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Introduction

Symbolic dynamics is the study of bi-infinite sequences of symbols under
simple transformations. This subfield of dynamical systems theory has many
deep connections to theoretical computer science, ergodic theory, information
theory and number theory. Ideas from symbolic dynamics are applied in nu-
merous scientific and engineering areas, ranging from studying the properties
of crystals to constructing optimal codes for transmitting information.

This thesis attempts to generalize a few of the basic ideas from one-
dimensional and two-dimensional symbolic dynamics to “colorings” of groups.
This endeavor is interesting because many natural questions arise that have
counter-intuitive answers, and by working towards understanding these more
general systems, we may shed light on important questions that have already
come up in symbolic dynamics.

Most of this thesis will study shifts of finite type on the free group. In
Chapter 3, Theorem 3.5, we will determine when a shift of finite type on the
free group admits a strongly periodic point. This turns out to be a rather
subtle issue that involves difficult combinatorial properties of the shift of finite
type. Next, we study the golden mean shift on the free group and derive a for-
mula for its entropy in Chapter 4, Theorem 3.4. In doing so, we develop a new
generalization of Fibonacci numbers and study their asymptotics. Finally, in
Chapter 5, we present preliminary results related to “nonlinear continued frac-
tions” which arise in studying the asymptotics of these generalized Fibonacci
numbers.

4



Acknowledgments

I’d like to thank several people for helping me in various stages of this
project. First, I’d like to thank my readers, Jane Hawkins and Sue Good-
man. Klaus Schmidt provided helpful discussion about Z

d dynamics and the
connection between periodic colorings and finite index subgroups. Discussions
with Doug Lind about generalizing ideas from one-dimensional dynamics were
also a huge help in the early stages of this project. In addition, both helped
find flaws in earlier, incorrect proofs about the existence of strongly periodic
colorings on the free group.

I’d also like to thank the Office of Undergraduate Research for providing me
with funding to work on this project over the summer of 2005. The University
Center for International Studies also provided me with a travel grant to pursue
this research at the Schrödinger Institute in Vienna. I am especially grateful
to Klaus Schmidt and Karl Petersen inviting me to visit Vienna, and to Sarah
Bailey for being an excellent travel companion.

Most importantly, I’d like to thank Karl Petersen for being an amazing
mentor and advisor. Dr. Petersen has patiently and expertly explained to
me the intricacies of symbolic dynamics, ergodic theory, measure theory, and
information theory. He has been instrumental in aiding my understanding,
constructing and clarifying proofs, providing guidance, and editing numerous
drafts to make my writing readable. I am especially appreciative of the effort
and enthusiasm he has put into this project.

5



CHAPTER 1

Background

This chapter will recall basic facts about group theory, symbolic dynamics
in one dimension, and symbolic dynamics in Z

d. The discussion that follows
is not meant to be comprehensive; rather, it is intended to mention the basic
ideas in each area which will be the most useful for understanding symbolic
dynamics on the free group. The discussion of group theory is closely based
on [9] and [6].

1. Group theory

A group G = (G, ·) is a set of elements G and a binary operation · on G
with the following properties:

(1) There exists e ∈ G such that e · a = a · e = a for all a ∈ G.

(2) For all a ∈ G there exists a−1 ∈ G such that a · a−1 = a−1 · a = e.

(3) a · (b · c) = (a · b) · c for all a, b, c ∈ G.

Typically we drop the · notation and write ab instead of a · b. In addition,
we may call the set G a “group” so long as there is no ambiguity about the
binary operation.

Definition 1.1. Two groups (G1, ·) and (G2, ∗) are isomorphic if there
exists a bijection ϕ : G1 → G2 such that ϕ(x · y) = ϕ(x) ∗ ϕ(y) for x, y ∈ G1.
The function ϕ is called an isomorphism.

Four our purposes, two groups G1 and G2 will be considered “the same” if
they are isomorphic.

1.1. Group presentations. In a group G = (G, ·), the operation · can
be defined in several ways. For finite groups, · can be defined by explicitly
writing a “multiplication” table. This will not work for infinite groups, but
we can define · with a presentation.

A presentation of a group G is an expression of the form

〈 σ | R 〉
where σ is a set of generators and R is a set of equivalences that describe the
relationships among the generators. That is, we require that every element
g ∈ G can be written as some product g = σa1σa2 . . . σan

, where each σai
∈ σ.

The elements of R are equations such as

σa1σa2 . . . σan
= σb1σb2 . . . σbm

,
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1. GROUP THEORY 7

and R must satisfy the following two criteria: every equivalence in R holds in
G, and if

g = σa1 . . . σan
= σb1 . . . σbm

,

then it can be “deduced” from the relations that σa1 . . . σan
= σb1 . . . σbm

. We
avoid an in-depth discussion of what “deduced” means, as examples later in
the chapter should make it intuitively clear.

To simplify notation, we will assume that R does not include the multi-
plicative properties necessary for all groups (e.g. that aa−1 = e), that e /∈ σ,
and that if σi ∈ σ then σ−1

i /∈ σ. Also, when we wish to explicitly write out the
sets σ and R in 〈 σ | R 〉, we leave out “{” and “}” for notational simplicity.

Example 1.2. The group of integers under addition, Z, can be presented
by 〈 σ | ∅ 〉 where σ = {σ1}. We will also write this presentation as 〈 σ1 | 〉.
Even though the binary operation for this group is addition, we will write
elements as σ1σ1 = σ2

1 rather than σ1 + σ1. Therefore, each element is given
by σn

1 for some n ∈ Z.

Example 1.3. The cyclic group of order n, Cn, can be presented by
〈 σ1 | σn

1 = e 〉.
Example 1.4. The dihedral group Dn, which gives the symmetries of a

regular n-gon, can be presented by 〈 r, s | r2 = e, sn = e, (rs)n = e 〉.
Every group can also be represented by a Cayley graph. A Cayley graph

C = (V, E) of a group G is a set V of vertices and a set E of edges such that
each vertex represents a unique element of G. Vertices representing g1, g2 ∈ G
are joined by a directed edge labeled σi from g1 to g2 if and only if g1σ1 = g2.
Therefore, each vertex has exactly one incoming and outgoing edge for each
σi. Notice that these edges will depend on the presentation of G.

Example 1.5. Figure 1 shows part of the Cayley graph for Z presented
by 〈 σ1 | 〉. Group elements (vertices) are represented by black circles.

......

e

σ1 σ1σ1σ1

Figure 1. Part of the Cayley graph of Z.

Example 1.6. Figure 2 shows part of the Cayley graph for Z × Z pre-
sented by 〈 σ1, σ2 | σ1σ2 = σ2σ1 〉. In Figure 2, group elements (vertices) are
represented by black circles. Assume solid arrows are labeled σ1 and dotted
lines are labeled σ2.

1.2. Finitely generated groups. While there exists a presentation for
every group, many, such as R\{0} under multiplication, require the cardinality
of σ or R to be infinite. Such groups can be difficult to analyze so here we
restrict attention to finitely-generated groups:

Definition 1.7. A group G is finitely generated if there exists a presen-
tation 〈 σ | R 〉 of G such that |σ| and |R| are finite.
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e

Figure 2. Part of the Cayley graph of Z × Z.

In finitely-generated groups, we can define the “size”, |g|, of a group ele-
ment:

|g| = min{n : g = σa1σa2 . . . σan
}.

By convention, we say |e| = 0. Intuitively, |g| corresponds to the number of
edges one must travel on the Cayley graph of G to reach g from e. However,
the value of |g| may depend on the presentation of G.

1.3. The free group. The main objects of interest in this thesis will be
free groups:

Definition 1.8. A free group is any group G which can be presented by
〈 σ | ∅ 〉 = 〈 σ | 〉. If the cardinality of σ is q, we say that G is the free group
of order q.

Note that our definition of the order of a group depends on our assumption
that σi ∈ σ implies σ−1

i /∈ σ. For example, Z is the finitely generated free group
of order 1. In every free group, the set R of relations is empty, so each product
σa1σa2 . . . σa3 gives a unique group element. Part of the Cayley graph on two
generators is shown in Figure 3.

1.4. Subgroups.

Definition 1.9. A group H = (H, ·) is a subgroup of G = (G, ·) if H ⊆ G,
e ∈ H, and if x, y ∈ H then xy ∈ H and x−1 ∈ H.

Example 1.10. Z is a subgroup of Z × Z. This should be clear from the
fact that in 〈 σ1, σ2 | σ1σ2 = σ2σ1 〉 we can consider elements of the form σn

1 ,
which is simply the group Z.

Example 1.11. Suppose that G = C12, the cyclic group of order 12. Then
C2, C3, C4 and C6 are subgroups of G.

The index of a subgroup H ⊆ G is roughly the number of different “copies”
of H that there are in G. In Z × Z there are infinitely many “copies” of Z
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σ2

e σ1

Figure 3. Part of the Cayley graph on two generators. Each
intersection of lines represents a group element.

since we can generate a new copy of Z by considering the set {σk
2σ

n
1 : n ∈ Z}

for each k. Each choice of k produces a new set of group elements which is
isomorphic to Z, so the index of Z is infinite. This can be put more formally:

Definition 1.12. The index of a subgroup H ⊆ G is the cardinality of
the set {aH : a ∈ G}. If the index of H is finite, H is called a finite index
subgroup.

Thus, in a finite group, the index of the subgroup consisting of e is the
cardinality of the group; in infinite groups, the index of the subgroup consisting
of e is infinite. For each group G, G is a finite index subgroup of index 1. Here
is a less trivial example:

Example 1.13. Let G be presented by 〈 σ1, σ2 | σ1σ2 = σ2σ1, σ
k
2 = e 〉

for some fixed k. In G, 〈 σ1 | 〉 is a finite-index subgroup of index k and
〈 σ2 | σk

2 = e 〉 is subgroup of infinite index.

Given a subgroup H of G, each set (aH) where a ∈ G is called a coset
of H. The group of left cosets of H, denoted G/H, consists of all elements
of the form (aH), where a ∈ G. The binary operation · defined on G/H is
(aH) · (bH) = (abH). Similarly, the group of right cosets of H, denoted G\H,
consists of all elements of the form (Ha) where a ∈ G. The operation · on
G \ H is defined to be (Ha) · (Hb) = (Hab).

2. One-dimensional symbolic dynamics

2.1. Preliminaries. One-dimensional symbolic dynamics is the study of
the behavior of bi-infinite sequences of symbols under simple transformations.
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Typically, these symbols come from some finite alphabet A, and an infinite
sequence of symbols is called a point. A point x ∈ AZ may be written as

x = . . . x−3x−2x−1.x0x1x2x3 . . .

where each xi ∈ A. In this sequence, each xi occupies a different “position,”
meaning that x0 is the 0’th symbol, x1 is the 1’st symbol, x−1 is the −1st
symbol, and so on. This ordering is indicated by placing a decimal point to
the left of the 0th symbol. For a point x, we may write (x)i to mean the
symbol xi.

A block is a finite sequence of symbols b = b1b2 . . . bn, and we say that the
block b has length |b| = n. A point x contains a block b if there exists some
k ∈ Z such that xk+j = bj for all j ≤ |b|.

Definition 2.1. Given any (infinite or finite) set of forbidden blocks F ,
define XF to be the set of all points which do not contain any blocks in F .
Such a set XF is called a shift space.

Example 2.2. X∅ is called the full shift on the alphabet A and consists of
all possible sequences in A. Every shift space is a subset of the full shift.

Example 2.3. Let A = {0, 1} and F = {11, 00}. Then XF consists of two
points:

. . . 0101.0101 . . .

and

. . . 1010.1010 . . . .

Example 2.4. Let A = {0, 1} and

F = {1 . . . 1
︸ ︷︷ ︸

n 1s

: n is even }.

Then XF consists of all bi-infinite sequences for which the maximal string of
consecutive 1s always has odd length. For example,

. . . 01110100.0111110 . . . ∈ XF

but
. . . 0100101.101110 . . . /∈ XF .

2.2. The shift transformation. Shift spaces are shift invariant sets,
which informally means that given a point x ∈ XF , we can construct a new
point in XF by “shifting” the location of the decimal point in x. This is
expressed formally by a shift transformation σ : XF → XF , which acts by
shifting the sequence one position to the left (or the decimal point one place
to the right):

σ(x) = σ(. . . x−3x−2x−1.x0x1x2x3 . . .)

= . . . x−3x−2x−1x0.x1x2x3 . . .

