
Modeling the N400 ERP component as transient semantic over-activation
within a neural network model of word comprehension

Samuel J. Cheyettea, David C. Plautb,∗

aDepartment of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
bDepartment of Psychology and the Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA

15213, USA

Abstract

The study of the N400 event-related brain potential has provided fundamental insights into the nature
of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and
context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise
characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo
& Armstrong, 2014) used physiologically constrained neural networks to model the N400 as transient over-
activation within semantic representations, arising as a consequence of the distribution of excitation and
inhibition within and between cortical areas. The current work extends this approach to successfully model
effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic
and associative priming, and orthographic neighborhood size. The account is argued to be preferable to
one based on “implicit semantic prediction error” (Rabovsky & McRae, 2014) for a number of reasons, the
most fundamental of which is that the current model actually produces N400-like waveforms in its real-time
activation dynamics.
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1. Introduction

The N400 is a negative deflection in event-related
brain potentials (ERPs) that occurs approximately
400 ms post-stimulus onset in response to a wide
range of meaningful or potentially meaningful stim-
uli, including written and spoken words and pseu-
dowords, and drawings, photos and videos of ob-
jects and actions (for reviews, see Federmeier &
Laszlo, 2009; Kutas & Federmeier, 2009, 2011). It
was originally identified as a response to semanti-
cally anomalous sentence endings (e.g., “I take cof-
fee with cream and dog”; Kutas & Hillyard, 1980)
but, over the years, has been shown to be sensi-
tive to a wide variety of stimulus and context ma-
nipulations, including cloze probability (the num-
ber of possible sentence endings), sentence and dis-
course congruity, repetition, semantic priming, lex-
ical association, concreteness and semantic rich-
ness, word frequency, orthographic neighborhood
size, and many more. On the other hand, N400
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amplitude is relatively insensitive to manipulations
that broadly preserve meaning, including physical
changes (e.g., in font or case) and syntactic viola-
tions (e.g., in number agreement). Understanding
the N400 is important because it offers a real-time
measure linking underlying neural mechanisms to
behavior that has provided fundamental insights
into core issues in the study of cognitive and neural
processing, including the immediacy and incremen-
tality of comprehension, the integration of bottom-
up and top-down sources of information, the or-
ganization and dynamics of semantic memory, and
the bases for variability and atypicality in perfor-
mance across individuals and in special populations
(Kutas & Federmeier, 2011).

The wide range of factors that modulate the N400
is, unfortunately, matched by an equally wide range
of theoretical accounts of the phenomena. One pro-
posal is that the N400 reflects post-lexical semantic
integration or unification, linking semantic infor-
mation from a current word with meaningful infor-
mation from previous words and context (Brown &
Hagoort, 1993; Hagoort, Baggio, & Willems, 2009).
This broad theory accounts for the N400’s largely
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meaning-specific modulation, but fails to account
for many of its subtleties. For instance, it is un-
clear why an N400 is generated by words in isola-
tion, or even by pseudowords (Deacon, Dynowska,
Ritter, & Grose-Fifver, 2009; Laszlo & Federmeier,
2007, 2011), and why its amplitude is modulated by
form-based properties such as orthographic neigh-
borhood size (Laszlo & Federmeier, 2009). Other
researchers (Deacon, Dynowska, Ritter, & Grose-
Fifer, 2004) have suggested that the N400 reflects
orthographic/phonological analysis that is attenu-
ated by top-down semantic feedback. In comple-
mentary fashion, this account explains sensitivity
to lexical and form-based factors but provides a less
satisfactory account of sentence- and discourse-level
effects (see van Berkum, 2009).

Perhaps the most common perspective falls be-
tween these two extremes: that the N400 reflects
something like the difficulty of semantic access
(Kutas & Federmeier, 2000, 2011). This proposal is
supported in part by attempts to localize the neural
generators of the N400 component (e.g., Halgren et
al., 2002; Lau, Phillips, & Poeppel, 2008; Van Pet-
ten & Luka, 2006), which generally implicate brain
regions involved in semantic processing, including
the superior/middle temporal gyrus, the temporal-
parietal junction, and the medial temporal lobe. It
has, however, proved difficult to formulate a precise
characterization of “semantic access” that is capa-
ble of accounting for the full range of empirical ef-
fects. Indeed, in an attempted synthesis from this
perspective, Kutas and Federmeier (2011) offered
only a very general characterization:

Rather than reflecting the activation of “a
word’s meaning,” then, the N400 region
of the ERP is more accurately described
as reflecting the activity in a multimodal
long-term memory system that is induced
by a given input stimulus during a delim-
ited time window as meaning is dynami-
cally constructed. (p. 640)

