothesis (program), plotted at how well it fits the data versus 
how complex it is. As learners acquire data, they shift beliefs in hypotheses. Most hypotheses in the space have low probability: red has highest 
probability, blue less probability, and gray hypotheses have probability less than about 1 in 10 million. Efficient learners might only consider a 
handful of hypotheses (e.g., red points) along the high probability edge.
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12  |      PIANTADOSI

only 1∕10N hypotheses get the first N number words 
right, meaning that a few number words provide a dras-
tic reduction on the space of hypotheses learners would 
seriously or actively consider.

A second common form of criticism concerns the 
relationship between these models and prior theories. 
Often developmental theories are informal, meaning that 
they are stated in language rather than mathematics or 
with computational implementations. These informal 
theories are absolutely critical to computational mod-
eling because they tell us what to implement computa-
tionally. However, the informality of most theories often 
leaves ambiguity about how mechanically the pieces are 
put together. This is one of the most important reasons 
to implement theories: doing so functions as a kind of 
consistency check, showing where you make unstated 
assumptions or where the informal theory is imprecise, 
or sometimes even inconsistent. Often implementations 
allow us to derive quantitative predictions, some of 
which surprise us: One example is that we first imple-
mented a closely related model of quantifier learning—
expressing word meanings like “most” as compositions 
of set-based primitives—by assuming that learners pick 
meanings which are most often true. It sounded intui-
tively, or informally, like a plausible approach. However, 
this model learned trivial meanings like “most” is always 
true. Implementation showed that assumption was not a 
good one. Instead, children would need to think about a 
proper likelihood specifying how likely each word would 
be in each context (see Piantadosi, 2011).

PTG's model has also been critiqued largely with 
a focus on whether or not it implements Carey  (2009)'s 
bootstrapping theory (Beck, 2017; Carey, 2014; Rey, 2014; 
Rips et al., 2013). This debate is largely terminological, 
but whether PTG qualifies as “bootstrapping” in Carey's 
sense may be orthogonal to the question of whether it is 
the right general approach. Carey (2014) also questioned 
some of the underlying formal assumptions, for example, 
saying that PTG “merely assume—without evidence—
that full general resources of lambda calculus and logic 
are available for the generation of hypotheses” (p. 151) 
(While it is true that PTG described the model with 
lambda calculus, the “full” capability was not used. In 
particular, PTG's lambda calculus was strongly typed, 
a fundamental limitation on computational power). 
Lambda calculus is a logical notation for specifying 
how functions compose and ensuring that composition 
is done correctly (Hindley & Seldin, 2008; Pierce, 2002). 
Because compositionality is often thought to be cen-
tral to human-like cognition (Fodor,  1975; Fodor & 
Pylyshyn,  1988), lambda calculus is often considered a 
fundamental resource in other domains, for example, 
natural language semantics where it is used to derive 
the meaning of sentences from the component words 
(Heim & Kratzer,  1998; Steedman,  2000). This use in 
other settings makes it a plausibly available resource for 
number. But in either case, it is important to recognize 

that lambda calculus has very little content—it specifies 
nothing about, for example, objects, sets, or Boolean 
operations. It only ensures that whatever operations 
are present can be combined and evaluated in a coher-
ent way. The use of this formalism actually motivated 
direct empirical work on compositionality, demonstrat-
ing compositional abilities in preschoolers (Piantadosi 
& Aslin,  2016) though perhaps not infants (Piantadosi 
et al., 2018).

Specifying a formalism for compositionality in such a 
model is a strength, not a weakness. To compare, Carey's 
theory drew on structural analogy, and many formal sys-
tems for implementing analogy are themselves composi-
tional. In fact, if Carey's account was fully formalized, 
it would likely depend on composing some mental oper-
ations. Part of the problem is that Carey's account has 
ambiguities about some details (Fodor, 2010), although 
some explications have been written subsequently (e.g., 
Beck,  2017). Specifically, Rips et  al.'s question of how 
children build the right analogy for number is closely re-
lated to this question of what resources the analogy may 
be built from, if not compositionality.

Another advantage of formalized models is that they 
allow for quantitative predictions, and can prevent us 
from making incorrect informal predictions. O'Rear and 
McNeil (2019) studied a family of experimental interven-
tions in which children received extra information about 
number. They reasoned that if PTG's account based on 
composing primitives were correct, that extra labeling 
should slow down acquisition because labeling would 
prevent the system from needing to construct a new rep-
resentation (“The greater the number of set-size primi-
tives, the more input necessary to become a CP-knower 
… Thus, children with two set size primitives will reach 
the capacity of their primitive system with less input than 
children with four set size primitives.” (p. 3)). In contrast, 
analogical accounts would predict faster learning with 
labeling small sets because labeling would highlight the 
relationships between early words. Their prediction for 
PTG essentially assumes that set labeling would train 
additional primitives (e.g., beyond singleton, dou-
bleton, and tripleton) or reinforce use of the exist-
ing ones (see also Paliwal & Baroody, 2020).