It should be obvious that σ(XF ) = XF and that σ−1 is also well-defined.
In addition, we can assign a metric ρ to points in a shift space by setting
ρ(x, y) = sup{1/2|i| : i ∈ Z, xi 6= yi}. Under ρ, σ is continuous, and a shift
space XF is a closed set, meaning that XF contains its limit points under ρ.
In fact, we have the following theorem, proved in [10]:
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Theorem 2.5. A set X ⊂ AZ is a shift space if and only if X is closed
and shift-invariant.

The shift transformation is important because its action on shift spaces
creates a dynamical system. The formalism of one-dimensional symbolic dy-
namics describes dynamical systems that have a discrete finite space and dis-
crete time. For example, suppose a system S can be in some finite set of
states A, and that transitions between states can be restricted by some set of
blocks F . Then each point x ∈ XF gives an entire history of the system. If we
regard the current state of the system as x0, then σ moves time forward one
step since (σ(x))0 = x1. Many dynamical systems can be modeled exactly or
almost exactly by symbolic dynamical systems, which, in general, are much
easier to handle.

The shift transformation also defines one of the basic properties of points
in a dynamical system, periodicity :

Definition 2.6. A point x ∈ XF is periodic if there exists n ∈ Z such that
σn(x) = x.

Equivalently we could say that a point x ∈ XF is periodic if the orbit
{σn(x) : n ∈ Z} is finite.

Example 2.7. The point x = . . . 010101.010101 . . . is periodic since σ2(x) =
x. The point x = . . . 000000.100000 . . . is not periodic.

2.3. Entropy and the golden mean shift. The set L(XF ), also called
the language of XF , is defined to be the set of all finite blocks which appear
in points in XF . The language of XF is important because it provides another
way to characterize points in XF and a connection to the “languages” studied
in theory of computation. One of the most important characteristics of a shift
space,entropy, is roughly the growth rate of the number of blocks in L(XF ).
Define

Bn(XF ) = {l ∈ L(XF ) : 0 < |l| ≤ n}.
Then we have:

Definition 2.8. The entropy h(XF ) of a shift space XF is defined to be

h(XF ) = lim
n→∞

log2 |Bn(XF )|
n

.

Example 2.9. Let A = {0, 1} and F = {11}. XF is called the golden mean
shift because the entropy of XF is equal to log φ, where φ is the golden mean
(this example is taken from [10]).

To see this, note B1 = {0, 1} and B2 = {00, 10, 01}. We can partition Bn

into two sets, Zn and Wn, consisting of blocks that end in 0 and 1 respectively.
To construct Wn+1, we can put 1 on the end of each block in Zn. To construct
a block in Zn+1, we can put 0 on the end of each block in Zn or Wn. Thus,

|Wn| = |Zn−1|
|Zn| = |Zn−1| + |Wn−1| = |Zn−1| + |Zn−2|.
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This shows that the |Zn| are Fibonacci numbers Fi with |Z1| = 1 = F2,
|Z2| = 2 = F3, and in general |Zi| = Fi+1. Thus,

|Bn| = |Zn| + |Wn|
= |Zn| + |Zn−1|
= Fn+1 + Fn

= Fn+2

Now, it is known by Binet’s formula that

Fn =
1√
5
(φn − µn)

where

φ =
1 +

√
5

2
and µ =

1 −
√

5

2
.

We can find the entropy of XF by

h(XF ) = lim
n→∞

log |Bn(XF )|
n

= lim
n→∞

log Fn+2

n

= lim
n→∞

log
[

1√
5
(φn+2 − µn+2)

]

n

= lim
n→∞

1

n

[

log
1√
5

+ (n + 2) logφ + log(1 − µn+2

φn+2
)

]

= log φ,

since µn/φn → 0.

The limit defining entropy always exists by subadditivity, and for certain
classes of shift spaces it is easy to find. One such class of shift spaces is called
the shifts of finite type:

Definition 2.10. A shift of finite type is a shift space XF for which the
cardinality of F is finite.

Most of this thesis will be devoted to studying shifts of finite type because,
while in one-dimension they are relatively easy to understand, on Z × Z their
behavior is much more complex.

2.4. Graph representations of shifts of finite type. In general, we
can represent any one-dimensional shift of finite type XF with a directed graph
Γ, in which either the edges or the vertices are labeled with symbols. In either
case, Γ has a finite number of vertices and infinite walks on Γ correspond one-
to-one with points in the shift space. A detailed discussion of such graphs can
be found in [10], but for our purposes it will suffice to discuss an example and
sketch the proof of a simple theorem about shifts of finite type.
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R G

B

Figure 4. A graph representation of a one-dimensional shift of
finite type.

Example 2.11. Let A = {R, G, B} and F = {GR, GG, BG, BB, RB}.
Figure 4 shows a graph representing XF , where vertices correspond to symbols
in A. This graph shows that, for example, BB ∈ F since there is no directed
edge from B to B.

Theorem 2.12. A nonempty shift of finite type XF always contains a pe-
riodic point.

Proof. If XF is nonempty, then we can take an infinite walk on the graph
Γ representing XF . But Γ has a finite number of vertices, so we must visit
some vertex v twice. That means that there exists a path from v back to v.
Thus, we can construct a new walk on Γ which repeatedly goes from v to v.
This new path will correspond to a periodic point in XF . �

3. Z
d symbolic dynamics

Ideas from one-dimensional symbolic dynamics have also been generalized
to multi-dimensional arrays of symbols. For example, in Z × Z a point is a
two-dimensional array of symbols such as

...
. . . a−1,1 a0,1 a1,1 . . .
. . . a−1,0 a0,0 a1,0 . . .
. . . a−1,−1 a0,−1 a1,−1 . . .

...

A point can be viewed as an assignment of a color in A to each element of
Z × Z. We will also call points colorings:

Definition 3.1. Given a set or group S, a function f : S → A is called a
coloring of S.

In Z
d, blocks consist of d-dimensional hypercubes, and shift spaces and

shifts of finite type are defined analogously to the one-dimensional case. In
Z

d, there are d shift transformations σ1, σ2, . . . , σd, where σi shifts a coloring
along the i’th coordinate axis.
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Figure 5. A set of 13 Wang tiles which will tile the plane only aperiodically.

The symbol at position R ⊂ Z
d in a point x is notated by xR. With this

notation, we can define the shift transformations by

(σi(x))(x1,x2,...,xd) = x(x1,...,xi−1,xi+1,xi+1,...,xd).

In addition, entropy is defined analogously to the one-dimensional case. If
Cn is an d-dimensional hypercube of side length n, and Bn is the number of
colorings of Cn that are allowed in XF , then we define

h(XF ) = lim
n→∞

log Bn

nd
.

Entropy turns out to be difficult to compute for many simple Z × Z shifts of
finite type; later we will return to discuss the golden mean shift on Z × Z.

3.1. Wang tiles. Z × Z dynamics are much more difficult to analyze
than Z because even simple systems such as shifts of finite type can have
extraordinarily complicated behavior. For example, if a one-dimensional shift
of finite type is nonempty, it must contain a periodic point. In two dimensions
this is not true: there exist square tiles, called Wang tiles, which will only
allow an aperiodic tiling of the plane. An example of Wang tiles is shown in
Figure 5 [1]. One must place these in the plane without rotating them, so that
colored edges match up and no gaps are left. The tiling of the plane by Wang
tiles is “equivalent” to a two-dimensional shift of finite type, since we can give
each Wang tile a unique symbol and use the colored edges to construct a set
of forbidden blocks F .

It can be proved that the set of tiles in Figure 5 can tile the infinite plane,
but that they will never produce a periodic coloring. This means that for all
T ∈ Z × Z the orbit {T nf : n ∈ Z} is infinite for all allowed colorings f by
Wang tiles. This is perhaps surprising because the tiles are restricted only
locally (by which can be adjacent), but they give rise to the global property
that they never allow a periodic tiling. Interestingly, the existence of such shift
spaces is closely tied to the fact that in two dimensions, determining whether
a shift of finite type contains any points at all is formally undecidable.

3.2. The two-dimensional golden mean shift. Z
d dynamical systems

can describe many complicated physical systems, allowing, for example, ques-
tions in statistical physics to be rephrased in Z

d dynamical terms. Perhaps the
most well-known problem in this area is to determine the hard square entropy
constant, which equals the entropy of a two-dimensional version of the golden
mean shift. Consider Z × Z with the standard presentation

〈 σ1, σ2, | σ1σ2 = σ2σ1 〉.
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Define XF to be the set of colorings of Z × Z by A = {0, 1} such that no two
1’s are adjacent horizontally (by σ1) or vertically (by σ2). That is, the set F
of forbidden blocks consists of the following two blocks:

11 1

1

If rooks could only attack adjacent squares, Bn would count the number of
ways to place rooks on an n × n chessboard such that no two were attack-
ing each other. The value of h(XF ) is important for understanding several
physical systems and for many coding problems that arise in the study of two-
dimensional run-length constrained channels [14, 8, 12]. Much effort has been
put into simply achieving bounds for h(XF ), and h(XF ) has been computed to
several decimal places [4]:

h(XF ) = log 1.5030480824 . . .

Aside from bounds and numerical computations, very little is known about
this number, and even determining whether h(XF ) is algebraic is still an open
problem.



CHAPTER 2

Symbolic dynamics on groups

The goal of this chapter is to generalize some of the basic ideas from one-
dimensional dynamics to colorings of groups. This is motivated by the fact that
we can view points in one-dimensional symbolic dynamics as assignments of
symbols to each element of the group Z. Similarly, points in Z

d are assignments
of symbols to each element of Z

d. In a sense, generalizing one-dimensional ideas
to arbitrary groups is doomed from the start, since quantities such as entropy
may no longer always exist by subadditivity. However, the next chapter will
study the golden mean shift on the free group and show that the behavior of
many systems can still be rich and interesting.

In this chapter, we will redefine much of the terminology from one-dimensional
and Z

d dynamical systems. The definitions will be equivalent to the earlier
definitions for the cases when the group under consideration is Z or Z

d.

1. Basic definitions

1.1. The shift transformations. Let G be a finitely-generated group
presented by 〈 σ | R 〉. Suppose G has generators σ = {σ1, . . . σn}, and let A
be a finite alphabet of symbols. Recall a coloring of G is a function f : G → A.
One can regard colorings as assigning to each vertex of the Cayley graph of G
a symbol from A.

Colorings will be considered points in the dynamical system (AG, G) where
the action is given by

gf(w) = f(gw)

for g, w ∈ G and f : G → A. Since the σi are generators of G, we need only
specify that σif(w) = f(σiw) for each σi ∈ σ. For simplicity, we will generally
assume that groups are presented by a standard form: unless otherwise stated,
Z

d will be presented by

〈 σ1, . . . , σd | σiσj = σjσi for all i, j ≤ d 〉,
and the free group on k + 1 generators will be presented by

〈 σ1, . . . , σk+1 | 〉.
However, it will occasionally be convenient to use a different presentation of a
group.

1.2. Shift spaces. A block is a function b : H → A, where H is a finite
subset of G. We make no stipulations that B is “connected” or of a certain
shape. A coloring f contains a block b : H → A if there exists g ∈ G such
that f(gh) = b(h) for all h ∈ H. In other words, a coloring contains a block if

16



1. BASIC DEFINITIONS 17

the coloring can be shifted to agree with the block on all of H. We are now
ready to define shift spaces:

Definition 1.1. Given a group G and a set of forbidden blocks F , define
XF to be the set of all colorings of G that do not contain any block in F . XF

will be called a shift space.

In the case when G = Z
d, we recover the previous definition of a Z

d sym-
bolic dynamical system. Again, when the cardinality of F is finite, XF is a
called a shift of finite type.

If we define a metric ρ : XF → R by

ρ(f1, f2) = sup{1/2|g| : g ∈ G, f1(g) 6= f2(g)}
then each shift transformation σi is continuous under ρ. Note that ρ is analo-
gous to the one-dimensional case presented in Chapter 1.

Example 1.2. On any group G, X∅ is a shift space consisting of all possible
colorings of G by A. This is called the full shift on G.

Example 1.3. For each σi, define the block bσi
: {e, σi} → {0, 1} by

bσi
(e) = 1 and bσi

(σi) = 1. If F = {bσ1 , . . . , bσn
} then we call XF the golden

mean shift on G. When G = Z or G = Z × Z, golden mean shift takes on its
usual definition.