Laszlo and Plaut (2012) put forth a specific pro-
posal for the basis of the N400 and supported their
account with an explicit computational simulation
using a neurophysiologically constrained neural net-
work. On their view, the N400 does, in fact, re-
flect the activation of a word’s meaning, but this
process is sensitive to a variety of bottom-up and
top-down influences and also exhibits specific tem-
poral dynamics due to the organization of excita-
tion and inhibition within cortex. In particular,
it is well established that the projections of pyra-
midal cells between cortical areas are restricted to

be excitatory, whereas inhibitory interneurons oper-
ate locally to modulate overall activity levels within
each area (Kandel & Schwartz, 1985). As a result,
bottom-up input causes an initial over-activation
of neurons within an area, which is subsequently
resolved into a coherent representation with lower
activation through competitive (and cooperative)
interactions (see Zheng et al., 2012). Laszlo and
Plaut proposed that the N400 deflection reflects
this transient over-activation of neurons in cortical
areas representing word meaning, and that its mag-
nitude depends both on the nature of co-activated
information due to the similarity structure of word
forms and meanings, as well as on pre-activated in-
formation from prior context.

To support this account, Laszlo and Plaut (2012)
developed a neural network simulation of word
comprehension that incorporated the relevant con-
straints on excitation and inhibition between and
within layers. In the model, visual input mapped to
orthographic, hidden, and semantic representations
in turn. At each layer, excitatory units received
positive-only bottom-up input from the layer be-
low, and projected positive-only connections to the
next layer as well as to an inhibitory unit which pro-
jected back with negative-only connections. The
model was trained to reconstruct the visual input
and to generate the semantic representations for
62 CVC words as well as 15 acronyms (containing
a central consonant). Acronyms were included in
order to model single-item ERP data gathered by
Laszlo and Federmeier (2011) in which they inde-
pendently varied meaningfulness and orthographic
regularity by comparing words (e.g., HAT), pseu-
dowords (e.g., KOF), acronyms (e.g., DVD), and
illegal strings (e.g., NHK). Somewhat surprisingly,
Laszlo and Federmeier found that N400 magnitude
depended on orthographic regularity but not on
meaningfulness (see Figure 1a). Moreover, across
all stimulus types, there was a strong correlation
between N400 amplitude and orthographic neigh-
borhood size, regardless of lexical status. These re-
sults are particularly important because they would
seem to be at odds with accounts of the N400 as re-
flecting semantic access per se.

As it turns out, however, the Laszlo and Plaut
(2012) comprehension model shows the same pat-
tern of performance when tested on analogous
stimuli (see Figure 1b). Laszlo and Plaut mea-
sured mean semantic activation over time as a
proxy for the population-based post-synaptic po-
tentials thought to underlie EEG signals in gen-
eral, and the N400 component in particular (see
Fabiani, Gratton, & Federmeier, 2007). Although

2



(a) Empirical data (Laszlo & Federmeier, 2011) (b) Simulation results (Laszlo & Plaut, 2012)

Figure 1: (a) Empirical data from Laszlo and Federmeier (2011) showing N400 magnitudes to words, pseudowords, acronyms,
and illegal strings; (b) Mean semantic activation over time exhibited by the Laszlo and Plaut (2012) simulation for the same
stimulus classes. (Reprinted with permission from Laszlo & Plaut, 2012.)

the model ultimately settles to stronger semantic
representations for meaningful stimuli (words and
acronyms), it produces greater transient semantic
activation—and, hence, greater N400 amplitudes—
for orthographically regular stimuli (words and
pseudowords). The reason is that orthographic
forms provide bottom-up excitation not only for
their specific semantic features but also for the se-
mantic features of orthographically similar forms.
Thus, words and pseudowords, with many ortho-
graphic neighbors, generate much greater transient
semantic over-activation than do acronyms and il-
legal strings, with few if any neighbors. Laszlo and
Plaut showed that the separation of excitation and
inhibition is essential to producing these dynamics;
an otherwise equivalent but unconstrained network
failed to exhibit the empirically observed pattern.
In this way, the model provides a specific, neurally
explicit instantiation of comprehension processes in
which the N400 can be understood as reflecting
“semantic access”, and yet can nonetheless explain
why it occurs as strongly for pseudowords as for
words, and why its amplitude depends on form-
based properties rather than on meaningfulness. In
follow-up simulations, Laszlo and Armstrong (2014)
added a fatigue function to the excitatory units to
account for the reduction in N400 amplitude due
to stimulus repetition (e.g., Nagy & Rugg, 1989),
which can be viewed as a first step toward account-
ing for effects of prior context.