There are two aspects to this prediction. First, it as-
sumes that giving children the ability to recognize more 
small sets through training should slow down PTG or any 
program learning model. However, in PTG the primary 
determinant of when children become CP-knowers is the 
parameter penalizing recursion (e.g., PTG, section  4.1, 
figure  4). This was motivated by the general difficulty 
of recursion, in the sense that a recursive function call 
requires storing additional information (about the cur-
rent function call) and that should be penalized because 
it uses extra resources. Similarly, in the present model, 
Figure 1 shows that children never become four-know-
ers, despite this being an option with the current working 
memory operations. If we had included working memory 
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models up to five or six, they would not yield different 
learning because the model becomes a CP-knower before 
reaching these levels. Looking at the knower-level hy-
potheses above, a five-knower and a six-knower are both 
more complex than a three- or four-knower because they 
include the programs for these others already. Thus, even 
if there were memory resources to support five- or six-
knower hypotheses, these would still be more complex 
than three- or four-knowers, and thus not learned before 
the CP-knower hypothesis.

Interestingly, the program learning model can ex-
plain the improvements O'Rear and McNeil  (2019) 
found. Their intervention included set labels for sizes 
1 − 6, and such additional data on numbers higher than 
3 actually does speed acquisition of counting according 
to the model. Figure 3 (bottom left) shows the model 
with their training intervention which, for simplicity, 
counts each of their training data points as one addi-
tional model data point. This shows that their inter-
vention speeds learning of the CP-transition relative to 
the control. Intuitively, this happens because any data 
not explained by a subset-knower hypothesis—for ex-
ample, anything over four—will encourage the model 
to construct counting. O'Rear and McNeil (2019) have 
argued that additional data below four would slow 
learning because it would train additional set-size 
primitives. Under the PTG model, this argument is not 
valid: numbers below four are equally well explained 
by both subset- and full-counter hypotheses and so ad-
ditional data points on them should not be expected 
to differentiate these hypotheses. It is worth emphasiz-
ing here again that modeling code is freely available. 
Because the model is implemented, it is unambiguous, 
and researchers can verify what the model predicts 
about specific datasets or interventions.

There is one prediction which is closely related to 
O'Rear and McNeil  (2019)'s that would differentiate al-
gorithm-learning accounts from analogical ones. In an-
alogical theories, additional training on numbers 1 − 3 
would predict faster acquisition because it is on these 
words that children recognize the analogical relation-
ship between words and set sizes. As just discussed, for 
PTG or the present model, more data on 1 − 3 would not 
speed acquisition of counting because that data are well 
explained by subset-knower hypotheses. Data on 5 − 7 
would speed acquisition because it would be critically 
unexplained by subset-knowers. This is illustrated in 
Figure 3 (right top, right bottom), which varies the data-
set to include additional data on low versus high num-
bers, and shows speeded acquisition when more data 
about higher number words is provided. Interestingly, 
this version of the model also will then initially learn 
some approximate meanings, presumably because they 
can approximately capture some of the higher words. 
But generally, by comparing groups that receive extra 
training on low versus high number words, one could 
empirically distinguish program induction from anal-
ogy. Indeed, Gunderson and Levine  (2011) report that 
contrary to the predictions of the analogical theory, the 
frequency of high number words in children's input is 
more predictive of their learning than the frequency of 
low number words. More recently, Gibson et al.  (2020) 
found the opposite in an intervention experiment which 
provided additional training on either low (1 − 3) or high 
(4 − 6) number words: additional small number words 
improved learning more. However, this effect (their 
Figure 3) was primarily driven by one- and two-know-
ers, for whom the low sets would still contain data out-
side their known range. Three- and four-knowers showed 
roughly equal improvement between the two conditions. 

F I G U R E  3   Variants of the learning model comparing the original form (top left) to O'Rear et al.'s intervention (bottom left). The right 
column shows extra training data on low sets (top) compared to high sets (bottom).
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Similar interventions that manipulate type of training as 
a function of children's knowledge state have the poten-
tial to not only compare existing theories but point to-
ward better algorithmic accounts of how children revise 
and improve their hypotheses.

