
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Children’s Estimation of Peripheral Information Drives Improvements in Approximate 
Number Sense

Permalink
https://escholarship.org/uc/item/783678kv

Authors
Yang, Huiwen Alex
Piantadosi, Steven
Kidd, Celeste

Publication Date
2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/783678kv
https://escholarship.org
http://www.cdlib.org/


Children’s Estimation of Peripheral Information Drives Improvements in
Approximate Number Sense

Huiwen Alex Yang (hw.yang@berkeley.edu)

Steven Piantadosi (stp@berkeley.edu)

Celeste Kidd (celestekidd@berkeley.edu)
Department of Psychology, 2121 Berkeley Way

Berkeley, CA 94704 USA

Abstract

Children rely on their approximate number system (ANS) to
guess quantities from a young age. Studies have shown that
older children displayed better ANS performance. However,
previous research did not provide an explanation for this ANS
improvement. We show that children’s development in ANS is
primarily driven by improved attentional control and aware-
ness of peripheral information. Children guess the number
of dots on a computer screen while being eye-tracked in our
experiment. The behavioral and eye-tracking results provide
supporting evidence for our account. Our analysis shows that
children estimate better under the longer display-time con-
dition and more visual foveation, with the effect of visual
foveation mediating that of time. It also shows that older chil-
dren make fewer underestimations because they are better at
directing their attention and gaze toward areas of interest, and
they are also more aware of dots in their peripheral vision. Our
finding suggests that the development of children’s ANS is
significantly impacted by the development of children’s non-
numerical cognitive abilities.

Keywords: approximate number system; eye-tracking

Introduction
The approximate number system (ANS) is the ability to rep-
resent large numerical magnitudes (Dehaene, 1997; Cant-
lon, Platt, & Brannon, 2009; Dehaene, 2009). This ability
to guess numbers is present in infants (Xu & Spelke, 2000;
Lipton & Spelke, 2003), human adults (Whalen, Gallistel,
& Gelman, 1999), and also non-human animals (Brannon,
Wusthoff, Gallistel, & Gibbon, 2001; Dehaene, Dehaene-
Lambertz, & Cohen, 1998; Cantlon & Brannon, 2006). ANS
is important in the sense that it is considered to be the basis for
mathematical abilities (Dehaene, 2001), and the performance
of ANS is related to the development of school mathematics
in children (Halberda, Mazzocco, & Feigenson, 2008; Maz-
zocco, Feigenson, & Halberda, 2011; Libertus, Feigenson, &
Halberda, 2011; Piazza et al., 2010).

Previous research has shown that the ANS is an impre-
cise, innate ability that stems from our evolutionary relatives
(Cantlon, 2012; Cantlon et al., 2009; Dehaene, 2001; Pi-
azza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Cantlon &
Brannon, 2007). We start to develop this ability in infancy
and continue developing until we reach adulthood (Piazza
et al., 2010; Halberda & Feigenson, 2008). Studies have
shown that animals have a basic number sense in a simpler
form (Dehaene et al., 1998). This sense is useful to guide
them through everyday tasks like foraging (Yang & Chiao,

2016). Other studies show that, in human children, ANS per-
formances improve with development: Infants at 6 months of
age can distinguish a different number of displayed elements
with a ratio of 1:2 (Xu & Spelke, 2000; McCrink & Wynn,
2007), whereas infants at 10 months of age can do so with
a ratio of 2:3 (Xu & Arriaga, 2007). It is also shown that
the acuity of ANS in children from 3 to 6 years old improve
and continues improving until early adolescence (Halberda &
Feigenson, 2008).