Recently, Rabovsky and McRae (2014) proposed
an alternative account of the N400 based on a dif-
ferent type of neural network simulation, and ap-
plied it to a much broader range of phenomena than
addressed by Laszlo and Plaut (2012) and Laszlo
and Armstrong (2014). On their account, seman-
tic activation forms the basis for task performance

(e.g., lexical decision), whereas the N400 reflects
“implicit prediction error” over semantics—the dis-
crepancy between the semantic information derived
from a stimulus and the information predicted or
anticipated from prior context (where this “predic-
tion” is not conscious or explicit). Rabovsky and
McRae supported their account using an attrac-
tor network model of word comprehension (Cree,
McNorgan, & McRae, 2006). The model consists
of a fully connected network without hidden units
that was trained to map the orthographic forms
of 541 words (over 30 units) to their semantic fea-
ture representations (over 2526 units, derived from
McRae, Cree, Seidenberg, & McNorgan, 2005). Im-
plicit semantic prediction error was operationalized
in terms of task performance error—the discrep-
ancy at any point in time between the semantics
generated by the network and the correct semantic
pattern for the target stimulus.1

Rabovsky and McRae did not attempt to re-
produce the actual morphology of the N400 de-
flection. Rather, they considered only the direc-
tion of changes in N400 amplitude, and of behav-
ioral performance, in the context of seven empirical
effects: semantic priming, semantic richness (i.e.,

1Rabovsky and McRae (2014, p. 70) suggest that the net-
work’s activation corresponds to the prediction, and the cor-
rect semantic targets (of unspecified origin) correspond to
the actual outcome. However, on this view, in order for the
real-time value of prediction error to correspond to the real-
time value of the N400, the “outcome” (correct semantic
targets) must be available at the very start of the generation
of the “predictions” (network activations), which seems awk-
ward to us. For this reason, we prefer an interpretation in
which prior context provides the prediction that is then com-
pared against the actual semantics generated by the word
itself, and this is how our discussion is framed throughout
the paper.
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number of semantic features), word frequency, rep-
etition, and the interactions of repetition with rich-
ness and with frequency, and orthographic neigh-
borhood size.2 They showed that, for each of these
effects, the error measure is influenced in the same
direction as N400 amplitude, whereas overall se-
mantic activation is influenced in the same direc-
tion as behavior. For example, Figure 2 shows how
semantic error in their model varies over time as a
function of word frequency and repetition.

Although the Rabovsky and McRae (2014) model
is impressive in its breadth of coverage of phenom-
ena relating to both N400 amplitude and behavior,
a number of aspects of its design and performance
are less than satisfactory. First and foremost, of
course, is that the model doesn’t actually produce
N400 morphology. This is a fundamental limitation
because the N400 is not simply a single-valued de-
pendent measure like accuracy or reaction time—it
reflects the moment-to-moment changes in activ-
ity (post-synaptic potentials) of neural populations
that directly contribute to performance, and thus
provides a wealth of information linking brain pro-
cesses to behavior as they occur in real time. A
model that fails to address actual N400 dynamics
can provide little insight into these deeper issues.

Second, many of the effects in the Rabovsky and
McRae model are very small and/or hold only over
somewhat different ranges of processing cycles in
the model; while this is less a concern about the
behavioral measure, it is a serious issue for an ac-
count of the N400, as one of its hallmark character-
istics is that its latency is relatively stable (Kutas
& Federmeier, 2011). Third, it is questionable how
semantic prediction error could actually be com-
puted in cortex, and how it would manifest as neu-
ral activity—so as to be measurable by EEG—
distinct from semantic activation. The Rabovsky
and McRae (2014) simulation computed error us-
ing explicit targets for semantic features, but even
if such targets had an actual neural instantiation—
which seems unlikely (Crick, 1989)—they are not
directly available in a standard lexical decision
paradigm, nor is there any context from which to
derive them. Finally, for words in unrelated con-
texts, such as an unordered list, it is difficult to un-
derstand how the system could make sensible pre-
dictions of their semantics, and it is unclear how
the notion of semantic prediction error applies in
the case of pseudowords, which have no semantics

2The specific patterning of these effects will be considered
in detail later, in the context of presenting the corresponding
modeling work.

and yet produce N400 amplitudes as large as those
for words (Laszlo & Federmeier, 2011).