Formal models are also often evaluated based on in-
formal criteria—for instance, testing general assump-
tions or properties of their representations. This is often 
tricky because our informal terminology is often not 
perfectly calibrated to how the model actually works. 
Davidson et  al.  (2012) present empirical data showing 
that even children who have just learned counting fail 
to understand some of the semantics of number words. 
Specifically, such children often do not know which word 
is greater, or the successor relationship that words dif-
fer by quantity one—facts that one would have thought 
formed the basis of understanding the meaning of num-
bers. Indeed, related lack of knowledge about number 
principles beyond counting has been found in both in-
dustrialized (Izard et  al.,  2014) and non-industrialized 
communities (Jara-Ettinger et  al.,  2016). Though their 
empirical data compellingly characterize what children 
know and do not know, Davidson et al. (2012) err in one 
aspect of what PTG says. They say that PTG “explicitly 
equates children's implementation of the successor prin-
ciple with becoming a CP-knower” (p. 171) and argue 
that their data argue against the model because children 
do not know the semantics of number. However, in both 
PTG and the present model, all that the models learn is 
an algorithm for counting, or a procedure that maps sets 
to words. It is true that this algorithm happens to obey a 
successor function relationship between words and sets, 
but also learners who discover this algorithm should not 
be expected to explicitly know anything beyond the al-
gorithm. Any additional questions or principles—in es-
sence, descriptions of how the algorithm works, or how it 
relates to semantics—must be learned separately. Thus, 
Davidson et al. (2012)'s empirical results are not only con-
sistent with the model, they are directly predicted by it. 
An interesting and important direction for future work 
will be in understanding how children come to know not 
just the kinds of algorithms studied here, but the general 
semantic principles that characterize those algorithms.

CH A LLENGES FOR A LGORITH M 
LEARN ING A N D FUTU RE 
EXPERIM ENTA L WOR K

The program learning approach to mathematics is not 
free from challenges. Perhaps the most substantive claim 
from program learning models is that children have ac-
cess to a collection of operations that are more primi-
tive than number. This claim could motivate a body of 
work attempting to characterize what operations chil-
dren know, as well as what capacities they have combin-
ing these operations via composition. The claim that 

number might be compositions could be surprising from 
the point of view of ordinary programming languages, 
where number is elementary enough that it is basically 
always built-in. But, in fact, there are plenty of logical 
systems where number is built from more basic elements, 
such as von Neumann's definition of integers in terms of 
sets � ,

{
�
}
,
{
� ,

{
� ,

}}
, …. Piantadosi  (2021) describes 

one such system that is capable of learning many struc-
tures needed for cognition, including counting, logical 
operations, and quantifiers, from a primitive basis, where 
the operations are only defined in terms of their dynam-
ics. The primitives in any theory present an important 
psychological claim, since the assumed operations de-
termine how learners measure simplicity. Some work in 
logical domains has, in fact, attempted to reverse-engi-
neer the best measure of simplicity from empirical data 
(Piantadosi et  al.,  2016; Planton et  al.,  2021). However, 
discovering the most empirically justified foundation for 
number or any other domain remains an important open 
question that could be tackled with large-scale learning 
experiments in children.

A second primary challenge is to discover more effi-
cient learning algorithms which can navigate structured, 
algorithmic spaces. One hope is that different forms of 
representation may enable more effective inference—
for instance, recent “neural Turing machines” embed 
program representations in neural network weights, al-
lowing algorithms exactly like those required for math-
ematics to be learned using gradient methods (Graves 
et  al.,  2014). Such work highlights that it is likely pre-
mature to conclude much about what kind of search 
over hypotheses is plausible or implausible for even 
4-year-olds, since sometimes a search over an infinite 
space of algorithms might be little more than gradient 
ascent. Recent advances have also combined symbolic 
program learning approaches with neural networks 
(Ellis et al., 2020). This raises a key empirical challenge 
for working with children, which is that of investigating 
ways in which they revise and refine their algorithmic 
representations. Seminal prior work has investigated 
this question of algorithm revision in arithmetic learning 
(e.g., Jones & Van Lehn, 1994; Shrager & Siegler, 1998; 
Siegler & Shrager, 1984; Svenson, 1975), but the question 
for most program-learning models is how children can 
learn algorithms in arbitrary, novel domains.