1.3. Entropy. We can also define entropy for shift spaces on groups. De-
fine a “ball of radius n” by

Cn = {g ∈ G : |g| ≤ n}.
Definition 1.4. For n = 0, 1, 2, . . ., let Bn be the number of colorings of

Cn that appear in XF . Then we define the entropy of XF to be

h(XF ) = lim sup
n→∞

log Bn

|Cn|
.

Note that h(XF ) will always be defined; however, the lim sup may not
necessarily equal the lim inf. On Z

d, however, the lim sup equals the lim inf
by a subadditivity argument [13]. The definition of entropy used here appears
to be different from the definition of Z

d entropy given earlier because this
definition considers “balls” of radius n and the earlier definition considered
“cubes” of side length n. However, it turns out that the two give the same
numerical value on Z

d; in fact, one can consider any set of shapes that form a
Følner sequence [11]. A Følner sequence is any sequence of subsets F1, F2, . . .
of G for which limn→∞ |gFn 4 Fn|/|Fn| = 0 for any g ∈ G, where 4 is the
symmetric difference operator. Informally, this says that the action of any
group element does not move “move” the Fn too far. Følner sequences are
also related to amenability in that a countable group is amenable if and only
if it has a Følner sequence. In Z

d it is easy to check that both “balls” and
“cubes” form Følner sequences and therefore give equal values for the entropy
[11].
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σ1

σ2 σ3

Figure 1. Part of the Cayley graph of Z × Z with a different
presenation. Note σ1σ2 = σ2σ1 = σ3.

1.4. Summary. Let us summarize what has been defined: given a group
G, an alphabet A, and a set F of forbidden blocks (functions from finite subsets
of G to A), we define the shift space XF to be the collection of colorings which
do not use any blocks in F . On this set, we define a metric ρ, such that f1

and f2 are “close” if they agree on a large block centered at e ∈ G. Under
this metric, every shift action T ∈ G is continuous under ρ. We also defined
the entropy of XF . All of these definitions were constructed so that they are
equivalent to the one-dimensional definitions when G = Z. Next, we use this
framework to present a standard example from statistical physics. In the last
section of this chapter, we will consider how to generalize the definition of
periodicity.

2. The hard hexagon constant

We have already discussed the hard square entropy constant, which is the
entropy of a two-dimensional version of the golden mean shift. A related
constant is the hard hexagon entropy constant, which equals the entropy of the
golden mean shift on a hexagonal grid. Consider Z × Z with the presentation

〈 σ1, σ2, σ3 | σ1σ2 = σ2σ1, σ1σ2 = σ3 〉,

and suppose that XF consists of all colorings of Z × Z with this presentation
such that no two adjacent elements are colored 1. Part of the Cayley graph of
Z × Z with this presentation is shown in Figure 1. Note that this is the dual
graph of a tiling by hexagons, which shows that the golden mean shift on this
presentation is the same as the golden mean shift on a hexagonal grid. We
can also rewrite these adjacency rules on the standard presentation of Z × Z.
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If we choose F to consist of the three blocks

11 1 1 0

1 1

then the entropy h(XF ) is called the hard hexagon entropy constant, and it has
been computed exactly [7, 2]. It is extraordinary that exp(h(XF )) is algebraic
and is given by

exp(h(XF )) = κ1κ2κ3κ4 ≈ 1.395485972 . . . ,

where
κ1 = 4−135/411−5/12a−2

κ2 =

[

1 −
√

1 − a +

√

2 + a + 2
√

1 + a + a2

]2

κ3 =

[

−1 −
√

1 − a +

√

2 + a + 2
√

1 + a + a2

]2

κ4 =

[√
1 − b +

√

2 + b + 2
√

1 + b + b2

]−1/2

,

and

a =

[
1

4
+

3

8
b((c + 1)1/3 − (c − 1)1/3)

]1/3

b = −124

636
111/3

c =
2501

11979
331/2.

The value of h(XF ) is important for determining the thermodynamic properties
of a model in statistical physics that describes phase transitions of systems of
rigid molecules. The above results were calculated by [7, 2] by using the
Klein-Fricke theory of modular functions.

3. Periodic colorings

For the group G = Z = 〈 σ1 | 〉 that is used in one-dimensional symbolic
dynamics, the definition of periodicity is straightforward: a coloring f is peri-
odic if the orbit {σn

1 f : n ∈ Z} is finite. However, the best way to generalize
this to arbitrary groups is not clear. One possibility is to say that a point is
periodic if there exists a group element whose orbit is periodic:

Definition 3.1 (Weakly Periodic). A coloring f of a group G is weakly
periodic if there exists T ∈ G with T 6= e such that the orbit {T nf : n ∈ Z} is
finite.

Example 3.2. Suppose G = Z × Z and A = {R, Y }. Let

f(σa
1σ

b
2) =

{

R if b = 0

Y otherwise

Then the orbit σ2
1f = f so f is weakly periodic.
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σ1

σ2

e

Figure 2. Part of the checkerboard coloring of Z × Z.

Depending on the characteristics of G, a coloring f might be weakly peri-
odic in a trivial sense: suppose that there is σi ∈ σ such that σr

i = e for some
r ∈ Z. Then clearly the orbit σn

i f will be finite:

Example 3.3. Fix r ∈ N. Suppose that G is the group presented by
〈 σ1, σ2 | σ1σ2 = σ2σ1, σ

r
2 = e 〉. Geometrically one can picture the Cayley

graph of G as an infinitely long piece of graph paper of finite width that has
been curled into an infinitely long cylinder. Every coloring f will be weakly
periodic, since σr

2f = f .

One might also define “periodic” by considering the full orbit of a coloring
under the entire group:

Definition 3.4 (Strongly Periodic). A coloring f is strongly periodic if
the orbit {Tf : T ∈ G} is finite.

Example 3.5. In Example 3.2 the coloring f is not strongly periodic since
the orbit {σn

2 f : n ∈ Z} is not finite.

Example 3.6. Suppose G = Z × Z is presented by 〈 σ1, σ2 | σ1σ2 = σ2σ1 〉
and A = {R, Y }. Let

f(σa
1σ

b
2) =

{

R if a ≡ b mod 2

Y otherwise .

f might be called a checkerboard coloring of Z × Z, part of which is shown in
Figure 2. We have

σ1f = σ2f,

and

σ1σ2f = σ2σ1f = f.
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Thus given any T ∈ G, Tf = f or Tf = σ1f . In both cases, T 2f = f , so f is
strongly periodic.

Note that every strongly periodic point is also weakly periodic. We will
also be concerned with aperiodic colorings:

Definition 3.7. A coloring f is aperiodic if it is not weakly periodic.

Example 3.8. Let G = Z, A = {R, Y } and

f(σr
1) =

{

R if r = 0

Y otherwise.

Then f is the one-dimensional point

. . . Y Y Y Y Y Y R.Y Y Y Y Y Y . . . ,

and f is aperiodic.

4. An algebraic perspective on periodic colorings

Periodic colorings are defined in dynamical terms, but they can also be
studied group-theoretically. Let

H = {T ∈ G | Tf = f}
be the stabilizer of a coloring f . It is easy to check that H is a normal subgroup
of G. We can characterize the periodic properties of f by considering the
group-theoretic properties of H:

Theorem 4.1. H characterizes f in the following way:

(i) H = {e} if and only if f is aperiodic (not weakly periodic).

(ii) H is of finite index if and only if f is strongly periodic.

Proof. Note that f is weakly periodic if and only if there exists T ∈ G
such that T 6= e and Tf = f . This implies (i).

For (ii), note that G can be written as a disjoint union of cosets aiH as

G =
⋃

ai∈I

aiH,

for some set I, where ai is a representative of the i’th coset. This implies

(1) Gf =
⋃

ai∈I

aiHf = {aif : ai ∈ I},

since H is the stabilizer of f . If H is finite index then I is finite so by (1) Gf
must be finite. This shows f must be strongly periodic if H is finite index.
Similarly, if H were not finite index, I would not be finite. Then (1) would
show that Gf is not finite: aif 6= ajf for i 6= j, since the ai are representatives
of distinct cosets. This proves (ii). �

Therefore, finding periodic colorings turns out to be equivalent to finding
finite index subgroups.
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Figure 3. Part of the Cayley graph of H. The red sphere
corresponds to e.

5. An example: the Heisenberg group

The discrete Heisenberg group, H, is a group of upper-triangular, three-by-
three matrices. Elements of H are of the form





1 a b
0 1 c
0 0 1



 ,

where a, b, c ∈ Z. H can be generated by elements x and y, where

x =





1 1 0
0 1 0
0 0 1



 and y =





1 0 0
0 1 1
0 0 1



 .

With these two generators, H is presented by

〈 x, y | xxyx−1y−1 = xyx−1y−1x, yxyx−1y−1 = xyx−1y−1y 〉.
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We can simplify this notation by defining

z = xyx−1y−1 =





1 0 1
0 1 0
0 0 1



 .

Then H can be presented by

(2) 〈 x, y, z | xz = zx, yz = zy, z = xyx−1y−1 〉.
The Cayley graph of H is shown in Figure 3.

In Figure 3, group elements are represented by white spheres. Generators x
and y are represented by green and blue bars respectively, and z is represented
by yellow bars. Note that H is similar to Z

3, except that H has a “twist.”
The presentation (2) makes it clear that H has J = Z × Z generated by

〈 x, z | xz = zx 〉 as a subgroup. Therefore, because there exist shifts of finite
type on Z × Z that only admit aperiodic colorings, we can construct a shift
of finite type rule on H such that J must be colored aperiodically (since J
is isomorphic to Z × Z). If we have some set of rules F that force J to be
colored aperiodically but do not place any restrictions in the y direction, then
XF cannot contain a strongly periodic coloring, since the orbit {xnf : n ∈ Z}
will be finite for any f ∈ XF . Thus, we can construct a shift of finite type on
the Heisenberg group that does not admit a strongly periodic point.

It should also be clear that if f ∈ XF and H = {g ∈ H : gf = f} is the
stabilizer of f , then H/H is isomorphic to Z if f is aperiodic and isomorphic
to Z mod r for some r if f is weakly periodic. It appears to be much more
difficult to find a shift of finite type on H that does not allow a weakly periodic
coloring, if such a shift of finite type even exists.

On Z
3, there exist aperiodic sets of “Wang cubes” that will only tile Z

3

aperiodically. An example of these can be found in [5], which constructs Wang
cubes in Z

3 by first constructing rules that color each x−y plane aperiodically,
using the regular Wang tile rules in the x − y plane. The authors prove that
such colorings will contain arbitrarily long stretches of a certain color in the
x direction, and then cleverly use that property to restrict colorings in the z
direction so that no coloring can be weakly periodic. The proof seems to hold
potential for constructing an aperiodic shift of finite type on H, since like Z

3,
H has Z×Z as a subgroup. However, direct application of the methods in [5]
to our setting does not appear feasible.



CHAPTER 3

Shifts of finite type on the free group

1. Elementary properties

This section will study the periodic properties of shifts of finite type on
the free group. We will study only nearest-neighbor shifts of finite type, which
are shifts XF for which each block in the set F of forbidden blocks consists of
only two adjacent group elements; that is, F only restricts which elements can
be adjacent by each σi ∈ σ. The restriction to nearest-neighbor shifts of finite
type is mainly for notational simplicity, but it should be clear that given an
arbitrary shift of finite type on the free group, we can “recode” it to a nearest-
neighbor shift of finite type using a sliding block code scheme analogous to the
one-dimensional case.

The following operation on one-dimensional shift spaces will be useful in
this chapter:

Definition 1.1. Define XF |L= XF∪(A\L) so that XF |L restricts the shift
space XF to the smaller alphabet L ⊂ A.

Example 1.2. Let A = {0, 1, 2} and F = {11}. Then XF |{0,1} is the
golden mean shift, XF |{0,2} is the full shift on {0, 2}, and XF |{1} is empty.

1.1. One-dimensional shifts of finite type in the free group. Since
we are studying only nearest-neighbor shifts of finite type, we will assume that
F ⊂ A× σ × A. Then, if (a, σi, b) ∈ F with a, b ∈ A, the shift space XF has
the restriction that for any coloring f ∈ XF , f(g) = a implies f(gσi) 6= b.

The free group is relatively easy to analyze because we can regard F as
defining a one-dimensional shift of finite type for each of the generators. For
example, we can consider only the shift transformation σi and only the adja-
cency rules in A × {σi} × A ⊂ F to define a one-dimensional shift of finite
type. This shift of finite type will be denoted Xσi

.