Given these concerns, it seems preferable to us
to account for the relevant empirical phenomena
within an approach in which the N400 corresponds
directly to (semantic) neural activity. In fact,
there are reasons to believe that semantic activa-
tion in the Laszlo and Plaut (2012) model would be-
have in ways similar to what Rabovsky and McRae
(2014) claim for implicit semantic prediction error
(while avoiding its pitfalls). For example, insofar as
prior context—including a preceding prime word—
activates information that supports the features of
the target, those features may inhibit competing
features (of orthographic neighbors), thereby reduc-
ing N400 amplitude.

Accordingly, in the current work, we set out to
account for the same breadth of phenomena as
Rabovsky and McRae (2014), concerning effects on
both the N400 and behavior, but using the gen-
eral approach of Laszlo and Plaut (2012) and Laszlo
and Armstrong (2014). In the first simulation, the
N400 is again modeled by overall semantic activa-
tion within a physiologically constrained neural net-
work. In Simulation 2, we augment this network
with a trained response system similar to Usher
and McClelland’s (2001) leaky competing integra-
tor model of decision making in order to model be-
havioral effects (in lexical decision).

2. Simulation 1: N400 Effects

Simulations were run using a modified version
of the Lens neural network simulator developed
by Doug Rohde (http://tedlab.mit.edu/~dr/
Lens/). The code for the modified simulator and all
necessary training and testing files are available for
download at http://www.cnbc.cmu.edu/~plaut/

CheyettePlaut-N400.

2.1. Methods

The simulation had roughly the same design as in
Laszlo and Plaut (2012, hereafter LP12), with the
following main modifications: 1) a larger vocabu-
lary (to allow for variations in word frequency and
semantic richness); 2) a concomitant increased in
numbers of excitatory and inhibitory units; 3) the
introduction of an activation-based decay function
similar to that employed by Laszlo and Armstrong
(2014); and 4) the introduction of a response sys-
tem that makes lexical decisions based on seman-
tic input. For completeness, though, we include
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(a) (b)

Figure 2: Rabovsky and McRae’s (2014) results using cross-entropy error to simulate the effects on N400 amplitude of (a) word
frequency and (b) repetition. (Reprinted with permission from Rabovsky & McRae, 2014).

all simulation details below.3 Although the new
model differs from these previous ones in a number
of detailed respects (e.g., exact ratios of excitatory-
to-inhibitory units; specific decay function), it re-
tains the same core theoretical commitments: a)
distributed representations of orthography and se-
mantics, and no localist word units; b) a separation
of excitation and inhibition with connectivity con-
straints that gives rise to early excitation followed
by late inhibition; and c) a form of neural fatigue
driven by sustained activation (see also Gotts &
Plaut, 2002).

2.1.1. Stimuli

The network was trained to map visual (ortho-
graphic) input to semantic output for 176 words
with consonant-vowel-consonant (CVC) structure.
Visual input was coded over 24 units (8 per letter)
with each of 15 possible letters (10 consonants, 5
vowels) activating 2 of 8 units in each slot. Seman-
tic representations were encoded over 70 semantic
units, with words varying in semantic richness: half
had 6 features and half had 3 features. This made
the semantic representations highly sparse, but still
allowed for some degree of overlap (to reflect seman-
tic relatedness). Within each richness level, words
also varied in frequency, with half occurring 5 times
more often during training than the other half. Vi-
sual inputs were assigned to semantic outputs ran-
domly to ensure that there was no systematic re-
lationship between the forms of words and their
meanings.

3The findings to be reported are generally stable over
small variations in network parameters and over initial ran-
dom weight values. We report on a single simulation to more
clearly convey the network dynamics and behavior of an in-
dividual network, which we take to approximate something
like a modal participant.

2.1.2. Network architecture

The architecture of the network is depicted in
Figure 3. The bottom layers form an autoencoder
which is trained to reconstruct each 24-element vi-
sual input pattern via an intermediate group of 24
hidden units (labeled “Orthographic Autoencoder”
in the figure). These hidden units then map via an-
other group of 90 hidden units to 70 semantic units.
These between-layer connections are constrained to
excitatory. Each of these groups of units has a cor-
responding group of inhibitory units. As in the
LP12 model, the hidden and output groups within
the orthographic autoencoder each has a single in-
hibitory unit that receives excitatory connections
from its corresponding excitatory layer and sends
inhibitory connections back to it. In order to cope
with the larger vocabulary, however, the semantic
layer and the hidden layer just below it have 3 in-
hibitory units each (but with the same connectiv-
ity constraints). In addition, they each are bidi-
rectionally connected with positive-only weights to
their own set of “clean-up” units (35 for both the
hidden and semantic layers) that help the network
learn higher-order structure among semantic pat-
terns (Hinton & Shallice, 1991). Including bias con-
nections for all non-input layers, the network has a
total of 22,154 connections.