Many studies that involve the psychophysical models of
ANS either follow or derive the Weber’s law (Cheyette & Pi-
antadosi, 2019; Feigenson, Dehaene, & Spelke, 2004; Barth
et al., 2006; Whalen et al., 1999; Halberda et al., 2008; Gallis-
tel & Gelman, 2000). This ANS models assume that the mean
estimate varies linearly as a function of the true numerosity.
At the same time, the estimation error (standard deviation)
also varies linearly as a function of the estimate. The Weber
fraction, w, is the scalar factor that captures the relationship
between the mean and the variability, with a lower value of
w indicating better acuity. Data from previous studies show
that while 6-month-old infants only have a Weber fraction of
1.0 (Xu & Arriaga, 2007), their acuity improves with age and
can achieve a Weber fraction of 0.1 in adulthood (Halberda &
Feigenson, 2008).

Some studies have shown that this psychophysical model
of ANS is oversimplified: participants display different ANS
acuity when performing different tasks with varying non-
numerical stimulus features, such as the clustering of dots,
presentation format, and total surface area (Price, Palmer,
Battista, & Ansari, 2012; Im, Zhong, & Halberda, 2016;
DeWind & Brannon, 2012; DeWind, Adams, Platt, & Bran-
non, 2015; Tokita & Ishiguchi, 2010). These results suggest
that other domain-general cognitive or decision processes
contribute to the performance of ANS (Price et al., 2012;
Sophian & Chu, 2008).

Our goal for this paper is to identify factors in attention
control and visual foveation that drive children’s develop-
ment in ANS. To explain the huge individual differences in
ANS performances and the development of ANS in chil-
dren, researchers have proposed that this development can
be attributed to the development of some non-numerical abil-
ities in children, including working memory capacity, spa-
tial skills, and executive functioning that influence children’s
mathematical reasoning (Halberda & Feigenson, 2008; Fuhs
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& McNeil, 2013; Halberda et al., 2008; Gilmore et al., 2013;
Susperreguy, Douglas, Xu, Molina-Rojas, & LeFevre, 2020;
LeFevre et al., 2013). However, the relationship between
ANS and other cognitive domain-general processes remains
obscure.

We conducted a behavioral experiment with an eye-
tracking technique to investigate cognitive processes involved
in ANS. The eye-tracking technique has become increas-
ingly popular in mathematical education and learning re-
search (Strohmaier, MacKay, Obersteiner, & Reiss, 2020; Lai
et al., 2013), because it provides data on eye movements
that are important for understanding the underlying cogni-
tive processes of learning that were hard to analyze other-
wise (Hartmann, 2015). Eye movements are crucial to un-
derstanding the role of attention in children’s learning pro-
cess. Studies have shown that cognitive focus can be inferred
from visual foveation (Just & Carpenter, 1980). In particular,
overt attention is achieved by visually foveate on an area of
interest and covert attention can arise from being attentive to
peripheral information (Carrasco, 2011). For these reasons,
the eye-tracking technique is a beneficial addition to the be-
havioral experiment, as it provides data on eye movements
that are important for the quantitative modeling of children’s
ANS that investigate the relationship among the underlying
cognitive processes.

There are two popular paradigms to measure ANS perfor-
mances: the estimation paradigm in which participants esti-
mate the numerosity of dot arrays (Izard & Dehaene, 2008;
Cheyette & Piantadosi, 2019; Whalen et al., 1999; Cordes,
Gelman, Gallistel, & Whalen, 2001; Le Corre & Carey, 2007)
and the discrimination paradigm in which participants com-
pare the numerical magnitude of two numerical stimuli (Xu
& Spelke, 2000; Sophian & Chu, 2008; Price et al., 2012;
Piazza et al., 2010). In this study, we used an estimation
paradigm. Given that there is a fuzzy boundary between ANS
and other numerical cognitive processes, namely counting,
subitizing, or groupitizing (Ciccione & Dehaene, 2020; Burr,
Turi, & Anobile, 2010; Schleifer & Landerl, 2011; Starkey
& McCandliss, 2014), participants may have used systems
other than or in addition to ANS when performing the esti-
mation tasks. Since each of the stimuli was presented for a
short period of time (2.5 seconds to 5 seconds), there is, not
enough time for children to count all dots. Our results show
that participants’ error patterns follow Weber’s law, which
suggests that this experiment design mainly measured ANS
performances, instead of counting.

