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Abstract

We present an unsupervised, cross-situational Bayesian learn-
ing model for the acquisition of compositional semantics. We
show that the model acquires the correct grammar for a toy
version of English using a psychologically-plausible amount
of data, over a wide range of possible learning environments.
By assuming that speakers typically produce sentences which
are true in the world, the model learns the semantic represen-
tation of content and function words, using only positive ev-
idence in the form of sentences and world contexts. We ar-
gue that the model can adequately solve both the problem of
referential uncertainty and the subset problem in this domain,
and show that the model makes mistakes analogous to those
made by children. Keywords: Compositional semantics; lan-
guage acquisition; Bayesian learning; Combinatory Categorial
Grammar

Introduction
Language is perhaps the only communicative system in na-
ture which compositionally builds structured meanings from
smaller pieces; this compositionality is the cognitive mecha-
nism that allows for what Humboldt called language’s “in-
finite use of finite means.” A child acquiring language is
therefore faced with learning both which words correspond
to which objects and actions in the world (lexical semantics),
and also how words can be pieced together to convey complex
meanings (compositional semantics). This includes learning
the formal semantic characteristics of content words that al-
low them to be used compositionally, and also inferring how
function words transform abstract representations of mean-
ing. For example, the word “every” in the sentence “Every
person laughed” has an abstract meaning which quantifies the
proposition LAUGHED(x) over all people x. Because func-
tion words do not generally refer to entities in the world, but
rather represent abstract syntactic and semantic operations,
they provide an especially interesting learning problem.

Though computational models exist for many problems in
language acquisition, the area of compositional semantics has
been relatively unstudied. We present a novel, unsupervised,
cross-situational learning model which is capable of learn-
ing compositional semantics in a relatively unconstrained hy-
pothesis space. The model uses positive evidence in the form
of sentences and contextual information from world environ-
ments to learn mappings from words to pairs of Combinatory
Categorial Grammar (CCG) syntactic classes and lambda ex-
pressions. Together, the syntactic and semantic forms allow
the model to compositionally build the meaning of sentences.
The model contains an inductive bias to prefer grammars with
shorter description lengths, and posits that the utterances it
hears are typically true in its current context. We observe that
the model faces two key problems in this domain: the prob-

lem of referential uncertainty and the subset problem. The
problem of referential uncertainty concerns the fact that any
sentence can potentially refer to an infinity of possible ac-
tions, objects, and logical relations. The subset problem is
that learners may consider an under-restrictive grammar to be
correct. If this happens, they will receive no direct evidence
that contradicts their grammar, and may not acquire the cor-
rect one. We show that the model can solve these problems
using a Bayesian cross-situational learning algorithm.

Language acquisition is a complex and multi-faceted prob-
lem, and for reasons of computational tractability, we focus
only on compositional semantics. Thus, the model assumes
that lexical semantics has already been acquired—it is given
a mapping from words to objects or actions in the world.
The model learns the semantic structures that govern how
these words can combine in a toy version of English which
includes nouns, quantifiers, transitive verbs, and intransitive
verbs. The model also learns the semantic representations of
words such as “every” which do not correspond to objects
in the world, but provide consistent abstract operations on
meanings. Focusing on only this dimension of the language
acquisition problem allows significant simplification concep-
tually; however, this model could in principle be combined
with similar models for learning lexical semantics from con-
text (Frank, Goodman and Tenenbaum 2007). More gener-
ally, it could be combined with similar models for tasks such
as concept learning (Goodman et al. 2008), word segmen-
tation (Goldwater, Griffiths and Johnson 2006) and syntactic
learning (Klein and Manning 2005; Perfors, Tenenbaum and
Regier 2006) to provide a comprehensive statistical model of
language acquisition.

In addition, the model accounts for quantifier spreading,
a well-studied phenomenon in the quantifier acquisition. In-
helder and Piaget (1964) observed that children up to ages 4
and 5 often answer “no” to the question “Is every man wear-
ing a hat?” in a situation in which every man is wearing a
hat, but one hat is not being worn by anyone. A variety of ex-
planations have been offered for this effect, children’s misun-
derstanding of part-whole relationships (Inhelder and Piaget
1964), non-adult linguistic representations (Philip 1995), and
pragmatic difficulties (Crain 2000). We show that our learn-
ing model makes analogous mistakes in learning, providing a
statistical learning account of the effect.