Each excitatory unit computes its activation as
the standard logistic (sigmoid) function of its time-
averaged net input from other units, which is then
subject to multiplicative decay as a function of its
time-averaged activation:

ntj = τ
∑
i

at−1
i wij + (1 − τ) nt−1

j (1)

otj = λ f
(
ntj
)

+ (1 − λ) ot−1
j (2)

atj = f
(
ntj
) (

1 − otj (1 − β)
)

(3)
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Figure 3: The architecture of the network used in Simula-
tion 1. Names of hidden layers are in square brackets. The
bottom two layers form a feedforward autoencoder with sep-
arate input and output layers, but these are depicted as a
single “Visual Input” layer with bidirectional connectivity
for simplicity.

where wij is the weight on the connection from unit
i to unit j, ntj is the net input of unit j at time t,
atj is the instantaneous activation of unit j at time
t, otj is the time-averaged activation of unit j at
time t, τ = 0.5 is the time constant for averaging
net inputs, λ = 0.06 is the time constant for aver-
aging activations, β = 0.8 is the upper bound on
decay, and f(x) = 1/(1 + e−x) is the sigmoid func-
tion. Note in Equation 3 that there is no decay if
a unit’s time-averaged activation otj is 0.0 but full
decay of β if the time-averaged activation is 1.0.
This type of activation-based decay is simpler than
the alpha function used by Laszlo and Armstrong
(2014) but has very similar properties.4 We chose
the values of τ , β and λ somewhat arbitrarily, but
with the intent that the decay from the peak activa-
tion of one word would influence that of the next.
Moreover, these parameters give rise to dynamics
in which the drop in a unit’s activation is relatively
rapid after one or two repetitions of a stimulus and
then reach asymptote quickly, which agrees with
empirical studies of neural repetition suppression
(see, e.g., Miller, Gochin, & Gross, 1991).

4We chose not to employ the alpha function directly be-
cause it determines an envelope within which unit activation
is constrained, and so—at least in principle—limits a unit’s
activation both early and late in the course of processing.

Inhibitory units employed the same multi-linear
“elbow” function used in LP12 that approximates
the combined influence of two inhibitory popula-
tions: an immediately active linear population, and
a thresholded linear population that becomes ac-
tive only under stronger net input. The functional
consequence of this unit function is that excitatory
activation tends to stabilize at a level that is in
balance with the amount of inhibition produced at
the inflection point (elbow) of the inhibitory func-
tion and, in this way, serves as a graded form of
k-winner-take-all (see LP12 for further discussion).

2.1.3. Training procedures

As in LP12, the network was trained to take the
visual representations of each word as input and to
reconstruct this representation via the autoencoder
units in Figure 3. However, unlike LP12, the au-
toencoder and the rest of the network are trained
simultaneously. During this training, words were
presented in pairs, with all possible 176 x 176 =
30,976 pairs occurring during training. However,
certain pairs had elevated frequencies of occurrence
relative to others. In particular, we introduced
lexical associations between words in order to ad-
dress certain aspects of the empirical findings on
semantic priming, as will be discussed in detail in
the Results section below. Specifically, each word
had another word designated at its associate, such
that the word was followed by its associate on 30%
of its presentations, and by some other word on
the remaining 70% of presentations (see also Plaut,
1995; Plaut & Booth, 2000). In addition, the fre-
quency of each word pair was adjusted to enforce
the word-specific frequency manipulation that high-
frequency words occurred 5 times more often than
low-frequency words—this required that words and
their associates were matched in frequency.

The timing of presentation of a given word pair
was the same as in LP12 in that the input for each
word was presented over the Visual Input units for
16 ticks (unit updates), with a single tick with zeros
as input in between. Semantic targets were applied
for the last 12 ticks during the presentation of each
word. Unit activations (and the integrated activa-
tions that govern decay) were reinitialized between
word pairs. The network was trained on 750,000
presentations of word pairs, sampling randomly but
according to their specified frequencies of occur-
rence, using back-propagation for continuous-time
networks (Pearlmutter, 1989), cross-entropy error,
a batch size of 1, no momentum, and a gradually
lowering learning rate: 0.015 for 250,000 presenta-
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tions, 0.01 for 250,000, and 0.005 for 250,000.5 The
clean-up layers used a reduced learning rate (0.001)
for the first 100,000 presentations, as recurrent con-
nections are often not beneficial until some training
has occurred (Marr, 1971).