Example 1.3. Let A = {0, 1}, σ = {σ1, σ2}, and F = { (1, σ1, 1) }. Then
Xσ1 is the Golden Mean shift and Xσ2 is the full shift.

In the Cayley graph of G, there are infinitely many copies of Xσi
. Given

any w ∈ G the shift of finite type denoted by X
(w)
σi will consist of all allowed

colorings of the vertices

. . . f(wσ−2
i ), f(wσ−1

i ), f(w), f(wσ1
i ), f(wσ2

i ), . . . .

A point x ∈ X
(w)
σi is a function f : {wσn

i : n ∈ Z} → A. In other words,

X
(w)
σi is a one-dimensional shift of finite type that colors all vertices in the σi

direction starting at the group element w. Figure 1 shows the vertices in the

24
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e

σ2

σ1

Figure 1. The black vertices are colored in X
(σ2)
σ1 , for the free

group on two generators.

Cayley graph of G that correspond to the one-dimensional shift of finite type

X
(σ2)
σ1 .

If the range of f is S, we say that f uses each color in S. Note that X
(w)
σi

and X
(σiw)
σi color the same set of group elements, but X

(w)
σi and X

(σjw)
σi do not

for j 6= i.

1.2. A way to specify colorings. Each one-dimensional shift of finite
type Xσi

sets restrictions about how G can be colored. However, it may be
difficult to specify explicitly a given coloring f ∈ XF . Here we develop a way of
presenting a coloring f of G which will be useful later in showing nonemptyness
and constructing strongly periodic colorings.

Definition 1.4. On the free group G on q generators, a set of 2q functions,

{hx : A → A such that x ∈ σ or x−1 ∈ σ}
is called a set of coloring functions.

Coloring functions can specify colorings in the following way. We begin by
defining f(e) = a for some a ∈ A. We then repeat the following process: if
f(g) has been defined but f(gx) has not yet been defined for x ∈ σ or x−1 ∈ σ,
we define f(gx) = hx(f(g)). Therefore, once we have colored one vertex, the
hx inductively define the rest of the coloring.

It should be clear that if such coloring functions exist and obey the forbid-
den blocks so that we always have (l, σi, hσi

(l)) /∈ F and (hσ−1
i

(l), σi, l) /∈ F ,

then the shift space XF must be nonempty.
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Figure 2. The first three steps in the coloring specified in Ex-
ample 1.5.

Example 1.5. Suppose G is the free group on two generators, A = {R, Y, B},
and that the hx are defined as follows:

hσ1(R) = R hσ−1
1

(R) = R

hσ1(B) = Y hσ−1
1

(B) = R

hσ1(Y ) = B hσ−1
1

(Y ) = B

and
hσ2(R) = B hσ−1

2
(R) = Y

hσ2(B) = Y hσ−1
2

(B) = R

hσ2(Y ) = R hσ−1
2

(Y ) = B.

If we begin by coloring e with R, then Figure 2 shows how the coloring of G
proceeds. Throughout this thesis, R, G, and B in A will respectively stand
for the colors red, green, and blue.

Also, if we require that the hx are invertible, then the coloring specified by
them will be strongly periodic:

Theorem 1.6. Suppose we color e by any a ∈ A, and then produce a
coloring f : G → A using some set of coloring functions S. If h−1

x = hx−1 for
each hx ∈ S, then f is strongly periodic.

Proof. We first note that a coloring f specified by S is color-isotropic,
meaning that if f(g1) = f(g2) then f(g1w) = f(g2w) for all w ∈ G. This
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should be evident from the fact that each hx is a bijection since h−1
x = hx−1 .

But every color-isotropic coloring is necessarily strongly periodic, since any
shift Tf of f will color e one of a finite number of colors. Each color that
e can be will uniquely determine a coloring of the entire graph, so the orbit
{Tf : T ∈ G} must be finite. �

2. Nonemptyness and weakly periodic properties

First we will show that it is easy to determine if a shift of finite type on
the free group contains any points. Then, we will show that the behavior of
shifts of finite type on the free group is somewhere between the behavior of Z

and Z × Z: a nonempty shift of finite type on the free group may not contain
a strongly periodic coloring (like Z × Z), but it will always contain a weakly
periodic coloring (like Z).

Theorem 2.1. A shift of finite type XF on the free group is nonempty if
and only if there exists some L ⊆ A such that for every l ∈ L, each Xσi

|L
contains a point which uses the color l.

Proof. Suppose such an L exists. Fix σi ∈ σ. Then for each l ∈ L,
each Xσi

|L has a point which uses l, so there must exist l′ ∈ L such that
(l, σi, l

′) /∈ F . Set hσi
(l) = l′ for such an l′. Similarly, for each l ∈ L there

exists l′ ∈ L such that (l′, σi, l) /∈ F so define hσ−1
i

(l) = l′ for this l′. These hx

define a coloring function on the alphabet L which obeys the forbidden blocks,
so G can be colored with L.

For the converse, suppose XF is nonempty. Then XF contains some coloring
f : G → A. Let S ⊆ A be the range of f . Fix any σi ∈ σ and s ∈ S. There
exists g ∈ G such that f(g) = s. As we let n range over Z, f(σn

i g) gives a
point in Xσi

|S which uses s. �

We next prove that, as in one-dimensional symbolic dynamics, any nonempty
shift of finite type contains a weakly periodic coloring. While the notation of
this proof is somewhat cumbersome, the idea is simple. To construct a weakly

periodic coloring d, first color X
(e)
σ1 periodically. To fill in the rest of the col-

oring, one must only make sure that if d(σn
1 ) = d(σm

1 ) then d(σn
1 g) = d(σm

1 g)
for all g ∈ G.

Theorem 2.2. If XF is nonempty, it contains a weakly periodic coloring.

Proof. Let f : G → A be a coloring of G in XF . Let S = {f(σn
1 ) : n ∈ Z}

be the range of f on X
(e)
σ1 . We will need to keep track of one place that each

color in S occurs in X
(e)
σ1 , so define w : S → Z by choosing for each l ∈ S an

n ∈ Z such that f(σn
1 ) = l, and define w(l) = n. There may be more than one

choice for n, and it does not matter what n we choose so long as f(σ
w(l)
1 ) = l.

Note that X
(e)
σ1 |S is a nonempty, one-dimensional shift of finite type, so it

contains a periodic coloring, say P : {σn
1 : n ∈ Z} → S, of some period p.

We will construct a weakly periodic coloring d : G → A. First, set d(σn
1 ) =

P (σn
1 ) for all n ∈ Z so that X

(e)
σ1 is colored periodically. Note that every

element in G is either of the form σn
1 or σn

1 xg for some uniquely determined
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g ∈ G and uniquely determined x, with x ∈ σ or x−1 ∈ σ, x 6= σ1, and x 6= σ−1
1 .

So set

d(σn
1 xg) = f(σ

w(P (σn
1 ))

1 xg)

Then
σp

1d(σn
1 xg) = d(σn+p

1 xg)

= f(σ
w(P (σn+p

1 ))
1 xg)

= f(σ
w(P (σn

1 ))
1 xg)

= d(σn
1 xg)

since P has period p. This shows d is weakly periodic. Also, we must have
d ∈ XF since if d(g1) = a ∈ A and d(g2) = b ∈ A, then there exists g′

1, g
′
2 ∈ G

such that f(g′
1) = a and f(g′

2) = b by the construction of d. Since we are only
considering nearest-neighbor shifts of finite type, this shows that d does not
disobey any of the adjacency rules specified by F . �

3. Strongly periodic colorings of the free group

We now determine when a shift of finite type on the free group admits a
strongly periodic coloring. This question turns out to be much more subtle
than it may initially seem, and determining whether an arbitrary shift of finite
type admits a strongly periodic coloring appears to be a difficult combinatorial
problem.

3.1. Cycles as point representations. First, we will represent a peri-
odic point in a one-dimensional shift of finite type with a cycle:

Definition 3.1. A cycle w is an expression w = x1x2 . . . xn where xi ∈ A.
A cycle w represents a periodic point x if

x = . . . x1x2 . . . x2.x1x2 . . . xnx1x2 . . . xn . . . .

A cycle w = x1x2 . . . xn has length |w| = n and we will sometimes write
(w)i = xi.

Note that a periodic point can be represented by infinitely many cycles
and that the cycle length of a periodic point is a multiple of the least period
of that point. In fact, the theorems of the next section could be restated in
terms of multiples of the least period; however, doing so would be much more
complicated notationally.

Example 3.2. If x = . . . 1010101.101010 . . . then the following are all
cycles that represent x: 10, 1010, 101010. The cycle 101 does not represent x.

We next define a function ηa on cycles which counts the number of times
the color a ∈ A appears.

Definition 3.3. For a cycle w and a ∈ A, define

ηa(w) = #{i : (w)i = a, 1 ≤ i ≤ |w|}.
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If S is a set of cycles, define

ηa(S) =
∑

w∈S

ηa(w).

Example 3.4. If w1 = RGRB then ηR(w1) = 2, and ηG(w1) = ηB(w1) = 1.
If w2 = RGB then ηR({w1, w2}) = 3, ηB({w1, w2}) = 2 and ηG({w1, w2}) = 2.

3.2. Existence of strongly periodic colorings. We now prove the
main theorem of this section and chapter. The proof is notationally complex,
so we follow each major step of the proof with an example.

Theorem 3.5. A shift of finite type on the free group on q generators con-
tains a strongly periodic coloring if and only if there exist finite sets Sσ1 , Sσ2, . . . , Sσq

such that elements of Sσi
are cycles that represent points in Xσi

, and for all
a ∈ A and σi, σj ∈ σ we have ηa(Sσi

) = ηa(Sσj
).

Proof. We first prove the ⇐ direction. Suppose such Sσi
exist, and sup-

pose Sσi
= {wσi

1 , wσi

2 , . . . , wσi
pσi

} for each σi ∈ σ. Define the alphabet B by

B =
⋃

σi∈σ

|Sσi
|

⋃

j=1

|wσi
j |
⋃

s=1

{xσi

j,s},

so that B consists of symbols such as xσ1
1,1,, xσ1

1,2, xσ2
2,1, etc.. Each element xσi

j,s in
B can be thought of as specifying a cycle wσi

j in Sσi
, and a position s in that

cycle.

Example 3.6. Suppose we are attempting to color the free group with the
shifts of finite type shown in Figure 3, and we have chosen

R G

B

R G

B

Figure 3. Shifts Xσ1 and Xσ2 .

Sσ1 = {RRGB}
and

Sσ2 = {RB, RG},
with wσ2

1 = RB and wσ2
2 = RG. Note that ηR(Sσ1) = ηR(Sσ2) = 2, ηG(Sσ1) =

ηG(Sσ2) = 1 and ηB(Sσ1) = ηB(Sσ2) = 1. Then the alphabet

B = {xσ1
1,1, xσ1

1,2, xσ1
1,3, xσ1

1,4, xσ2
1,1, xσ2

1,2, xσ2
2,1, xσ2

2,2}.
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Next, we define χ : B → A by

χ(xσi

j,s) = (wσi

j )s

so that

wσi

j = χ(xσi

j,1)χ(xσi

j,2) . . . χ(xσi

j,|wσi
j |).

That is, χ maps the symbol xσi

j,s to the color at the location (in a cycle) specified
by xσi

j,s.

Example 3.7. In our example, we have,

χ(xσ1
1,1) = χ(xσ1

1,2) = χ(xσ2
1,1) = χ(xσ2

2,1) = R

χ(xσ1
1,3) = χ(xσ2

2,2) = G

χ(xσ1
1,4) = χ(xσ2

1,2) = B.

Since we assume ηa(Sσi
) = ηa(Sσj

) for all a ∈ A, σi, σj ∈ σ, we define ηa

to be the common value of all ηa(Sσi
). Define N =

∑

a∈A ηa and note we also
have N =

∑

w∈Sσi
|w|. Next we have the following lemma:

Lemma 3.8. Given Sσ1 , Sσ2 , . . . , Sσq
that satisfy the hypotheses of the theo-

rem, then there exist sets E1, E2, . . . EN that partition B and meet the following
conditions:

(i) If xσi

j,s ∈ Er and x
σi′

j′,s′ ∈ Er then χ(xσi

j,s) = χ(x
σi′

j′,s′).