We generated our findings from the results of behavioral
experiments and model-driven analysis, and we show that
children’s development of ANS is attributed to their improve-
ment in attentional control and awareness of peripheral infor-
mation. Our results show that children’s estimation improves
with more time and more visual foveation. We also found
that older children were better at estimation tasks. In addi-
tion, we show that children displayed no statistical difference
in their estimation of foveated dots; however, individual dif-

ferences are significant in the estimation of peripheral dots,
with older children displaying an improvement in their esti-
mation. Therefore, we suggest that older children perform
better on ANS tasks because they take into account the dots
that are in their peripheral vision when making an estimation.
Our results provide a possible explanation for some previ-
ous findings that suggested that ANS performances are de-
pendent on non-numerical factors (Im et al., 2016), and our
result can shed some light on the relationship between ANS
performances and other non-numerical cognitive processes.

Methods
Participants
71 children between the ages of 3 to 6 participated in the ex-
periment either at the museum or in the lab. Data from 11
participants were removed because participants’ ages were
greater than 7. 5 participants were removed due to the incom-
pletion of the experiment. 2 of them were further removed
due to data incompletion.

Design
Throughout the experiment, we asked children to estimate a
varied number of dots on a monitor (from 3 to 15). Each child
participant did this 26 times, for a total of 26 trials, while
they were eye tracked. We analyzed their eye-tracking data
to determine whether the estimates were influenced by the
number of dots they visually fixated. Figure 1 illustrates each
trial. For each trial, the participant viewed a fixation cross
for 1500ms and saw between 3 and 15 dots in randomly scat-
tered positions for either 2500ms or 5000ms, depending on
the condition. Then the participant saw an image of a toy for
1000ms. Finally, the researcher asked the child participant to
guess the number of dots that appeared on the screen. The
researcher gave positive feedback to the answer, regardless of
the answer’s accuracy.

Analysis
Data from a total of 1378 trials were collected from 53 partic-
ipants who met the experimental requirement. 93 trials were
removed because they contain an estimate of more or less
than 3 standard deviations away from the mean. 368 trials
were further removed because the eye tracker didn’t capture
the participant’s eye movement or the participant failed to fo-
cus on the screen during the testing phase for more than 50%
of the display time. Further data analysis and modeling were
conducted on the remaining 917 trials.

Results
More time improves estimation mean and standard
deviation
Figure 2 shows children’s overall ANS performances. In Fig-
ure 2A, data from participants is shown with the best-fitted
line from linear regression. The best-fit line has a positive
slope, which indicates that children’s mean estimations in-
crease as the number of dots increases. The slope, however,
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Figure 1: Each of the four images represents a stage of a trial.
Stage 1: A fixation cross appears for 1,500 ms. Stage 2: The
fixation cross is removed, and dots appear on the screen for
either 2500ms or 5000ms, depending on the display-time con-
dition. Stage 3: The display is masked by a picture of toys for
1000 ms. Stage 4: The researcher asks the participant to state
the number of dots they thought they saw, then the researcher
provides positive feedback to the answer.

Figure 2: Estimates and standard deviations as a function of
displayed dots shown.

is less than 1, indicating that children underestimate higher
values. This result replicates findings in earlier studies that
showed an underestimation bias in an estimation paradigm
(Cheyette & Piantadosi, 2019; Izard & Dehaene, 2008). Fig-
ure 2B shows that the standard deviation of estimates also
increases linearly with the number of dots, which follows We-
ber’s law. This indicates that children made more estimation
errors as the numerosity increases.

We performed a Bayesian hierarchical regression to test the
effect of time on the mean estimate and the Weber fraction.
The model includes regression terms that capture both the
group-level effects and the individual-level effects. Group-
level effects demonstrate the effect of time on the estimate on
all participants, as a group. Individual-level effects capture
the between-subject effects in this participant group. In this
model, it is assumed that given a trial with n dots, the mean
estimate of every participant is sampled from a normal dis-
tribution N (µ, σ2) with µ = β · n and σ = ω · β · n, where β

(slope) and ω (Weber fraction) are fit parameters determined

Table 1: Group level regression weights and their 95% con-
fidence intervals for the effect of time on slopes and Weber
fractions.