2.1.4. Testing procedures

Following training, we tested the network on all
176 words as target when preceded each of the 176
words as prime (including itself), measuring the to-
tal activation within semantics at every unit update
during target presentation. As a proxy for N400
amplitude, we determined the peak in summed ac-
tivation within the semantic layer after the presen-
tation of each target, and then averaged the sum
over a 3-tick window around the peak.6 The peak
always occurred somewhere between 4 and 9 ticks
post-onset (out of 16), with a median occurrence
at tick 6. Incidentally, assuming that the presen-
tation of each word corresponds to about a second,
this range of timing is roughly similar to the actual
N400, which is known to occur somewhere between
250 and 500 milliseconds post-stimulus (see Kutas
& Federmeier, 2011). Our analyses will consider
how N400 amplitude in the model is influenced by
the frequency, semantic richness, and orthographic
neighborhood size of targets, as well as by whether
the prime and target are identical, semantically re-
lated (i.e., overlapping in semantic features), asso-
ciatively related (i.e., the prime-target pair had el-
evated frequency during training), or unrelated.

2.2. Results and Discussion

After training, for 98.7% of target presentations,
all semantic units with targets of 1 were more ac-
tive than all those with targets of 0 on the last tick.
All remaining trials involved low-frequency targets
and, of these, most involved only one or two in-
correct unit activations. Although not perfect, we
considered this level of comprehension performance

5Although back-propagation is not biologically plausible
in literal form, it nonetheless can give rise to internal rep-
resentations with substantial similarity to neural represen-
tations (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte,
2015; Yamins et al., 2014; Zipser & Andersen, 1988), and can
be thought of as a computationally efficient approximation
of more plausible error-correcting procedures (see O’Reilly,
1996).

6All of the simulated N400 results to be reported hold if
only the peak itself is used as the dependent measure, but
summing over a 3-tick window around the peak provides a
more stable measure of the dynamics of semantic activation,
and is somewhat more analogous to how empirical data are
analyzed. Equivalent results hold if a 5-tick window is used
instead.

sufficient to warrant testing N400 and behavioral
effects in the model.

We will first consider the joint effects of word fre-
quency, semantic richness, and repetition, and then
turn to effects of semantic and associative priming
and orthographic neighborhood size.

2.2.1. Word frequency, semantic richness, and rep-
etition

The relevant empirical effects on N400 ampli-
tudes are as follows:

Frequency. Low-frequency words produce larger
N400s than do high-frequency words (Barber, Ver-
gara, & Carreiras, 2004; Rugg, 1990; Van Petten &
Kutas, 1990).

Richness. Words with greater semantic
richness—that is, with more semantic fea-
tures, sometimes operationalized as greater
concreteness—yield larger N400s (Kounios et al.,
2009; Kounios & Holcomb, 1994; West & Holcomb,
2000) than do words with lower richness.

Repetition. Immediate repetition of a stimulus
decreases N400 amplitude (Laszlo & Federmeier,
2007, 2011; Nagy & Rugg, 1989; Sim & Kiefer,
2005).

Frequency x Repetition. The effect of repeti-
tion in reducing N400 amplitude is greater for
low-frequency compared to high-frequency words
(Rugg, 1990; Young & Rugg, 1992).

Richness x Repetition. The effect of repetition
in reducing N400 amplitude is larger for words
with greater compared with lesser semantic rich-
ness (Rabovsky, Sommer, & Abdel Rahman, 2012;
see also Kounios & Holcomb, 1994).

To determine the extent to which the model
shows the same pattern of effects, we carried out
a three-factor analysis of variance (ANOVA) using
the peak amplitude in overall semantic activation,
averaged over a 3-tick window (corresponding to
the N400 in the model) as the dependent measure.
The analysis involved data for each word as target
preceded by each word as prime, with target word
as the random variable, word frequency and seman-
tic richness as between-item factors, and repetition
as a within-item factor.

The pattern of results is shown in Figure 4. The
ANOVA revealed main effects of word frequency
(F1,172 = 48.23, p < .001), semantic richness (F1,172

= 336.0, p < .001), and repetition (F1,172 = 862.4, p
< .001). In accordance with empirical findings, the
simulated N400 was greater for low-frequency words
(5.95) compared to high-frequency words (5.15),
for high-richness words (6.60) compared to low-
richness words (4.50), and for non-repeated words
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Figure 4: Means (and standard errors) of simulated N400
amplitudes in the model as a function of word frequency (HF
= high-frequency; LF = low-frequency), semantic richness,
and repetition.