(ii) For every σi ∈ σ, each Er contains exactly one element of the form

xσi

j,s (where j and s may depend on σi).

Proof. In this proof we temporarily change notation. Suppose A =
{1, 2, 3 . . . , m} and

B = {b1
1, b

1
2, . . . , b

1
p1

, b2
1, b

2
2, . . . , b

2
p2

, . . . bq
1, b

q
2, . . . , b

q
pq
}

for some pr, where bi
x = xσi

j,s for some j, s. For each fixed i < |σ|, we can “sort”
the bσi

x by color so that

χ maps these to 1∈A
︷ ︸︸ ︷

bσi

yi
1
bσi

yi
2
. . . bσi

yi
η1

χ maps these to 2∈A
︷ ︸︸ ︷

bσi

yi
(η1+1)

bσi
y(η1+1)v

. . . bσi

yi
(η1+η2)

. . . . . .

χ maps these to m∈A
︷ ︸︸ ︷

bσi

yi
(N−ηm+1)

bσi

yi
(N−ηm+2)

. . . bσi

yi
(N)

,

for appropriate choices of the yi
a ∈ N with 1 < a < pi. The conditions on the

Sσi
assure that

#{bσi
x ∈ B : χ(bσi

x ) = a} = #{bσj
x ∈ B : χ(bσj

x ) = a}

for all a ∈ A and σi, σj ∈ σ. Thus, when we sort by color, each row of bσi
x

has the same number of elements (ηa) that χ maps to a ∈ A. That is, we can
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write

χ maps these to 1∈A
︷ ︸︸ ︷

b1
y1
1
b1
y2

. . . b1
y1

η1

χ maps these to 2∈A
︷ ︸︸ ︷

b1
y1
(η1+1)

b1
y1
(η1+1)

. . . b1
y1
(η1+η2)

. . .

χ maps these to m∈A
︷ ︸︸ ︷

b1
y1
(N−ηm+1)

b1
y1
(N−ηm+2)

. . . b1
y1
(N)

b2
y2
1
b2
y2
2
. . . b2

y2
η1

b2
y2
(η1+1)

b2
y2
(η1+1)

. . . b2
y2
(η1+η2)

. . . b2
y2
(N−ηm+1)

b2
y2
(N−ηm+2)

. . . b2
y2
(N)

...
...

...
...

...
...

...
...

bq
yq
1
bq
yq
2
. . . bq

yq
η1

bq
yq

(η1+1)
bq
yq

(η1+1)
. . . bq

yq

(η1+η2)
. . . bq

yq

(N−ηm+1)
bq
yq

(N−ηm+2)
. . . bq

yq

(N)

for appropriate choices of yi
a ∈ N with 1 < a < pi. To get the Er, simply read

down the column of this array. That is, let

Er =

q
⋃

i=1

{bi
yi

r
}.

Then the fact that the rows are sorted by color and each row contains the
same number of each color implies (i). The fact that each Ey contains exactly
one element from each row implies (ii). �

Continuing in the proof of the main theorem, we can apply Lemma 3.8
to choose E1, E2, . . . EN that satisfy (i) and (ii). Note that (i) assures that
elements of a given Er all specify locations in cycles that are colored the same
color, while (ii) assures that colors from cycles in each Sσi

are represented
exactly once in each Er, so that |Er| = |σ|.

Example 3.9. In our example, there are several ways to choose the Er.
One is,

E1 = {xσ1
1,1, x

σ2
1,1}

E2 = {xσ1
1,2, x

σ2
2,1}

E3 = {xσ1
1,3, x

σ2
2,2}

E4 = {xσ1
1,4, x

σ2
1,2}.

We will now use the Er to construct a coloring of the free group with
the alphabet {1, 2, . . .N}, which will later be projected down to a strongly
periodic coloring by A.

We produce a coloring by defining coloring functions

hσi
: {1, 2, . . .N} → {1, 2, . . . , N}

for each σi ∈ σ. Given an r ∈ {1, . . . , N} and σi ∈ σ, find the unique j, s ∈ Z

such that xσi

j,s ∈ Er. Define hσi
(r) = r′, where r′ is such that

xσi

j,(s+1 mod |wσi
j |) ∈ Er′.

That is, given r, hσi
finds the element of the form xσi

j,s ∈ Er, and hσi
(xσi

j,s)
equals the number of the set containing the symbol adjacent to xσi

j,s in the

cycle wσi

j . Each hσi
is invertible, so we can define hσ−1

i
= h−1

σi
.



3. STRONGLY PERIODIC COLORINGS OF THE FREE GROUP 32

Example 3.10. In our example, N = 4 and the hσi
are given by

hσ1(1) = 2 hσ2(1) = 4

hσ1(2) = 3 hσ2(2) = 3

hσ1(3) = 4 hσ2(3) = 2

hσ1(4) = 1 hσ2(4) = 1.

Note that each hσi
is necessarily a bijection, and therefore it defines a

strongly periodic coloring by Theorem 1.6. Suppose this strongly periodic
coloring is F : G → {1, 2, . . . , N}. We project F down to a coloring of G by
using χ. Define f : G → A by f(g) = χ(x), where x is any arbitrary element
of EF (g). Note the specific choice of x does not matter because of condition
(i) above. The orbit {TF : T ∈ G} is finite since F is strongly periodic, and
χ maps each of these colorings to at most one distinct coloring, so the orbit

{Tf : T ∈ G} = χ({TF : T ∈ G})
must be finite. This shows f is strongly periodic.

Example 3.11. Suppose we color e with 1. The coloring of G by {1, 2, 3, 4}
specified by the hx above is strongly periodic. Figure 4 shows the coloring

1 2 3

3

3

3

3

3 4

4

4

1

1

1

1

1

1

σ1

σ2

e

Figure 4. The coloring from Example 3.11.

the hx specify over the alphabet {1, 2, 3, 4}, and the projection down onto
{R, G, B}. Note that this coloring is color-isotropic over {1, 2, 3, 4}, but not
{R, G, B}.

To prove the ⇒ direction, we show that any strongly periodic coloring
defines a set of cycles that meet the conditions of the theorem. Consider any
strongly periodic coloring f which satisfies the shift of finite type constraints.
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Hs1

Hs2

Hs3

Hs4

Hs5

σ1

σ2

Figure 5. The Cayley graph of G \ H.

We can define the stabilizer of f , H = {T ∈ G : Tf = f}, which is a finite
index subgroup since f is strongly periodic. H is like a fundamental region of
the strongly periodic coloring.

Note that H is a normal subgroup, so consider the group of right cosets
G \H with the binary operation (Hr) · (Hs) = (Hrs). Since H is a stabilizer
of f , hf(r) = f(r) for all h ∈ H and r ∈ G. Thus, elements of the coset (aH)
are all colored the same color f(a), but these colors may not be distinct for
different cosets.

Example 3.12. Figure 5 shows a Cayley graph for G \ H, where H is a
finite index subgroup. Each vertex in this graph is labeled with an element of
Hsj ∈ G \ H and a color equal to f(Hsj), so that, for example, f(Hs1) = R.
There are two kinds of edges on this graph: solid correspond to σ1, and dotted
correspond to σ2. Each vertex has exactly one incoming and outgoing edge of
each type because G \ H is a group. Given an arbitrary group element g =
σa1σa2 . . . σaz

, we can find (Hg)(Hsj) by following the appropriate sequence of
dotted and solid edges from (Hsj).

Now fix σi ∈ σ, and consider any coset (Hs). We define the coset orbit

Oσi
(Hs) = {(Hσi)

n(Hs) : n ∈ Z}.

Since G \ H is finite, each coset orbit Oσi
(Hs) must be finite. Note that two

coset orbits Oσi
(Hs1) and Oσi

(Hs2) are either equal or disjoint. Therefore,
there are some finite number of distinct coset orbits, Oσi

(Hs1), Oσi
(Hs2), . . . , Oσi

(Hsmi
),

which together form a disjoint partition of G \ H for each σi ∈ σ.
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Example 3.13. In Figure 5, we have the following disjoint coset orbits:

Oσ1(Hs1) = {(Hs1), (Hs2), (Hs3), (Hs4), (Hs5)}
Oσ2(Hs1) = {(Hs1), (Hs4), (Hs5)}
Oσ2(Hs2) = {(Hs2), (Hs3)}.

We alternatively could have chosen different Hsj since, for example, Oσ1(Hs1) =
Oσ1(Hs5).

Each coset orbit Oσi
(Hsj) is a collection of cosets given by

Oσi
(Hsj) = {(Hsj), (Hσisj), (Hσ2

i sj), . . . , (Hσn
i sj)},

where n depends on i and j. We can therefore regard each coset orbit Oσi
(Hsj)

as specifying a cycle Cσi
(Hsj) given by

Cσi
(Hsj) = f(sj)f(σ1

i sj)f(σ2
i sj) . . . f(σn

i sj).

Since H is the stabilizer of a coloring in XF , each Cσi
(Hs1) represents a point

in Xσi
.

Example 3.14. In the example from Figure 5, Cσ1(Hs1) = RBRGB.
Also, Cσ2(Hs2) = BBR and Cσ2(Hs2) = RG. Note that we could have chosen
different cycles (by shifting where we start), but these cycles still would have
represented points in Xσ1 and Xσ2 since Xσ1 and Xσ2 are shift-invariant.

We then define the set

Sσi
= {Cσi

(Hsj) : 1 ≤ j ≤ mi},
where mi is the number of distinct coset orbits. Note that

ηa(Sσi
) =

mi∑

j=1

ηa(Cσi
(Hsj))

=

mi∑

j=1

#{i : (Cσi
(Hsj))i = a, 1 ≤ i ≤ |Cσi

(Hsj)|}

=

mi∑

j=1

#{x : x ∈ Oσi
(Hsj), χ(x) = a}

=#{(Hs) ∈ G \ H : f(Hs) = a},
since the Oσi

(Hsj) form a disjoint partition of G \ H. However, the value

#{(Hs) ∈ G \ H : f(Hs) = a}
is independent of σi, which shows that ηa(Sσi

) = ηa(Sσj
) for all σi, σj ∈ σ.

This shows that the Sσi
meet the hypotheses of the theorem.

Example 3.15. In the example from Figure 5, we have that Sσ1 = {RBRGB}
and Sσ2 = {BBR, RG}. Note that ηa(Sσ1) = ηa(Sσ2) for all a ∈ {R, G, B}.

�
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σ1

σ2

e

Figure 6. The coloring from Example 3.18.

This theorem is somewhat awkward to prove, and at first glance it may
seem as though its hypotheses are difficult to work with. However, after stating
a few obvious corollaries that justify proving the theorem, we will give an
example of a case where the theorem can be used to show that a shift of finite
type on the free group does not contain a strongly periodic point.

Corollary 3.16. If there is a one-dimensional periodic point x which is
an element of Xσi

for all σi ∈ σ, then XF contains a strongly periodic coloring.

Proof. The hypotheses of the theorem are satisfied by choosing Sσi
= {y}

for all σi ∈ σ, where y is some cycle representing x. �

Corollary 3.17. If Xσi
= Xσj

for all σi, σj ∈ σ and some Xσi
is

nonempty, then the shift of finite type on the free group contains a strongly
periodic coloring.

Proof. Every nonempty one-dimensional shift of finite type contains a
periodic point x, so apply the previous corollary. �

Example 3.18. Consider the free group on two generators. Suppose Xσ1

and Xσ2 both contain the periodic point

x = . . . RGGBRGGB.RGGBRGGB . . .

which is represented by the cycle w = RGGB. We can choose Sσ1 = Sσ2 = {w}
to satisfy the hypotheses of Theorem 3.5. If we follow the construction in
Theorem 3.5, we can produce the periodic coloring of the free group shown in
Figure 6.
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R G

B

R G

B

Figure 7. Shifts Xσ1 and Xσ2 .

4. An example that is not strongly periodic

Now we present an example of a shift of finite type on the free group where
each one-dimensional shift of finite type is irreducible, but the free group
still cannot be colored periodically. This, perhaps, is a counterintuitive result
because irreducibility is a strong condition and implies the existence of many
kinds of periodic points.

Example 4.1. Consider the shifts of finite type shown in Figure 7. Cycles
representing points in Xσ1 are always of the form

RGBRGB . . .RGB.