Parameter Value 2.5% 97.5%
β0 −0.10 −0.16 −0.03
βt 0.03 −0.01 0.06
w0 −0.84 −1.10 −0.61
wt −0.39 −0.59 −0.20

by the model. The model also assumed a logarithmic effect of
time (t) on the mean and the Weber fraction. We denote the
group baseline slopes and Weber fractions as β0 and w0, and
denote the effect of time on slopes as βt and Weber fractions
wt . All subject effects are denoted with a prefix of sub j. In
this model, the slope and Weber fraction are calculated as:

log(beta) = β0 + sub jβ0 +(βt + sub jβt) · log(t)

log(w) = w0 + sub jw0 +(wt + sub jwt) · log(t)

Table 1 shows the results from this model. As shown, the
group-level regression weights demonstrate the effect of time
on the slope and the Weber fraction. The result reveals that
there is a small effect of time on the slope (βt = 0.03; CI=[-
0.01, 0.06]) in which more time leads to less underestima-
tion. There is also a significant effect of time on the Weber
fraction (wt = –0.39; CI=[-0.59, -0.20]). The negative value
of wt means that, with more time, the standard deviation of
participants’ estimates decreases.

Figure 3 shows the behavioral data as well as our mod-
eling results, with different colored dots and lines indicat-
ing data from two separate display-time conditions. As it
shows, longer display time improves participants’ mean es-
timates slightly but drives great improvements in the stan-
dard deviations of estimates. Firstly, Figure 3A shows the
relationship between estimates (y-axis) and displayed num-
bers (x-axis). As it shows, the slope increased for the long
display-time condition by 1% (0.92 - 0.93), indicating that
children underestimate less slightly when given more time.
Secondly, Figure 3B shows the relationship between the stan-
dard deviation of estimates (y-axis) and displayed number
(x-axis). As it shows, the standard deviation decreases sig-
nificantly for the long display-time condition, and the Weber
fraction decreases for the long display-time condition by 20%
(0.30 - 0.24). Therefore, we conclude that participants under-
estimate, with a reduced underestimation and less standard
deviation as display-time increases. This result is consistent
with previous finding that also shows that ANS is not a par-
allel process: it depends on a serial accumulation mechanism
(Cheyette & Piantadosi, 2019).

Visual foveation, not time, has a greater effect on
estimation
We used an eye tracker to record the participants’ eye move-
ments while they were performing number estimation tasks.
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Figure 3: Results of Bayesian hierarchical regression with be-
havioral data. (A) Mean estimates as a function of the number
of displayed dots, under two display-time conditions. (B) The
standard deviation of participants’ estimates as a function of
the number of displayed dots, under two display-time condi-
tions.

Figure 4: (A) The number of dots foveated as a function of
the number of displayed dots. (B) Percentage estimation error
as a function of percentage foveation.

Then, we analyze this eye-tracking data to determine the ef-
fect of visual foveation on estimates. We counted the number
of dots that lie within the 5◦ of the center of the participants’
gaze path as the number of dots that the participants foveated
on. We denote the percentage of dots they foveated on as the
percentage foveation.

Figure 4A shows the relationship between the number of
foveated dots (y-axis) and the number of dots displayed (x-
axis) for both display-time conditions. It shows that under the
long display-time condition, participants were able to foveate
on more dots. This result is consistent with a previous study
that argues that longer display time leads to better ANS acu-
ity in a dot comparison task (Inglis & Gilmore, 2013). This
phenomenon could also explain the previous observation that
participants made better estimates under the long display-
time condition: it could be that in addition to or instead of
display time, visual foveation has an impact on participants’
estimates.