Previous research in compositional semantics
learning
Models of compositional semantics acquisition have previ-
ously been proposed in natural language processing (Zettle-



moyer and Collins 2005, Wong and Moony 2007), robotics
(Sugita and Tani 2003), and the description of visual scenes
(Roy 2002). In general, these models would provide unsat-
isfactory psychological models due to their reliance on su-
pervised learning, or implausible linguistic representations.
Siskind (1996) proposed a cross-situational word learning al-
gorithm as a psychological model, which employed an el-
ementary compositional semantics. He showed how cross-
situational inference can solve the problems of referential un-
certainty, homonomy and noisy input.

We try to address several shortcomings of Siskind’s model.
First, Siskind’s model treats sentences as unordered sets, and
it is not clear how to extend his results to fit with con-
temporary syntactic theories. In contrast, this paper studies
mappings from lexical items to lambda calculus expressions,
which interface with many syntactic theories, including gen-
erative grammar and CCG (Steedman 2001). Siskind does
not explicitly address the subset problem, and it is not clear
that if his algorithm were extended to a learning domain for
which the subset problem was a serious issue—such as the
learning of quantifiers—it would perform adequately. In ad-
dition, Siskind’s algorithm follows a set of seemingly ad hoc
rules, which makes it difficult to extract specific learning prin-
ciples which can be used to extend the work and combine it
with other learning theories. In contrast, this paper does not
attempt to provide an algorithmic theory, but rather shows
how the compositional semantics can be acquired by any al-
gorithm which solves the statistical problem we formalize be-
low.

Preliminaries
We choose to formalize syntax with CCG and semantics with
the lambda calculus. These are used because CCG is a lex-
icalized syntactic formalism which easily interfaces with the
lambda calculus. A lexicalized grammar is desireable be-
cause it simplifies the search problem: to find the best gram-
mar, we must search over mappings of words to CCG syn-
tactic types, and not separately learn rules of the grammar.
While CCG generally makes use of type-raising rules, we
use a simplified CCG grammar which does not require type-
raising. Before introducing the model, we present the simpli-
fied versions of these formalisms used in the model.

A wide range of linguistic phenomena have been modeled
using CCG, including coordination, WH-questions, prosody,
and crossed-serial dependencies (Steedman 2001). In CCG,
the syntactic category of each word specifies what syntactic
types it requires to the left or to the right, and which syntactic
type results from combining a word with its neighbor. For ex-
ample, the word “loved” may be of type (S\NP)/NP, where
the outermost “/” denotes that “loved” requires an NP to the
right and returns an element of type S\NP. The type S\NP re-
quires an NP to the left and returns a type S, for “sentence.” In
these expressions, “/” denotes a requirement to the right, and
“\” denotes a requirement to the left. Thus, if “Mark” and
“Jenn” are of type NP, the sentence “Mark loved Jenn” can
be represented syntactically by NP (S\NP)/NP NP. First,

(S\NP)/NP and the final NP combine, giving NP S\NP.
Then, the first NP combines with S\NP, giving a syntactic
type S.

Many semantic formalisms—including CCG—represent
word meanings as functions and constants. Semantic rep-
resentations are well-integrated with the CCG syntax: any
time two syntactic elements combine, their respective se-
mantic functions are combined with functional composition.
Thus, the syntax determines the order of composition1. The
lambda calculus provides a convenient formalism for repre-
senting functions, and was originally studied in the context
of computability and logic. In extremely simplified systems,
for example, a verb such as “loved” may be mapped to the
lambda expression

λxλy.LOV ED(y,x). (1)

Informally, (1) can be interpreted as a function which takes
two arguments, x and y, and returns the logical expression
LOV ED(y,x). One can tell that x and y are arguments since
they are each preceded by a λ.

The words “Mark” and “Sallie” may be mapped to the log-
ical atoms MARK and SALLIE respectively. To arrive at the
semantics of a sentence such as “Mark loved Sallie” we first
compose the lambda expressions for “loved” and “Sallie,”
giving λy.LOV ED(y,SALLIE). The result is then composed
with the lambda expression for “Mark,” giving the logical ex-
pression LOV ED(MARK,SALLIE), which is intended to be
the logical representation of the meaning of “Mark loved Sal-
lie.”