A third key challenge is in how children develop a real 
theory of mathematics, meaning one in which learners 
come to know about the multitude of objects, structures, 
and processes that mathematicians learn. The model 
here learns only a counting procedure, but as high-
lighted by Davidson et  al.  (2012) and others, children 
also come to know much more. Children learn successor 
principles, notions of even and odd numbers, addition 
and multiplication, and specific shortcuts relating to 
different areas of knowledge. Such richness in number 
should not be surprising given the reach of other human 
technology, including even, for instance, our ability to 

 14678624, 0, D
ow

nloaded from
 https://srcd.onlinelibrary.w

iley.com
/doi/10.1111/cdev.14031 by U

niversity O
f C

alifornia - B
erkeley, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  15ALGORITHMIC ORIGINS OF COUNTING

create physical devices—from sundials to mechanical 
calculators (Aspray, 2000)—for representing and manip-
ulating quantities. However, there are no theories of how 
all of the pieces of number fit together. Indeed, studies of 
any single domain like counting pale in comparison with 
the full challenge of learning complex, interrelated the-
ories. Computational work has only just begun to tackle 
theories with multiple interacting rules, principles, and 
concepts. The closest work might be Ullman et al. (2012), 
who developed a theory of learning magnetism based on 
compositions of logical primitives, or Rule  (2020) who 
developed a system for learning arbitrary knowledge 
and computation. Even compared to these theory-learn-
ing models, what a U.S. adult knows about number is 
of a different order of magnitude. Scaling up to large 
networks of interconnected concepts is a challenge not 
just for the program-learning approach but also for any 
theory of number.

EM PIRICA L PREDICTIONS

Finally, it should be noted that the model here, as well as 
PTG, makes several clear predictions which can inform 
future work:

	 (i)	 As discussed above, the model predicts that data 
about higher number words (above 3) should be 
more influential in shaping children's transition 
to CP-knowing. This contrasts with analogical ac-
counts in which the relationships between the first 
three words are what drives the CP-transition.

	(ii)	 Children should show a capacity to learn a variety 
of different kinds of algorithms from these prim-
itives, including those that express other kinds 
of systems. This can be seen already in the fact 
that children learn, for example, singular/plural 
systems in language, and circular systems for tell-
ing time (see PTG), but more broadly this class of 
model predicts a general ability to learn a vari-
ety of different types of computations, including 
perhaps other recursive systems of rules based on 
sets (see Rule et al., 2020). This ability is left unex-
plained by theories that number learning is based 
on one particular innate structure, rather than a 
general capacity.

	(iii)	 Learners should prefer simpler processes or algo-
rithms, when given ambiguous data. The simplicity 
preference is key to the model eventually arriving 
at a CP-knower hypothesis. Predicted simplicity bi-
ases can be seen in similar concept-learning models 
(Feldman, 2000; Goodman et al., 2008; Piantadosi 
et al., 2016).

	(iv)	 Recursive processes should be dispreferred relative 
to other primitives by child learners. This means 
that if one gives a learner data which is ambigu-
ous between a recursive and non-recursive process, 

learners should tend to generalize according to the 
non-recursive one. We note, however, that in general 
recursion is a difficult issue since all recursive pro-
cesses can be rephrased as iterative processes, but in 
general a representation that is defined in terms of 
itself (like the recursive function here) should incur 
a penalty.

	 (v)	 Children should be able to compute the primitives 
required, at least by the age they start learning 
number, including operations on sets. They should 
succeed on recursive functions by the time they are 
CP-knowers. We note that this does not necessarily 
include all of the primitives in Tables 1 and 2, but 
certainly, the operations used in the learned repre-
sentations should be easier than number, and an-
tecedently available.

	(vi)	 Following Carey (2009), the model predicts that the 
counting words themselves should play a critical 
role in children's learning. The counting procedure 
that is learned is one that critically hinges on the 
verbal system, and it is, therefore, likely that the 
concepts cannot be used without being given verbal 
labels (see Pitt et al., 2022).

	(vii)	 Learning to count should be a separable piece 
from all of the other aspects of number, meaning 
that children who learn counting should not nec-
essarily show other forms of knowledge about 
numbers (Davidson et  al., 2012; Izard et  al.,  2014; 
Jara-Ettinger et  al.,  2016). The model only learns 
a counting procedure from naturalistic data, so 
other knowledge (e.g., infinity, addition, properties 
of sets, reasoning about the underlying algorithm, 
etc.) would need a separate learning setup. These 
types of knowledge are likely formalizable in simi-
lar terms—this is part of the strength of this kind of 
general “language of thought” approach.