Cycles representing points in Xσ2 are always of the form

Ra1Ra2 . . . Ran−1Ran,

where each aj ∈ {G, B}. This shows that for any set Sσ1 of cycles in Xσ1 , we
must have

(3) ηR(Sσ1) = ηG(Sσ1) = ηB(Sσ1).

In addition, for any set Sσ2 of cycles in Xσ2 we must have

(4) ηR(Sσ2) = ηG(Sσ2) + ηB(Sσ2).

If ηa(Sσ1) = ηa(Sσ2) = ηa for all a ∈ A, then (3) and (4) become

(5) ηR = ηG = ηB

and

(6) ηR = ηG + ηB.

Clearly we cannot simultaneously solve (5) and (6) unless ηG = 0 or ηB = 0,
which would imply that Sσ1 is empty, since every point in Xσ1 uses G and B.
Therefore, even though both Xσ1 and Xσ2 are irreducible, XF does not allow
a strongly periodic coloring.



CHAPTER 4

The golden mean shift on the free group

In this section, we study the golden mean shift on the free group and
determine an expression for its entropy in Theorem 3.4. In doing so, we develop
a new generalization of Fibonacci numbers and analyze them using ideas from
one-dimensional dynamical system theory.

1. Preliminaries

We will examine the golden mean shift on the free group with q generators,
where q ≥ 2. However, many results of this section will still hold true for
q = 1 (ie G = Z). We define k = 2q − 1 and assume that G has the standard
presentation 〈 σ1, σ2, . . . , σq | 〉. With this presentation, the Cayley graph of G
is an infinite tree like the one shown in Figure 1. In Figure 1, each element of
G is represented by an intersection of lines, with e at the center. The golden
mean shift corresponds to coloring each vertex of this graph with the alphabet
A = {0, 1} such that no two adjacent vertices are both colored 1. That is, the
set of forbidden blocks F = {(1, σi, 1) : σi ∈ σ}, with the notation of the last
chapter.

σ2

e σ1

Figure 1. Part of the Cayley graph of the free group on 2
generators (k = 3).

37
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α

β

Figure 2. The tree T3 for k = 3. Here group elements are
represented as circles.

We first analyze finite blocks in XF by using a combinatorial argument.
Fix any σi ∈ σ and define the set Tn ⊂ G by

Tn = {e} ∪ {σig : g ∈ G, |g| ≤ n − 1}
for n ≥ 1. Tn can be represented by a subset of the Cayley graph of G.
Such a graph is shown in Figure 2. In the graph of Tn, we label the vertex
corresponding to e by α and the vertex corresponding to σi by β. We call α
the “root” of Tn and we say that Tn has height n.

Definition 1.1. Let c0(n) and c1(n) be the numbers of possible colorings
of Tn when α is colored 0 and 1, respectively.

Theorem 1.2. c0(n) satisfies the following recursion relationship: c0(1) =

2, c0(2) = 2k + 1, and c0(n) = [c0(n − 1)]k + [c0(n − 2)]k
2

for all n ≥ 2.

Proof. It is easy to see by a simple combinatorial argument that c0(1) = 2
and c0(2) = 2k + 1.

When α is colored 1, then β must be colored 0. But we can regard β as
the “root” of k different trees each of height n − 1. The colorings of each of
the k trees for which β is the “root” can be chosen independently. Thus,

(7) c1(n) = [c0(n − 1)]k .

Similarly, when α is colored 0, β can be colored either 0 or 1, so

c0(n) = [c0(n − 1)]k + [c1(n − 1)]k .

By (7), this is the same as

c0(n) = [c0(n − 1)]k + [c0(n − 2)]k
2

,

which gives the theorem. �

Recall that Cn = {g ∈ G : |g| ≤ n} and that Bn is the number of allowed
colorings of Cn in XF . Then we have the following theorem:

Theorem 1.3. Bn satisfies Bn = [c0(n)]k+1 + [c0(n − 1)]k(k+1).
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Proof. Note that Cn consists of k +1 trees of height n that all share e as
their root. When e is colored 0, there are c0(n) possible colorings of each of
the k + 1 trees of height n, each of which can be chosen independently, giving
a total of [c0(n)]k+1 possible colorings.

Next, when e is colored 1, each of the k + 1 trees has a root colored 1,
and each tree can be colored independently. Therefore, there are [c1(n)]k+1 =

[c0(n − 1)]k(k+1) possible colorings of Cn when e is colored 1. Therefore,

Bn = [c0(n)]k+1 + [c0(n − 1)]k(k+1) .

�

Definition 1.4. Two sequences (an) and (bn) are asymptotic if

lim
n→∞

an

bn

= 1.

We sometimes write this as an ∼ bn.

For notational simplicity, we define an = c0(n). So that

an+1 = ak
n + ak2

n−1.

Note that when k = 1, so that the free group under consideration is Z, the an

are Fibonacci numbers with the standard recursion formula. When k 6= 1, the
nonlinear recursion sequence an will be central for understanding the golden
mean shift on the free group. Namely, as we will show for small k, there are
constants λ1 and λ2 such that an ∼ λ1 exp2(λ2k

n−1), where exp2(x) = 2x.
Theorem 3.4 will show λ2 can be used to find the entropy of the golden mean
shift. The next section will focus on the properties of the sequence (an) in
preparation for determining its asymptotics.

2. Growth properties of (an)

Here we study the general growth properties of (an). Specifically we will
determine when the limit

L = lim
n→∞

an

ak
n−1

exists. We will show that the limit exists for sufficiently small k (recall k = 2q−
1, where q is the number of generators) and equals the solution of xk+1 = xk+1
in the interval I = [1, 2]. The original motivation for considering this limit
comes from an easy result about Fibonacci numbers: when k = 1, the an are
Fibonacci numbers and the above limit is φ, the golden mean, which satisfies
φ2 = φ+1. When k is sufficiently large, the limit may not exist but the values
of the fraction will oscillate between two limits. In this case, the odd terms
and even terms respectively converge to different limits.

We begin by defining the sequence (qn) which will simplify the notation
considerably.

Definition 2.1. For each n = 2, 3 . . ., let qn = an/ak
n−1.

We will next prove several basic properties of qn.

Proposition 2.2. For each n = 2, 3, . . ., qn+1 = 1 + 1/qk
n.
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Proof.

qn+1 =
an+1

ak
n

=
ak

n + ak2

n−1

ak
n

= 1 + (
ak

n−1

an

)k = 1 +
1

qk
n

.

�

Proposition 2.3. For each n = 3, 4, . . ., we have that 1 < qn < 2.

Proof. Note that 0 < q2 = a2/a
k
1 = (2k + 1)/2. We will prove the

proposition by induction. Suppose 0 < qn. Then 1/qk
n > 0, so 1 + 1/qk

n > 1,
which is equivalent to qn+1 > 1, so inductively we have that qn > 1 for all
n ≥ 3.

Next note q2 > 1, so suppose qn > 1. Then qk
n > 1, so we have that

1/qk
n < 1. This implies 1 + 1/qk

n < 2, so qn+1 < 2. �

Proposition 2.4. For each k = 2, 3, . . . we have that q2 < q3 and q2 < q4.

Proof. For the first part, q2 < q3 only if ak+1
2 < ak

1a3. Now,

ak+1
2 = (2k + 1)k+1 = (2k + 1)k(2k + 1) = 2k(2k + 1)k + (2k + 1)k,

and
ak

1a3 = ak
1(a

k
2 + ak2

1 ) = 2k(2k + 1)k + 2k2+k.

This shows ak+1
2 < ak

1a3 only if (2k + 1)k < 2k2+k. But (2k + 1)k < (2k+1)k =

2k2+k, so we must have q2 < q3.
Note q2 < q4 only if

a2a
k
3 < a4a

k
1.

We have that
a2a

k
3 = (2k + 1)ak

3 = 2kak
3 + ak

3

and
a4a

k
1 = (ak

3 + ak2

2 )2k = 2kak
3 + 2kak2

2 ,

so q2 < q4 only if ak
3 < 2kak2

2 . This is the same as requiring that

a3 < 2ak
2,

which is the same as
ak

2 + ak2

1 < 2ak
2.

This simplifies to ak2

1 < ak
2, or equivalently 2k2

< (2k + 1)k, which is obviously
true. �

Proposition 2.5. For each n = 2, 3, . . . we have

(i) qn+1 < qn−1 implies qn < qn+2

(ii) qn+1 > qn−1 implies qn > qn+2.

Proof. We will prove only (i), as the proof for (ii) is analogous. Note
that qn+1 < qn−1 if and only if

an+1

ak
n

<
an−1

ak
n−2

,

which is equivalent to
ak

n−2an+1 < an−1a
k
n.
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Raising each side to the k’th power gives

ak2

n−2a
k
n+1 < ak

n−1a
k2

n .

Adding ak
n−1a

k
n+1 to both sides and factoring gives

(ak
n−1 + ak2

n−2)a
k
n+1 < ak

n−1(a
k
n+1 + ak2

n ).

Since ak
n−1 + ak2

n−2 = an and ak
n+1 + ak2

n = an+2, this is equivalent to

anak
n+1 < ak

n−1an+2,

which shows
ak

n+1

an+2
<

ak
n−1

an
.

This is the same as
an+2

ak
n+1

>
an

ak
n−1

,

or equivalently qn+2 > qn. �

We can use this property to show an unusual characteristic of (qn). Let
En = q2n and On = q2n+1 for n = 1, 2, . . . define the subsequences of (qn) which
consist of the even- and odd-numbered terms of (qn) respectively. Then we
have,

Proposition 2.6. (En) increases monotonically to a limit LE ∈ I and
(On) decreases monotonically to a limit LO ∈ I.

Proof. We will prove this inductively. Proposition 2.4 shows that q2 < q4.
So suppose that n is odd and qn < qn+2. Then (ii) of Proposition 2.5 implies
qn+1 > qn+3. But then (i) of Proposition 2.5 implies qn+2 < qn+4, which shows
that (En) is increasing. We can apply (ii) of Proposition 2.5 to show that
(On) is decreasing. The fact that (En) and (On) converge is immediate from
the fact that they are monotone and bounded in I. �

To summarize, we are interested in the existence of the limit

lim
n→∞

an

ak
n−1

= lim
n→∞

qn.

We have shown that the even and odd terms of qn always converge to some
limits LE and LO respectively, each in the interval I = [1, 2]. The remainder of
this section will be concerned with determining when LE = LO. This matter
is not important to the entropy calculation, but is interesting because it turns
out that LE = LO for sufficiently small k, but not for large k. This result,
perhaps, is counterintuitive because there does not exist an obvious reason
why the limit should cease to exist for some large k, when it exists for small
k.

To prove this, we study the iterates of a one-dimensional map f :

Definition 2.7. Define f : [1, 2] → [1, 2] by f(x) = 1 + x−k.
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f is a useful function to define because f(qn) = qn+1 by Proposition 2.2.
Note that f(1) = 2 > 1 and f(2) = 1+2−k < 2, so there must be a fixed point
α ∈ I = [1, 2]. However, since f ′(x) < 0 for all x ∈ I, α must be the unique
fixed point in I.

Definition 2.8. Let α be the unique fixed point of f in I.

Note that α satisfies αk+1 = αk + 1, since f(α) = 1 + α−k = α. Notice also
that f ′ < 0, so f maps numbers less than α to numbers greater than α and
vice versa.

Lemma 2.9. For each n = 2, 3, . . ., we have,

(i) qn > qn+1 implies qn+1 < qn+2

(ii) qn < qn+1 implies qn+1 > qn+2.

Proof. We will prove only (i), as the proof for (ii) is analogous. Note
that qn > qn+1 implies qk

n > qk
n+1, which shows 1/qk

n < 1/qk
n+1. This implies

1 + 1/qk
n < 1 + 1/qk

n+1, which is equivalent to qn+1 < qn+2 �

Theorem 2.10. LE ∈ [1, α] and LO ∈ [α, 2].

Proof. We prove only the first part since the second is analogous. Because
f(x) > x if and only if x < α, it suffices to prove that for n even, qn <
f(qn) = qn+1. We will prove this inductively. Proposition 2.4 shows q2 < q3.
Suppose that qn < qn+1 with n odd. Then by (ii) of Lemma 2.9 we have that
qn+1 > qn+2. Then by (i) of Lemma 2.9 we have that qn+2 < qn+3, proving the
theorem. �

Next, to simplify notation, we also define a function g:

Definition 2.11. Define g : [1, 2] → [1, 2] by g(x) = f 2(x) = f(f(x)).