To test this hypothesis, we first look at participants’ estima-
tion performances as a function of their percentage foveation.
Figure 4B shows the relationship between the error in estima-

tion (y-axis) and the number of foveated dots (x-axis) for both
display-time conditions, with a positive error denoting an
overestimation and a negative error denoting an underestima-
tion. As it shows, the mean of error differs significantly when
percentage foveation increases from 0% to 100%: as percent-
age foveation increases, the percentage error increased from
negative to almost 0. However, when controlling the percent-
age foveation, the mean of error (slope) for both time condi-
tions doesn’t exhibit a significant difference. As a result, the
effect of time disappears when both time and foveation are
considered.

Next, we aim to quantify the effect of visual foveation on
estimates. We would also like to investigate whether visual
foveation mediates the effect of time. We performed another
Bayesian hierarchical regression, including both group-level
effects and individual-level effects of visual foveation (s) and
time (t) on the mean estimate and the Weber fraction. In this
model, we denote the group-level effect of visual foveation
on the slope as βs and its effect on the Weber fraction as ws,
with their individual effects terms denoted with a prefix of
sub j. The slope and Weber fraction are calculated as:

log(beta) = (β0 + sub jβ0)+

(βt + sub jβt) · log(t)+(βs + sub jβs) · s

log(w) = (w0 + sub jw0)+

(wt + sub jwt) · log(t)+(ws + sub jws) · s

Figure 5 A, B show our modeling results. It shows that visual
foveation, represented by the percentage of dots foveated by
participants, has a significant effect on both the group mean
slope and Weber fraction, as depicted by the black solid line
and black dots. From 0% to 100% percentage foveation, the
mean slope increased by 18% (0.82 - 0.97), and the Weber
fraction decreased by 67% (0.55 - 0.18), suggesting that with
more visual foveation, participants made less underestimation
with less standard deviation.

Our model also demonstrates that visual foveation medi-
ates the effect of time on both the mean estimate and the We-
ber fraction. Table 2 shows the regression weights for the
effect of time and visual foveation. Comparing parameter val-
ues in Table 1 and Table 2, we show that as the model includes
the visual foveation effect (βs and ws), the effect of time on
the slope (βt ) gets closer to 0 (from 0.03 to -0.02), which
means that the effect of time diminishes when taking into ac-
count visual foveation. It is also clear that the effect of time
on the Weber fraction (wt ) reduced significantly (from -0.39
to -0.04) in this model, which is a result of visual foveation
mediating the effect of time on the Weber fraction.

The result from this model supports our hypothesis that the
ability to foveate on quantities influences ANS performances
and contributes to the underestimation of displayed dots. It
also supports our hypothesis that visual foveation is the pri-
mary contributing factor to ANS performances, and not time.
Furthermore, it shows that the ANS performance of children
depends on their ability to foveate on displayed dots, which
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Figure 5: Results of Bayesian hierarchical regression. (A)
The mean (bold black line with dots) and individual (transpar-
ent black lines) slope as a function of percentage foveation,
with the mean from each age group (colored lines). (B) The
mean (bold black line with dots) and individual (transpar-
ent black lines) Weber fraction as a function of percentage
foveation, with the mean from each age group (colored lines).

Table 2: Group level regression weights and their 95% confi-
dence intervals for the effect of time and visual foveation on
slopes and Weber fractions.

Parameter Value 2.5% 97.5%
β0 −0.15 −0.22 −0.08
βt −0.02 −0.06 0.02
βs 0.15 0.07 0.23
w0 −0.52 −0.77 −0.26
wt −0.04 −0.24 0.16
ws −1.15 −1.48 −0.82

suggests that ANS is influenced by other nonnumerical pro-
cesses.

Older children perform better on ANS tasks and
have better attention and gaze control
We want to understand the difference in ANS performances in
children from different age groups. As Figure 6 shows, older
children made more accurate estimates: they performed the
estimation tasks with less underestimation and smaller stan-
dard deviation. This is consistent with previous research that
shows an improvement with age in ANS performances for
children from 3 to 6 years old (Halberda & Feigenson, 2008).