We note also that any proposed intervention that, 
for example, provides extra data to the learner of a 
certain type can be first tested with the model. The 
model then makes quantitative predictions about how 
data of different kinds should influence acquisition. 
However, the model is currently only of a simple form 
where the data are pairs of sets and words, and data 
are all remembered with high fidelity. Such models lay 
groundwork for similar kinds of formal accounts that 
might take pedagogical evidence or include cognitive 
constraints. In particular, instruction on the process 
of counting itself seems to be important in children's 
learning (Mix et  al.,  2012; Paliwal & Baroody,  2018, 
2020). Such richer kinds of input are not yet integrated 
into these types of formal models, but future work 
could incorporate instruction and different forms of 
input, as informative about the steps of the underlying 
algorithm. Such modeling work will be important for 
moving this framework toward naturalistic data and 
using it to help find plausible interventions.
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CONCLUSION

This paper has attempted to provide an overview of how 
algorithm learning models could inform research on 
early number while addressing several critiques of PTG. 
Learning models that operate over spaces of computa-
tions do essentially the same thing as scientists: they look 
at data and craft a theory to explain it. Scientists' space 
of possible theories is relatively unrestricted—we can 
draw on probability in genetics, differential equations in 
understanding pattern formation, or posit novel catego-
ries and features of objects like quarks in atomic physics. 
Similarly, the space of possible hypotheses for children 
must be large in order to explain all it is that they are 
able to acquire.

A large hypothesis space is actually intended to 
“build in” as little as possible since the set of all hypoth-
eses can be described very concisely (e.g., compositions 
of the primitives in Table 2). Yang and Piantadosi (2022) 
compare the situation to Borges (1941/1970)'s “Library 
of Babel”—a library which contains every logically 
possible book (every sequence of characters). The li-
brary consequently contains essentially no informa-
tion at all, since its entire contents can be described 
with a single phrase: “all sequences of characters.” 
What matters for the simplicity or parsimony of a hy-
pothesis space is not its size, but rather how simply it 
can be expressed. Both the original PTG and the new 
version permit very concise descriptions of their hy-
pothesis, and allow for learning of a vast variety of 
outcomes, showing that there is an important sense in 
which learners must construct the right representation 
for number and counting.

The advantage of computationally rich “language 
of thought” models is that they deploy similar ma-
chinery across diverse domains, including language 
(Piantadosi,  2011; Piantadosi et  al.,  2008; Rothe 
et  al.,  2017; Siskind,  1996; Yang & Piantadosi,  2022), 
rule-based concepts (Goodman et al., 2008; Piantadosi 
et  al.,  2016), handwriting (Lake et  al.,  2015), binary 
sequences (Planton et  al.,  2021), kinship systems 
(Katz et  al.,  2008; Kemp & Regier,  2012; Mollica & 
Piantadosi, 2022), visual concept learning and general-
ization (Depeweg et al., 2018; Lake & Piantadosi, 2020; 
Overlan et  al.,  2017), phonological theories (Ellis 
et  al.,  2022), geometry (Amalric et  al.,  2017; Romano 
et  al.,  2018), magnetism (Ullman et  al.,  2012), quan-
tifiers (Kemp,  2009; Piantadosi,  2011; Piantadosi 
et  al.,  2016). Similar models have also been used in 
computer science to create compositional seman-
tic learning models (Kwiatkowski et  al.,  2010; Liang 
et  al.,  2009, 2010; Zettlemoyer & Collins,  2005). This 
type of model also forms the basis of optimal infer-
ential theories in AI which hold essentially that an 
intelligent agent should understand its world by build-
ing program-like theories of how the world operates 
(Hutter, 2005; Solomonoff, 1964).

Most generally, a hope for the study of early mathe-
matics is that it will illuminate more about human nature 
than number. In some ways, it already has: consider what 
US children eventually learn about numbers—including 
prime numbers, long division, or procedures for manipu-
lating fractions. Eventually, they learn algebra, geometry, 
and calculus; some learn how to solve arbitrary puz-
zles with mathematical structure, like a Rubik's cube or 
Sudoku. Children in some cultures use a body counting 
system (Saxe,  2012) where they acquire algorithms for 
arithmetic which are fundamentally unlike our culture's 
algorithms. Some even learn abacus as a visual system 
where they mentally picture images of beads and ma-
nipulate them with corresponding algorithms in order to 
solve arithmetic problems (Frank & Barner, 2012; Hatano 
et al., 1977, 1987; Hishitani, 1990; Miller & Stigler, 1991; 
Stigler, 1984; Stigler et al., 1986). Such diversity of cog-
nition suggests that children simply must possess so-
phisticated abilities for internalizing essentially arbitrary 
procedures and algorithms. Accounts of learning that are 
grounded in constructing algorithms are the only theories 
that can even aspire to explain how it is we are able to do 
so much.
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