Note that g(qn) = qn+2, so that g(On) = On+1 and g(En) = En+1. This
implies that the (possibly non-distinct) fixed points of g are LE, LO, and α.

2.1. The behavior of g for small k. In this section we will investigate
the behavior of g′ and determine for which k ≥ 2 we have sup{|g′(x)| : x ∈
[1, 2]} = C < 1. For these k, we will apply the contraction mapping theorem
to conclude that g has a unique fixed point. Since α is a fixed point of g, we
can conclude that α is the only fixed point of g and therefore we must have
LE = LO = α.

First note that

g′(x) =
k2

xk+1(1 + x−k)k+1
,

and also, after simplifying,

g′′(x) =
−k2(k + 1)xk2−2(1 − k + xk)

(1 + xk)k+2
.

We are interested in the maximum value that g′(x) attains on I = [1, 2],
which will either be attained at a zero of g′′(x) or at one of the endpoints of
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I. g′′(x) = 0 only when (1 − k + xk) = 0, or, equivalently, at x = k
√

k − 1.
Evaluating these possible maxima gives

g′(1) =
k2

2k+1
,

g′(2) =
k2

2k+1(1 + 2−k)k+1
,

and

g′( k
√

k − 1) =
k2

(k − 1)1+1/k(1 + (k − 1)−1)k+1

=
k2(k − 1)k+1

(k − 1)1+1/kkk+1

=
(k − 1)k−1/k

kk−1
.

Thus, for all k ≥ 2 we have that 1 > |g′(1)| > |g′(2)|. Note also that g′′(1) > 0
and g′′(2) < 0, so we know that x = k

√
k − 1 is a maximum for g′. It is not

immediately obvious for which values of k we have g ′( k
√

k − 1) < 1. This is
equivalent to requiring

(k − 1)k−1/k < kk−1,

which can be simplified to

(k − 1)k+1 < kk

by raising each side to the k/(k − 1)’th power. Still this inequality is not
easy to solve analytically. One can numerically solve (k − 1)k+1 = kk by
using Mathematica’s FindRoot, which implements Newton’s method. This
numerical approximation gives k ≈ 4.14104.

Definition 2.12. Let Ω ≈ 4.14104 be defined by

Ω = inf{k : (k − 1)k+1 < kk}.
Proposition 2.13. For k > Ω we have (k − 1)k+1 > kk and for k < Ω we

have (k − 1)k+1 < kk.

Proof. Note (2 − 1)2+1 < 22, so we can prove the theorem by showing
that the equation (x − 1)x+1 = xx has one solution. Let

h(x) =
(x − 1)x+1

xx
=

(

1 − 1

x

)x

(x − 1)

for x > 1. Then h(x) → 0 as x → 1+ and h(x) → ∞ as x → ∞ since
(1 − 1/x)x → 1/e as x → ∞. However, it is easy to check that

dh(x)

dx
> 0

for all x > 1, so h must have a unique point for which h(x) = 1. This implies
that there is exactly one value of k which satisfies (k − 1)k+1 = kk, and that
this value of k must equal Ω. �
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Thus, for k < Ω we know that sup{g′(x) : x ∈ [1, 2]} = C < 1 for all x.
Therefore, for k < Ω the Mean Value Theorem implies that for all x, y ∈ I we
have

|g(x) − g(y)| = |g′(c)| |x − y| ≤ C |x − y|
for some x ∈ I. Thus, when k < Ω the Contraction Mapping Theorem implies
that there will be a unique fixed point in I:

Theorem 2.14 (Contraction mapping theorem). Suppose X is a complete
metric space and f : X → X has the property that there exists C ∈ R with
0 ≤ C < 1 such that

|f(x) − f(y)| ≤ C |x − y|
for all x, y ∈ X. Then there exists a unique fixed point α ∈ X such that
f(α) = α, and fn(x0) → α for all x0 ∈ X.

Since for k < Ω there is only one fixed point in I and the sequences (En)
and (On) both converge, we must have LE = LO = α. For k < Ω, we know
that the limit

lim
n→∞

qn = lim
n→∞

an

ak
n−1

= α,

where α is the root of

(8) αk+1 − α − 1 = 0

in I = [1, 2]. The fact that there is a single fixed point for k < Ω implies that
there is exactly one α in I which satisfies (8). It is not clear what happens
when k = Ω since in that case, g′(x) = 1 for exactly one point and we can no
longer apply the contraction mapping theorem.

2.2. The behavior of g for large k. Here we will show that for k > Ω,
there are two distinct fixed points besides α, one strictly less than α and one
strictly greater than α. Therefore, LE and LO are different, and neither equals
α, which implies the limit limn→∞ an/ak

n−1 = limn→∞ qn does not exist.

Lemma 2.15. k > Ω implies α < k
√

k − 1.

Proof. Note that α < x implies f(x) < x, since f is decreasing and α is
the only fixed point of f . Therefore, to check the proposition we must check
whether f( k

√
k − 1) < k

√
k − 1. Note

f(
k
√

k − 1) = 1 +
1

k − 1
=

k

k − 1
.

Now,
k

k − 1
<

k
√

k − 1

if and only if

kk < (k − 1)k+1,

which is true only when k > Ω by Proposition 2.13. �

Proposition 2.16. k > Ω implies g′(α) > 1.
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α

g
′(x) = 1

g
′(x) = 1

2

2

1

1

Figure 3. Plot of g(x) for the proof of Theorem 2.17.

Proof. g′(α) = f ′(f(α))f ′(α) = [f ′(α)]2 = k2(α2)−k−1 > 1 if and only if
k2 > (α2)k+1, or, equivalently, k > αk+1. But αk+1 = αk + 1, so k > αk+1 only
if k
√

k − 1 > α. By Lemma 2.15 this is true since k > Ω. �

This proposition implies that α is a repelling fixed point for g when k > Ω.

Theorem 2.17. For k > Ω there exist exactly three values in I = [1, 2] for
which g(x) = x. One of these fixed points is α, one is strictly less than α, and
one is strictly greater than α.

Proof. We have shown that g must have fixed points LO and LE such
that En ↑ LE and On ↓ LO. For k > Ω, Proposition 2.16 shows that α is a
repelling fixed point, which implies that we cannot have LE = α or LO = α
because LE and LO are the limit points of gn(q2) and gn(q3) respectively.

To see that there cannot be more than three fixed points, note g ′(1) < 1
and g′(2) < 1. Since g′′ has only one zero in I, this implies that g′(x) = 1 for
at most two values in I. Therefore, g can cross the line y = x at most three
times (see Figure 3). �

Thus, when k > Ω the limit

lim
n→∞

an

ak
n−1

does not exist and values of an/ak
n−1 = qn oscillate between two limits points,

LE and LO.
Figure 4 shows graphs of x, g(x) and f 50(x) for k = 3 and k = 5. Note

that for k = 3 < Ω ≈ 4.141, f 50(x) seem to take one value, which equals α.
However, for k = 5 > Ω, f 50(x) seems to take two values, which equal LE and
LO.
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Figure 4. Figures showing x, g(x) and f 50(x).

We can give another characterization of α, LE and LO by noting that
g(x) = x only when

x = 1 + (1 + x−k)−k,

or, equivalently,
(x − 1)(1 + x−k)k − 1 = 0,

which can be simplified to

(x − 1)(xk + 1)k − xk2

= 0.

This is a polynomial with integral coefficients, and the fixed points of g corre-
spond to the zeros of this polynomial. The above discussion shows that when
k < Ω this polynomial has exactly one root in I. Similarly, when k > Ω this
polynomial has exactly 3 roots in I.
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3. The asymptotics of (an)

We are now ready to determine the asymptotics of (an), in which the limits
LE and LO will arise naturally.

Proposition 3.1. For each n = 2, 3, . . . we have

an = 2kn−1
n∏

j=2

qkn−j

j .

Proof. We prove this proposition inductively. Recall that qn = an/ak
n−1,

so an = qnak
n−1. Note that the theorem is satisfied for n = 2, since a2 = q2a

k
1 =

2kq2. Now we suppose the proposition is true for n and prove it for n + 1:

an+1 = qn+1a
k
n = qn+1

[

2kn−1
n∏

j=2

qkn−j

j

]k

= qn+12
kn

n∏

j=2

qkn−j+1

j

= 2kn

n+1∏

j=2

qkn+1−j

j .

�

Note that Proposition 3.1 implies

an = 2kn−1
n∏

j=2

qkn−j

j

= 2kn−1

exp2

(
n∑

j=2

log2 qkn−j

j

)

= 2kn−1

exp2

(
n∑

j=2

kn−j log2 qj

)

= 2kn−1

exp2

(

kn

n∑

j=2

log2 qj

kj

)

= exp2

(

kn−1 + kn
n∑

j=2

log2 qj

kj

)

= exp2

[

kn−1

(

1 + k
n∑

j=2

log2 qj

kj

)]

.

Next we define the sum

An = 1 + k
n∑

j=2

log2 qj

kj
,
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so that

an = exp2(k
n−1An).

Note that

An = 1 + k
log2 q2

k2
+ k

n∑

j=3

log2 qj

kj

so that

An ≤ 1 + k
log2 q2

k2
+ k

n∑

j=3

1

kj
< ∞,

since 1 < qn < 2 for n = 3, 4, . . .. This implies An must converge to some value
A given by

A = lim
n→∞

An = 1 + k
∞∑

j=2

k−j log2 qj.

Thus, it is reasonable to guess that an is asymptotic to λ1 exp2(k
n−1A) for

some λ1.

Theorem 3.2. For k = 2, 3, . . . and n even, we have an ∼ λ1 exp2(k
n−1λ2)

with

λ1 = exp2

(

− log2 LE + k log2 LO

k2 − 1

)

and λ2 = A,

where A is as above and LO and LE are the limits of (On) and (En) respectively.

Proof. We will prove this by showing that

lim
n→∞

exp2(k
n−1A)

an

= lim
n→∞

exp2(k
n−1A)

exp2(k
n−1An)

= exp

(
log2 LE + k log2 LO

k2 − 1

)

.

Note that

lim
n→∞

exp2(k
n−1A)

exp2(k
n−1An)

= exp2

(
kn−1(A − An)

)
.

We define

Wn = kn−1(A − An)

= kn−1

(

k
∞∑

j=2

k−j log2 qj − k
n∑

j=2

k−j log2 qj

)

= kn

∞∑

j=n+1

k−j log2 qj

=

∞∑

j=n+1

kn−j log2 qj

=
∞∑

j=1

k−j log2 qj+n.
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For all r ≥ 3, we have 1 < qr < 2 so log2 qr > 0. This implies that we can
rearrange the sum in Wn, splitting it into even and odd terms to give

(9) Wn =

[ ∞∑

j=1

k−2j log2 q2j+n +

∞∑

j=1

k−2j+1 log2 q(2j−1)+n

]

.

We will show that Wn → (log2 LE + k log2 LO)/(k2 − 1). Fix ε > 0. We
have already shown that (On) → LO and (En) → LE. The log function is
continuous, so this implies (log2 On) → log2 LO and (log2 En) → log2 LE. So
choose N such that for all n > N we have

| log2 On − log2 LO| < ε and | log2 En − log2 LE| < ε.

Then we know that for n even,
(10) ∣

∣
∣
∣
∣
Wn −

(

(log2 LE)
∞∑

j=1

k−2j + (log2 LO)
∞∑

j=1

k−2j+1

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∞∑

j=1

k−2j(log2 q2j+n − log2 LE) +
∞∑

j=1

k−2j+1(log2 q2j−1 − log2 LO)

∣
∣
∣
∣
∣

< ε

∞∑

j=1

k−j ≤ ε.

Therefore for n even,

Wn → (log2 LE)

∞∑

j=1

k−2j + (log2 LO)

∞∑

j=1

k−2j+1

= (log2 LE)
1

k2 − 1
+ (log2 LO)

k

k2 − 1

=
log2 LE + k log2 LO

k2 − 1
.

Since the exponential function is continuous, this implies

exp2(k
n−1A)

exp2(k
n−1An)

= exp2(k
n−1(A − An))

= exp2(Wn) → exp2

(
log LE + k log LO

k2 − 1

)

,

proving the theorem. �

Theorem 3.3. For k = 2, 3, . . . and n odd, we have an ∼ λ1 exp2(k
n−1λ2)

with

λ1 = exp2

(

− log2 LO + k log2 LE

k2 − 1

)

and λ2 = A,

where A is as above and LE and LO are the limits of (On) and (En) respectively.