In more complex linguistic constructions, the arguments to
a lambda expression may be other lambda expressions. For
example, in the sentence “Every man loved Sallie,” a simpli-
fied analysis would map “man” to λy.MAN(y), and “every”
to

λx.λy.∀z.x(z)→ y(z). (2)

Thus, “every” is mapped to a lambda expression that takes
two arguments, x and y, both of which are other lambda
expressions. It returns the expression ∀z.x(z) → y(z),
where x(z) represents the lambda expression x applied to
z, and y(z) represents the lambda expression y applied to
z. Thus, in the sentence “Every man loved Sallie,” shown
in Figure 1, we first compose “Every” and “man” to get
λy.∀z.MAN(s)→ y(z). We also compose “loved” and “Sal-
lie” to get λy.LOV ED(y,SALLIE). These expressions are
then composed to give

∀z.MAN(z)→ LOV ED(z,SALLIE). (3)

This expression represents the meaning of the sentence in that
(3) is true if and only if the sentence “Every man laughed.” is
true. In this way, CCG and the lambda calculus can be used to
define a first-order logical expression for any sentence, which
then can be evaluated as true or false in a world context.

1Many semantic formalisms also use a type-system for this pur-
pose.



Figure 1: An example derivation showing syntactic CCG types and lambda calculus expressions combining to form a logical
representation of the sentence “Every man loved Sallie.”

Problems in compositional semantics learning

As the amount of debate concerning the semantic structure of
common words such as the definite article shows, the compo-
sitional semantic structure of language is neither obvious nor
trivial. In addition to the sheer complexity of semantic repre-
sentations children apparently acquire, learners also face im-
poverished input and a potentially infinite hypothesis space.
Two problems in particular pose a substantial challenge to
learners.

First, the problem of referential uncertainty—sometimes
called the gavagai problem—concerns the fact that there is
a large or potentially infinite set of meanings for each utter-
ance a child hears (Quine 1960, Siskind 1996). Not only can
each word potentially pick out an infinite set of objects in
the world, each word may represent one a large set of pos-
sible logical meanings, or lambda expressions. For example,
even if the child knows lexical semantics in that they know
the word “loved” is some expression involving the logical or
conceptual propositional LOV ED, there are still many poten-
tial alternatives to the correct semantics (1) above. For exam-
ple, the child might potentially consider expressions such as
λxλy.LOV ED(x,y) or λxλy.∀zLOV ED(x,z)↔ LOV ED(y,z).
A well-formulated learning model must show how children
could use observed sentences and contextual information to
solve this problem.

Another key problem faced in compositional semantics
learning is a variant of the subset problem. Like some mod-
els of grammar learning (Berwick 1985, Manzini and Wexler
1987) and phonological learning (Hayes 2004, Prince and
Tesar 2004), it is possible that a learner would incorrectly in-
fer an under-constrained hypothesis to be correct. For exam-
ple, a possible logical representation of the sentence “Every
man loved Sallie” is

∃z.MAN(z)→ LOV ED(z,SALLIE). (4)

Note that the correct semantics (3) is logically stronger than
(4). Therefore, a naive model which assumes the learner
chooses a compositional semantics which maps sentences to
meanings which are most often true would incorrectly choose
a grammar which gives the sentence meaning (4). The learner
must therefore have some mechanism to prevent them from
learning grammars which are logically too weak.

The model
We assume the task of the learner is to find the “best” way to
map sentences that they hear into first-order logical forms.
This mapping is formalized using a grammar G, which is
a function from words to pairs of CCG syntactic types and
lambda expressions. Once the learner has a CCG syntactic
type and lambda expression for each word, we assume that
they follow the syntactic and semantic composition rules to
arrive at the representations of sentences in first-order logic.
In addition, the model assumes that the sentences are uttered
in world contexts and that the truth value of each logical ex-
pression can be evaluated in the world context.