(6.47) compared to repeated words (4.64). In ad-
dition, repetition interacted with both frequency
(F1,172 = 22.78, p < .001) and with richness (F1,172

= 7.49, p < .01) such that the reduction due to rep-
etition was greater for low-frequency (2.12) than
high-frequency words (1.53) and for high-richness
(1.99) than low-richness words (1.65). These inter-
actions are also in agreement with empirical find-
ings. Neither the two-way interaction of frequency
and richness (F1,172 = 3.66, p = .057) nor the three-
way interaction of frequency, richness and repeti-
tion (F < 1) were reliable.

In a separate ANOVA using peak time as the de-
pendent measure, there were no reliable effects of
frequency, richness, or repetition, nor any interac-
tions.

As many of the relevant empirical studies in-
volved the presentation of words in isolation, rather
than in pairs, we also examined the performance of
the network on words with no preceding “prime”
word. An ANOVA of summed semantic activ-
ity (averaged over 3 ticks centered on the peak)
with frequency and richness as within-item factors
showed reliable effects of both factors (frequency:
high 4.70 vs. low 5.66, F1,172 = 59.07, p < .001;
(richness: high 6.29 vs. low 4.07, F1,172 = 313.4, p
< .001) but no interaction (F < 1).

To illustrate that the model, like LP12, produces
semantic activation profiles that mirror actual N400

waveforms, as well as to convey a sense of the vari-
ability underlying the network’s dynamics, Figure 5
shows the individual activation profiles all words
presented in isolation, plotted separately as a func-
tion of frequency and richness.

In the model, low-frequency words produce a
larger N400 because they are less well learned
than high-frequency words and so are less effec-
tive at suppressing the features of their ortho-
graphic neighbors. High-richness words produce
a larger N400 simply because they themselves ac-
tivate more features than do low-richness words.
Repetition reduces the N400 because the target’s
features suffer decay due to being activated by
the prime. This repetition suppression is greater
for both low-frequency and high-richness words be-
cause the prime-based activation is greater for these
two stimulus types. Finally, these variables have
little if any effect on the latencies of the N400 be-
cause the network dynamics depend far more on the
architectural organization of excitation and inhibi-
tion than on the amount of activation present at
any point in time.

2.2.2. Semantic and associative priming

The empirical findings related to semantic prim-
ing are made complicated by the fact that dif-
ferent types of relations can fall under the broad
notion of “semantic” relatedness (see Moss, Os-
trin, Tyler, & Marslen-Wilson, 1995). In partic-
ular, researchers have distinguished associative re-
latedness, often measured by free association norms
(e.g., DOG-BONE; Postman & Keppel, 1970) from
a purely semantic relation in which words have sim-
ilar meanings, such as category coordinates (e.g.,
DOG-PIG). The problem is that these types of re-
latedness often co-occur (e.g., DOG-CAT) and, in
many studies, stimulus pairs that are character-
ized as semantically related typically involve both
types of relatedness (see Jones, Kintsch, & Me-
whort, 2006).

In ERP research, there have been a number
of demonstrations that semantic priming decreases
N400 amplitude (see Bentin, McCarthy, & Wood,
1985; Federmeier & Kutas, 1999; Kutas, 1993; Ku-
tas & Iragui, 1998; Kutas & Van Petten, 1988) but
very few of these studies have attempted to disso-
ciate semantic from associative relatedness. Inter-
estingly, two specific attempts to do so (Koivisto &
Revonsuo, 2001; Rhodes & Donaldson, 2008) found
clear reductions in N400 amplitude due to associa-
tive priming but little if any reduction for pure se-
mantic priming. However, widespread evidence for
a modulation of N400 amplitude as a function of
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Figure 5: Summed semantic activation profiles for words varying in frequency and richness when tested in isolation (lighter
lines), along with the average of these curves (black line). Unit updates (ticks) are numbered from the onset of the word.

congruity of word meanings in context (e.g., “I take
coffee with cream and dog/pizza/sugar”, Kutas &
Hillyard, 1980; see Kutas & Federmeier, 2011 for
review) would seem to implicate sensitivity to se-
mantic relatedness as well.

Taken together, then, the empirical evidence
from word-word priming paradigms suggests that
both associative and semantic relatedness influence
N400 amplitudes, with at least some suggestion
that the former may be stronger. The Rabovsky
and McRae (2014) model implemented semantic
priming in terms of feature overlap between prime
and target, but did not address associative prim-
ing. The current model includes both associative
and semantic relatedness and so their influences can
be assessed independently.