Proof. The proof is identical to the proof of the previous theorem, except
that for odd n, LE and LO are switched in (10) and every step after. �
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Note for n even we have,

λ1 = exp2

(

− log2 LE + k log2 LO

k2 − 1

)

and for n odd we have,

λ1 = exp2

(

− log2 LO + k log2 LE

k2 − 1

)

.

When k < Ω, we know that LE = LO = α, so these expressions both simplify
to

λ1 = exp2

(

−(k + 1) log2 α

k2 − 1

)

= exp2

(

− log2 α

k − 1

)

= α
1

1−k .

Thus, for k < Ω we know an ∼ λ1 exp2(λ2k
n−1) for all n, where λ1 = α1/(1−k).

Theorem 3.4. The entropy of the golden mean shift is given by h(XF ) =
λ2(k − 1)/k.

Proof. To prove the theorem we show that if an ∼ λ1 exp2(λ2k
n−1), then

lim
n→∞

log2 Bn

|Cn|
= λ2

k − 1

k
.

Since λ1 does not appear in this expression, the entropy of the golden mean
shift is independent of the value of λ1. Therefore, it is irrelevant to the entropy
calculation that λ1 may depend on whether we look at the even or the odd
terms of an.

In the free group, the number of elements g ∈ G such that |g| = n is given
by (k + 1)kn−1 for n ≥ 1. Therefore,

|Cn| = 1 +

n∑

j=1

(k + 1)kj−1 = 1 + (k + 1)
kn − 1

k − 1
.

Next,

lim
n→∞

log2 Bn

|Cn|
= lim

n→∞

log2

[

ak+1
n + a

k(k+1)
n−1

]

|Cn|
.

Substituting for an and simplifying gives

lim
n→∞

log2

[

λk+1
1 exp2((k + 1)λ2k

n−1)un + λ
k(k+1)
1 exp2(λ2(k + 1)kn−1)un−1

]

|Cn|
,
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where un → 1. Factoring and simplifying gives,

lim
n→∞

log2 Bn

|Cn|
= lim

n→∞

(k + 1)λ2k
n−1 + log2

[

λk+1
1 un + λ

k(k+1)
1 un−1

]

|Cn|

= lim
n→∞

(k + 1)kn−1λ2

1 + (k + 1)kn−1
k−1

= lim
n→∞

(k + 1)kn−1(k − 1)λ2

(k − 1) + (k + 1)(kn − 1)

= λ2
k − 1

k
.

�

Theorem 3.4 shows that the entropy of the golden mean shift on the free
group is therefore given by

(11) h(XF ) = λ2
k − 1

k
= A

k − 1

k
=

k − 1

k
(1 + k

∞∑

j=2

k−j log3 qj).

The next section will determine this value numerically for various k. Finding
a closed form of h(XF ) is still an open problem. However, we did find a closed
form for λ1, which implies that perhaps it will be easier in other problems,
such as the square ice problem, to find the constant in front of the exponential,
rather than the actual entropy.

4. Numerical computations related to the golden mean shift

In this section we present several tables of numerical results related to the
golden mean shift on the free group. All the following results were computed
using a Mathematica script written by the author.

The following shows values of an for k = 2, 3, 4.

k = 2 k = 3 k = 4
a1 2.000000000 2.000000000 2.00000000
a2 5.000000000 9.000000000 17.00000000
a3 41.00000000 1241.000000 149057.0000
a4 2306.000000 2.298661010× 109 5.423002381× 1020

a5 8.143397000× 106 1.912721905× 1028 1.458683650× 1083

a6 9.459216733× 1013 8.789440240× 1084 5.086901266× 10332

a7 1.334534603× 1028 1.021684124× 10255 1.089720930× 101331

a8 2.581592044× 1056 1.379550025× 10765 1.611162872× 105324

a9 9.836516530× 10112 3.838471331× 102295 1.069248835× 1021297

a10 1.411741836× 10226 7.465377822× 106886 1.513291731× 1085188

a11 2.929207829× 10452 5.969536653× 1020660 8.163515502× 10340752

a12 1.255236735× 10905 2.847487925× 1061982 5.197706700× 101363011

a13 2.311827621× 101810 3.271440374× 10185947 1.118949619× 105452047

The following shows values of h(XF ) for k = 2, . . . , 10. These values were
computed by computing the first 8 terms of (11). The error was computed by
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finding an upper bound for the remaining terms in (11).

h(XF ) error
k = 2 0.7320165404 ±0.00492914
k = 3 0.7748023747 ±0.000144245
k = 4 0.8096298193 ±0.0000128363
k = 5 0.8372456350 ±2.01898 × 10−6

k = 6 0.8587918886 ±4.50767 × 10−7

k = 7 0.8757141659 ±1.27686 × 10−7

k = 8 0.8892044026 ±4.29787 × 10−8

k = 9 0.9001414916 ±1.6489 × 10−8

k = 10 0.9091550972 ±7.01033 × 10−9

These data suggest the following conjecture, which we make no attempt to
prove here:

Conjecture 4.1. As q → ∞, h(XF ) → 1, where XF is the golden mean
shift on the free group on q generators.

The following shows the real roots in I = [1, 2] of f(x) = 1 + x−k for
k = 2, . . . , 10. Note that where there is more than one root in I, the lesser
root is LE and the greater is LO.

Root(s) of f
k = 2 1.465571232
k = 3 1.380277569
k = 4 1.324717957
k = 5 1.063770006, 1.734110265
k = 6 1.023326214, 1.870793951
k = 7 1.009904994, 1.933332438
k = 8 1.004504650, 1.964682475
k = 9 1.002127834, 1.981051658
k = 10 1.001027902, 1.989778850

These data suggest the following conjecture, which we make no attempt to
prove here:

Conjecture 4.2. As q → ∞, LE → 1 and LO → 2.



CHAPTER 5

Further topics

1. Nonlinear continued fractions

We showed in Section 2 of Chapter 4 that iterated map

f(x) = 1 + x−k

on [1, 2] has a single fixed point for small enough k, but three fixed points
for large k. This is interesting because iterations f(x), f 2(x), f 3(x), . . . can be
expanded into a nonlinear continued fraction. For example,

f 3(x) = 1 +
1


















1 +
1








1 +
1

(

1 +
1

xk

)k








k


















k

which appears similar to a standard continued fraction, except that each de-
nominator has a k’th power. We showed that for small k, the value of the
infinite continued fraction given by

lim
n→∞

fn(x)

is equal to a root α of yk+1 − yk = 1, where the value of α is independent of
x. However, for large enough k, the value of this limit will oscillate between
two limit points, indicating that the continued fraction is not well-defined.
This suggests that perhaps such “nonlinear continued fractions” behave in
suprising and interesting ways. Here we present a preliminary analysis of
nonlinear continued fractions.

2. The nonlinear Gauss map

We begin by defining a nonlinear version of the Gauss map:

Definition 2.1. For a fixed k ≥ 2, define the k-Gauss map φk : [0, 1] →
[0, 1] by

φk(x) =
1

k
√

x
−
⌊

1
k
√

x

⌋

.

53
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The k-Gauss map partitions the unit interval into an infinite collection of
intervals I1, I2, . . . where

In =

(
1

(n − 1)k
,

1

nk

]

.

Each In is mapped by φk bijectively onto the unit interval. As in the typical
continued fraction case where k = 1, given any x ∈ [0, 1] we can record which
intervals iterates of φk map x into:

Definition 2.2. For each x ∈ [0, 1], the sequence of convergents is the
sequence of integers (am) such that φm

k (x) ∈ Iam
for all m ∈ N.

In analogy to the typical definition of continued fraction we may write

x = [a1, a2, a3, a4, . . .]k =
1

a1 +


















1

a2 +








1

a3 +

(
1

a4 + . . .

)k








k


















k
.

For the case where k = 1, it can easily be proved that each x gives a unique
sequence (am); however, for k > Ω, different values x, y ∈ [0, 1] will give the
same sequence (am).

3. When continued fractions are not well-defined

Note that on each In there will be a single fixed point. We will consider
only the fixed point in I1, which will be designated β. β is given by

β =
1

k
√

β
− 1,

or equivalently

(β + 1)k =
1

β
.

Then we have the following:

Lemma 3.1. When k > Ω we have β > 1/(k − 1).

Proof. It should be clear that 1/(k − 1) ∈ I1 since 1/2k ≤ 1/(k − 1) ≤ 1
for k ≥ 2. Since φk is monotonically decreasing on I1, we can check this lemma
by proving that φk(1/(k − 1)) > 1/(k − 1). Note that since 1/(k − 1) ∈ I1,

φk

(
1

k − 1

)

>
1

k − 1
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when
k
√

k − 1 − 1 >
1

k − 1

k
√

k − 1 >
k

k − 1

k − 1 >
kk

(k − 1)k

(k − 1)k+1 > kk,

which is true since k > Ω. �

Theorem 3.2. For k > Ω, there exist x, y ∈ [0, 1] such that x 6= y but
φm

k (x) ∈ I1 and φm
k (y) ∈ I1 for all m ∈ N.

Proof. We show this by proving that for k > Ω, β is an attracting fixed
point of φk. When β is an attracting fixed point, there will exist an interval
J = (β − δ, β + δ) ⊂ I1 such that φk(J) ⊂ J . This implies for all x ∈ J , we
have that φm

k (x) ∈ I1 for all m ∈ N.
To see that for k > Ω, β is an attracting fixed point, note,

φ′
k(x) =

−1

k
x−1/k−1 =

−1

k
x−(k+1)/k.

Next, |φ′
k(β)| < 1 when

1

k
β−(k+1)/k < 1

β−(k+1) < kk

(
1

β

)k+1

< kk.

Since 1/β = (β + 1)k, this is equivalent to requiring

(β + 1)k+1 < k

or

(12) (β + 1)k + β(β + 1)k < k.

We know by Lemma 3.1 that for k > Ω we have β > 1/(k − 1), so

1/β = (β + 1)k < k − 1.

Also,

k − 1 + β(β + 1)k = k

since

(β + 1)k = 1/β.

By (12), these imply,

(β + 1)k + β(β + 1)k < k − 1 + β(β + 1)k = k,

which gives the theorem. �
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Therefore, we have shown that for k > Ω, the representation as nonlinear
continued fractions is not unique: two different values may have the same
fraction representation. Next, we offer the following conjecture, but make no
attempt here to prove it:

Conjecture 3.3. Suppose k < Ω. Then given x, y ∈ [0, 1] with x 6= y,
there exist N, a, b ∈ N such that φN

k (x) ∈ Ia and φN
k (y) ∈ Ib but a 6= b.

This conjecture is equivalent to saying that numbers are uniquely repre-
sented by the sequence (am) of convergents, and therefore the nonlinear con-
tinued fraction representation is well-defined. The next sections will explore
nonlinear continued fractions and assume that Conjecture 3.3 is true.

4. Conjugacy between (I, φk) and (I, φ1)

Note that φk acts as a shift on [a1, a2, a3, . . .]k since

(13) φk([a1, a2, a3, a4 . . .]k) = [a2, a3, a4 . . .]k.

This shows that for any k, φk behaves similarly to the k = 1 Gauss map since
both act as a shift on N

N.

Definition 4.1. Define θk : [0, 1] → [0, 1] by

θk([a1, a2, a3, . . .]k) = [a1, a2, a3, . . .]1.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ k

x

Figure 1. Plot of θ3.

Thus, θk removes the k’th powers from the denominators of a nonlinear
continued fraction. Figure 1 shows a plot of θ3. When k < Ω, this appears
to be a well-defined function. However, Theorem 3.2 shows that θ is not a
function for k > Ω. Figure 1 leads to the following conjecture:

Conjecture 4.2. For k < Ω, θk is monotone.
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If θk is monotone, then it is continuous and differentiable almost every-
where, so θk would act as a topological conjugacy between (I, φ1) and (I, φk).
That is, by (13), we can then observe that

θk ◦ φk = φ1 ◦ θk.

In addition, it is well-known (see [3]) that an invariant measure for the
Gauss map φ1 is given by

G(X) =
1

log 2

∫

X

1

1 + x
dx.

If θk is a conjugacy between (I, φk) and (I, φ1), then we know that an invariant
measure for φk is given by

Gk(X) =
1

log 2

∫

θk(X)

1

1 + x
dx.

Further exploration of this would require a better grasp of how cylinder sets
behave under θk.
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