To put the effect of age in a clearer picture, we analyzed
previous modeling results by showing the mean of the slope
and the Weber fraction grouped by participants’ age. Effects
of children’s age on estimation is demonstrated in Figure 5,
shown by bold colored lines to differentiate among each age
group. From the age of 3 to the age of 6, older children’s esti-
mates show greater mean slopes and smaller Weber fractions
across different percentage foveation (Figure 5 C, D).

Figure 7 also shows that older children are better at direct-
ing their attention to displayed dots, resulting in an increase
of percentage foveation. The results are consistent with the

Figure 6: Estimated number of dots as a function of the dis-
played number of dots from each age group.

Figure 7: Foveated number of dots as a function of displayed
number of dots from each age group.

theory that attention and gaze control contribute to the devel-
opment of children’s ANS.

Older children are better at estimating peripheral
dots
To further investigate the mechanism behind children’s im-
provement in estimation, we performed a third Bayesian hi-
erarchical regression. We focused on the visual factors that
contribute to children’s development of ANS. This compre-
hensive model investigates the influence of different visual
inputs on children’s estimates. Components in this model
are: the number of foveated dots (N f ), the number of non-
foveated dots (dots in the peripheral visual field) (Np), and the
number of dots that participants foveated on initially and then
re-foveated on after looking away (Nd). These components’
corresponding regression parameters include terms that cap-
ture the group effects (β f , βp, and βd) as well as terms that
capture the individual effects (sub jβ f , sub jβp, and sub jβd).
The mean estimate of every participant is sampled from a nor-
mal distribution N (µ, w2) with µ and w expressed as:

µ = (β f + sub jβ f ) · (N f +(βd + sub jβd) ·Nd)+

((βp + sub jβp) ·Np)

w = (βn + sub jβn) ·µ
We ran this model on all participants across age groups. Our
modeling results show that the key factor influencing chil-
dren’s ANS performance in the different age groups is the
amount of peripheral information they used to make an esti-
mation. Table 3 shows that foveated dots almost always con-
tribute to children’s estimates (β f = 0.96; CI=[0.91, 1.00])
while less percentage of peripheral dots were included in es-
timates (βp = 0.84; CI=[0.76, 0.97]). It also shows that chil-
dren don’t double count dots that they have already foveated
on (βd = 0.04; CI=[0.00, 0.10]).
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Table 3: Group level regression weights and their 95% confi-
dence intervals for the effect of foveated (β f ), peripheral (βp)
and double counted dots (βd).

Parameter Value 2.5% 97.5%
β f 0.96 0.91 1.00
βd 0.04 0.00 0.10
βp 0.87 0.76 0.97

Figure 8: The double, foveal, and peripheral contribution to
estimates.

We then ran this model four times on participants from
each of the four age groups. Figure 8 shows our modeling
results. As it shows, the mean peripheral regression weight
for older children is significantly higher than that of younger
children: The mean peripheral regression weight for 6-year-
old children increases 84% (from 0.61 to 1.12) compared
with that for 3-year-old children. This can explain the im-
provement in ANS acuity for older children. It also shows
that the peripheral regression weights vary among individu-
als, which offers a hypothesis as to why there exist large indi-
vidual differences in ANS performances. It shows that regres-
sion weights for foveal information are very close to 1, and
don’t have much difference among individuals and across age
groups. This result indicates that children from 3 to 6 years
old can almost always incorporate seen information into their
estimates. The low and invariant values of double-counting
regression weights show that children from 3 to 6 years old
almost never double-count. Therefore, our model provides
evidence that older children have more accurate estimations
because they are more capable of incorporating information
in their peripheral vision.