Formally, let A1,A2, . . . be sets of sentences that are ut-
tered in their respective world contexts, C1,C2, . . .. Here, Ci
is taken to be a logical model of the world. We construct
the Ci by defining truth values for all atomic propositions
such as LOV ED(BEN,JENN) and CRIED(SALLIE), which
then recursively defines truth values for combinations of these
propositions with logical connectives and quantifiers. Like
Siskind (1996), we assume that Quine (1960)’s problem is at
least mitigated by some perceptual or conceptual system that
narrows down the range of possible meanings to a salient set.

The task of the learner is then to find a mapping G from
words to pairs of lambda expressions and syntactic types that
maximizes P(G |C1,C2, . . . ,A1,A2, . . .). We assume that each
sentence is generated independently given a context and that
contexts are independent of the grammar G. By Bayes rules,
we therefore have,

P(G |C1,C2, . . . ,A1,A2, . . .) ∝ P(A1, . . . |C1, . . . ,G)P(G)

= P(G)∏
i

P(Ai |Ci,G)

= P(G)∏
i

∏
a∈Ai

P(a |Ci,G)

(5)
We choose simple forms for both the likelihood P(a | Ci,G)
and the prior P(G). Namely, we assume that with probability
α, the speaker chooses a true sentence uniformly at random,
and with probability (1−α) the speaker chooses a false sen-
tence uniformly at random. Thus we have

p(a |Ci,G) =

{
α

Ti
if a is true

1−α

Fi
if a is false

(6)

where Ti is the number of sentences which are true in context
Ci according to G and Fi is the number that are false. For the



Table 1: Grammar for the target language
Word Syntactic type Semantics
laughed, cried S\NP λx.LAUGHED(x)

loved, hated (S\NP)/NP λxλy.LOV ED(y,x)

Mark, Ben, Sallie, Jenn NP MARK

person, man, woman NP λx.PERSON(x)

every (S/(S\NP))/NP λx.λy∀z.x(z)→y(z)

some (S/(S\NP))/NP λx.λy∃z.x(z)∧y(z)

simulations here, we fix α = 0.9.
The prior P(G) is defined to penalize complex grammars,

which we take to be grammars which map words to lambda
expressions containing many logical elements such as quanti-
fiers, lambdas, atomic propositions, and logical connectives.
In this way, the prior can be seen as a Minimum Descrip-
tion Length prior which penalizes grammars whose seman-
tics require long expressions in the lambda calculus. Thus, if
Cplx(l) is the number of logical elements in the expressions
l, and GL is a mapping from words to lambda expressions, we
define

P(G) ∝ exp(− ∑
w∈W

Cplx(GL(w))),

where W is the set of words in the language.
In addition, the model assumes that words of the same class

are mapped to “similar” lambda expressions. That is, if the
lambda expression for “loved” is λxλy.LOV ED(y,x), then the
lambda expression for “hated” must be λxλy.HAT ED(y,x),
where the only change is that LOV ED has been replaced by
HAT ED. This significantly reduces the size of the hypothe-
sis space that needs to be considered and is generally true in
semantic theories (Steedman 2001). Moreover, these word
classes are plausibly learned by other means, such as dis-
tributional analysis (Cartwright and Brent 1996; Redington,
Chater and Finch 1998; Mintz, Newport and Bever 1998).

Thus, in order to maximize (5), the learner must find a
“simple” grammar which assigns high likelihood to the sen-
tences heard. To solve this computational problem, we em-
ploy a backtracking search that finds the exact maximum for
the hypothesis space defined above2. We prune the search by
not considering grammars that give malformed syntactic or
semantic expressions, thereby assuming that the learner only
considers grammars which can perfectly parse all of the sen-
tences heard. This assumption is not realistic, but simplifies
the search problem considerably.

The target grammar and model implementation
We work with a toy version of English which, though sim-
ple, still faces the subset problem and problem of referential
uncertainty discussed above. The target grammar is shown
in Table 1 and possible sentences are of the following forms:
intransitives (“Mark smiled”), transitives (“Mark loved Sal-
lie”), subject-quantified intransitives (“Every boy smiled”),
and subject-quantified transitives (“Every boy loved Sallie”).

2We choose at random when grammars tie.

Figure 2: Probability of learning a grammar which gives the
correct meaning for each sentence type, plotted against the
number of sentences of that type seen in the input (K = 0.15).

As above, we assume that words in each row of Table 1 are
mapped to “similar” lambda expressions. In general the num-
ber of possible grammars grows exponentially in the number
of words; therefore for computational tractability we make
several simplifying assumptions in the model implementa-
tion:

The lexical semantics is already known by the model. We
take this to mean that the model knows the lambda expression
for a word such as “loved” may or may not involve the logi-
cal element LOV ED, but definitely will not involve the logi-
cal elements HAT ED or CRIED. Again, we believe this is a
reasonable assumption because other methods such as Frank,
Goodman, and Tenenbaum (2007) have shown that lexical se-
mantics can be learned by a similar model. Though this mit-
igates the problem of referential uncertainty for the lexicon,
there is still considerable uncertainty about what logical rela-
tions in the world sentences refer to.

Sentences without quantifiers are learned before sentences
with quantifiers. This considerably shrinks the hypothesis
space: we first search over lambda expressions and CCG
syntactic types for proper nouns (“Mark,” “Ben,” “Sallie,”
“Jenn”), intransitives (“laughed” and “cried”) and transitives
(“loved” and “hated”). We then fix these and search over
lambda expressions for lambda expressions and CCG syn-
tactic types for common nouns (“Person,” “man,” “woman”),
“every,” and “some.” This assumption is empirically justified
in that children do not typically learn quantifiers until long af-
ter they have learned simple verbs (Inhelder and Piaget 1964).

The space of lambda expressions considered by the model
is finite but large. This spaces includes all expressions with
less than or equal to two function applications, one logical
connective (→,↔,∨,∧,¬), one quantifier, and two bound
lambda variables. In addition, we removed lambda expres-
sions which contained unused variables bound by quantifiers
or lambdas, resulting in a total of 2657 possible lambda ex-
pressions for each word.

However, the computational task faced by this model is still
formidable. For both sentences with quantifiers and sentences
without quantifiers, the model considers over a trillion poten-



Figure 3: Probability of learning
the correct mapping from
sentences to logical forms for
non-quantified sentences and
quantified sentences for various
K given 10 sentences per
context. Each point represents
the an average of 50 runs of the
model.

tial grammars, many of which are eliminated by backtrack-
ing. As far as we know, such as large hypothesis space has
not been considered previously in this domain, and we show
that even an unsupervised model is capable of learning the
correct grammar. We expect that the model could be scaled
up to larger grammars by using appropriate algorithms.

Results and discussion
The model we present learns compositional semantics in the
form of lambda expressions and CCG syntactic types, which
are used to map sentences to first-order logical expressions.
The model assumes that the sentences are typically true in
the world context, and attempts to find a simple grammar
which assigns the observed data high likelihood. However,
because we know of no data set which gives both the con-
texts and sentences that occur in them, we created such a
data set ourselves. One free parameter, K, governs what pro-
portion of atomic propositions such as SMILED(BEN) and
LOV ED(JENN,MARK) are true on average in each context.
Intuitively, acquisition will be difficult or impossible when K
is close to 0 or 1, since in these instances the world context
will not be informative about the meanings of sentences.

Figure 2 shows how often the model acquires the correct
semantic mapping for sentences with transitive verbs, intran-
sitive verbs, “every” and “some” as a function of how many
sentences it is given containing each of these words. Note that
transitive and intransitive verbs are acquired very quickly—
often after only a few sentences containing them. This is be-
cause their semantics are short and therefore favored by the
prior. The correct semantics for sentences containing “every”
and “some” is also learned quickly, typically after about 20
sentences. Interestingly, though, the semantics of “every” is
learned less quickly than “some.”

Though it is not clear what an ecologically valid value for
K is, we show that the model can acquire the correct seman-
tics over a wide range of values for K. Figure 3 shows the
probability that the model acquires a mapping which gives the
correct meaning, as a function of K and the number of con-
texts the model has seen. Note that the model quickly learns
to map sentences to the correct logical forms for a wide range
of K values—often after 1 context for transitive and intransi-
tive verbs, or 50 contexts for quantifiers. It has also been sug-
gested that rarity of true propositions (corresponding to small

K) is an important property in reasoning and learning (Oaks-
ford and Chater 1994). Indeed, Figure 3 shows an asymmetry,
learning more quickly when K is small than when K is large.