Conclusions and Discussion
Our experiment demonstrated that children’s development in
ANS can be attributed to their improvement in attention and
gaze control, as well as their increased processing power for
peripheral information. Firstly, We replicate previous find-
ings which show that children develop their ANS and esti-
mate more accurately as they age (Halberda & Feigenson,
2008). Additionally, our results also agree with previous stud-
ies that ANS is a serial accumulation process in which more
time and visual foveation lead to better estimation, and that
visual foveation mediates the effect of time (Cheyette & Pi-

antadosi, 2019). Then, we analyzed the contribution of each
type of visual input to children’s ANS performances in an es-
timation. We show that while foveal information is almost
always included in the estimation, the inclusion of periph-
eral information is significantly different across age groups.
Older children incorporate much more peripheral information
in their estimates. Combined with the finding that older chil-
dren have more foveation on displayed dots, we conclude that
as children develop their attention control and awareness of
peripheral information, their ANS performances improve.

We provide evidence that participants used ANS during the
experiment, and that other numerical processes, counting or
groupitizing, had little effect. Our data shows properties of
Weber’s law, which is a result of estimation, instead of count-
ing. The pattern of counting error is different from that of We-
ber’s law (Odic, Im, Eisinger, Ly, & Halberda, 2016). Count-
ing errors obey binomial statistics: the error should grow in
proportion to the square root of the numerosity. However, in
estimation, the error follows Weber’s law that the error grows
in proportion to the estimates (Cordes et al., 2001). Figure 2
shows the mean and standard deviation of estimates. As it
shows, the error of estimation grows linearly as the numeros-
ity, demonstrates an estimation behavior from the partici-
pants. If participants were counting, the relationship between
error and numerosity should be sublinear. Other studies have
also found that young children require a long time to perform
a serial counting task: it is shown that 7-year-old children
need approximately 5000ms to count 7 dots, but adults took
only about 2000ms (Svenson & Sjöberg, 1983). The display-
time conditions that were used in our experiment, although
long enough for adults to count, were likely not long enough
for children. Furthermore, studies that focused on the groupi-
tizing process show that while adults and adolescents can use
groupitizing strategy in their counting procedure to achieve
a faster response time, 6-year-old children cannot effectively
use such strategy to shorten their response time in counting
tasks (Starkey & McCandliss, 2014; Ciccione & Dehaene,
2020). Since participants in the current study are between the
ages of 3 to 6, they are not able to use groupitizing strate-
gies in the experiment. Therefore, it is safe to conclude that
participants mainly used ANS techniques.

The present experiment is limited in the degree to which
it can disambiguate between different possible mechanisms
driving participant differences in the amount of peripheral in-
formation that they take into account when they make estima-
tions. The improvement in estimating peripheral information
may be attributed to a development in the visual information-
gathering system or in the way children process this visual
information. This improvement could also be affected by the
development of other factors in visual cognition as children
mature. While our work provides a fuller picture of the re-
lationship between ANS and other non-numerical cognitive
functions, further research on the visual-cognitive processes
is needed to advance the current understanding of ANS mech-
anisms.
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Svenson, O., & Sjöberg, K. (1983). Speeds of Subitizing and
Counting Processes in Different Age Groups. The Journal
of Genetic Psychology, 142(2), 203–211.

Tokita, M., & Ishiguchi, A. (2010). How might the discrep-
ancy in the effects of perceptual variables on numerosity
judgment be reconciled? Attention, Perception & Psy-
chophysics, 72(7), 1839–1853.

Whalen, J., Gallistel, C., & Gelman, R. (1999). Nonverbal
Counting in Humans: The Psychophysics of Number Rep-
resentation. Psychological Science, 10(2), 130–137.

Xu, F., & Arriaga, R. I. (2007). Number discrimination in
10-month-old infants. British Journal of Developmental
Psychology, 25(1), 103–108.

Xu, F., & Spelke, E. S. (2000). Large number discrimination
in 6-month-old infants. Cognition, 74(1), B1–B11.

Yang, T.-I., & Chiao, C.-C. (2016). Number sense and state-
dependent valuation in cuttlefish. Proceedings of the Royal
Society B: Biological Sciences, 283(1837), 20161379.

3579