We also analyzed the mistakes that the model makes late in
acquisition. Table 2 shows probability with which the model
assigned the sentence “Every woman laughed” various se-
mantic values, for K = 0.1,0.8,0.9 after 50 contexts3. For
other values of K the model always learned the correct se-
mantics. We note that for K = 0.1, the only mistake the mod-
els makes is to interpret the sentence “Every woman laughed”
as being true if and only if all women laughed, and the only
people who laugh are women. This is analogous to the mis-
take children make in quantifier spreading. From a learn-
ing perspective, this mistake is reasonable because the bi-
conditional and implication operators are logically very sim-
ilar, and therefore require specific and potentially rare kinds
of data to distinguish. For K = 0.8 and 0.9, the model often
chooses ∀z.LAUGHED(z), ignoring the restriction to women.
Similar mistakes have been reported in children (Kang 1999),
but it is likely that typical K values are much lower (Oaksford
and Chater 1994)

K
“Every woman laughed.” 0.1 0.8 0.9
∀z.WOMAN(z)→LAUGHED(z) 0.74 0.98 0.62
∀z.WOMAN(z)↔LAUGHED(z) 0.26 0 0
∀z.LAUGHED(z) 0 0.02 0.36
∀z.LAUGHED(z)∨WOMAN(z) 0 0 0.02

Table 2: Example mistakes made in learning

As discussed above, unsupervised learners of composi-
tional semantics face two primary problems: the problem of
referential uncertainty, and the subset problem. In this model,
the cross-situational aspect of the learning allows the problem
of referential uncertainty to be solved. The optimal gram-
mar is the one which performs best across a wide range of
contexts, so even though individual sentences could refer to a
range of possible logical relations, the model chooses a gram-
mar which consistently produces highly-probable meanings
across all contexts it sees.

The subset problem is solved in this model by the size prin-
ciple (Tenenbaum 1999). Because the model assumes that

3These probabilities are the average of 50 model runs.



Rank Log Posterior LL Log Prior “man” “every” “some”
(a) 1 -1716 -1698 -18 λx.MAN(x) λxλy∀z.x(z)→ y(z) λxλy∃z.y(z)∧ x(z)
(b) 2 -1723 -1705 -18 λx.MAN(x) λxλy∀z.y(z)↔ x(z) λxλy∃z.y(z)∧ x(z)
(c) 731 -2035 -2017 -18 λx.MAN(x) λxλy∃z.x(z)→ y(z) λxλy∃z.y(z)∧ x(z)

Table 3: Key semantic values for K = 0.15 with 50 contexts. These grammars all have the correct CCG syntactic types.

true sentences are chosen from a probability distribution, it
will be penalized if the grammar maps sentences to logical
forms which are true too often4. That is, the likelihood of
all sentences will be lowered if the model posits incorrectly
that some sentences are true. Table 3 illustrates this with
the results of a typical run. The table shows the rank of the
grammar’s overall posterior relative to all other grammars,
as well as the posterior, prior, and likelihood. Note that (a),
the highest scoring grammar, is the correct one on this run
of the model. The second highest scoring grammar is (b),
which uses the biconditional rather than implication in the
lambda expression for “every.” The fact that these are close
and highly-ranked is consistent with Table 2, which shows
that the model often chooses the wrong one, making the same
mistake as children. In addition, (c) is ranked relatively low.
This is interesting because (c) is the logically weaker version
of the correct grammar that, and thus would be preferred by a
learner which chooses grammars which are most often true.

Conclusion
We have shown that an unsupervised, Bayesian model can
correctly learn compositional semantics and syntax in a toy
version of English, using only positive evidence and contex-
tual information. Moreover, this model considers a relatively
unconstrained hypothesis space, and makes mistakes in ac-
quiring quantifiers analogous to those children make. We
have argued that the toy language presents some of the core
problems that children face in acquiring a full compositional
semantics. The model succeeds due to very general princi-
ples in Bayesian learning and uses linguistically-realistic rep-
resentations of semantics. This suggests that the model could
be scaled up to include more realistic models for sentence
production, or a more elaborate syntax and semantics.
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