Semantic relatedness—semantic feature
overlap—was not manipulated as an orthogo-
nal factor in the simulation but varied randomly
among word pairs (ranging from 0 to 4 features;
with 23.2% of non-identical pairs sharing 1 feature,
2.64% sharing 2 features, and 0.162% sharing 3
or 4 features). Thus, to compare semantic versus
associative priming, we calculated mean N400
values for each target when preceded by three

types of primes (excluding repetitions): semantic
primes that were not associatively related but had
one or more shared semantic features; associative
primes that were associates during training but had
no semantic feature overlap; and unrelated primes
that were neither semantically nor associatively
related. Forty-seven associates shared one or more
semantic features, leaving 129 (pure) associated
primes. As shown in Figure 6, the model shows
a small but reliable effect of semantic relatedness
on N400 magnitudes (means: 6.38 for semantic
primes, 6.50 for unrelated primes; paired t175 =
5.55, p < .001). There is also weak evidence that
the degree of relatedness mattered: related pairs
with two overlapping feature produced numerically
smaller N400s (mean 6.29) than those with only
one (mean 6.40), although the difference was only
marginally reliable (paired t175 = 1.76, p < .08).
The model also showed a clear and somewhat
larger effect of associative relatedness (means: 6.09
for associated, 6.35 for unrelated; paired t128 =
3.10, p < .005).

The N400 reduction due to semantic priming is
essentially caused by repetition suppression of the
shared semantic feature(s). Associative priming re-
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Figure 6: Mean simulated N400 amplitudes in the model to
targets following semantically (but not associatively) related
versus unrelated primes, and associatively (but not seman-
tically) related versus unrelated primes. The paired differ-
ences between unrelated and related conditions are also plot-
ted (against the right axis). The unrelated conditions differ
because they are based on different numbers of observations
(176 vs. 129).

duces the N400 because the prime pre-activates its
associated target’s features to some degree, causing
them to suffer from increased decay on presenta-
tion of the target. The pre-activation also facilitates
learning to suppress the features of the target’s or-
thographic neighbors (much like a high-frequency
word). It should be acknowledged, though, that
the relative magnitude of semantic versus associa-
tive priming in the model depends on relatively un-
constrained properties of the simulation—degree of
semantic feature overlap, and prime-target depen-
dencies during training—and, thus, should not be
weighted too heavily in evaluating our more general
account.

2.2.3. Orthographic neighborhood size

Laszlo and Plaut (2012) showed that simulated
N400 amplitudes in their model increased with
orthographic neighborhood size for both words
and pseudowords, as found empirically (Holcomb,
Grainger, & O’Rourke, 2002; Laszlo & Federmeier,
2011). Rabovsky and McRae (2014) observed a
small but reliable effect in their model as well. In
the current model, as in LP12, there is a small but
reliable correlation between orthographic neighbor-
hood size (calculated over words in the training cor-
pus) and N400 amplitude for targets (averaged over
all primes; r = .18, t174 = 2.37, p < .05). This
effect is due to the feedforward excitation coming

from the orthographic features that are shared with
neighbors; words with more neighbors will thus par-
tially activate the features of a larger number of
other words.

2.3. Summary

When a measure of summed semantic activation
is used as a proxy for N400 amplitude, the current
model exhibits all the relevant empirical effects: a
decrease in N400 amplitude for a) high- vs. low-
frequency words; b) low- vs. high-richness words; c)
repeated vs. non-repeated words; d) words preceded
by semantically or associatively related vs. unre-
lated primes; and e) words with smaller vs. larger
orthographic neighborhoods, as well as greater rep-
etition effects for f) low- vs. high-frequency words,
and for g) high- vs. low-richness words. The dynam-
ics of summed semantic activation also provide a
reasonable approximation to the shape of the N400
waveform.

3. Simulation 2: Behavioral Effects

Certain issues arise in the current context with
regard to modeling behavior. Rabovsky and McRae
(2014) used total semantic activation to model be-
havioral performance in lexical decision, whereas
the current model uses this measure to approxi-
mate the N400. The problem is that some manip-
ulations, like repetition, actually reduce neural ac-
tivity while improving performance. Rabovsky and
McRae sidestepped this issue by essentially disso-
ciating model activity from neural activity. We, on
the other hand, are committed to preserving this
relationship.

The mechanism by which reduced neural activ-
ity can lead to improved behavioral performance
is far from well understood (for discussion, see
Gotts, 2015; Gotts, Chow, & Martin, 2012; Hen-
son, Eckstein, Waszak, Frings, & Horner, 2014). A
common view is that the overall reduction in neu-
ral activity caused by repetition reflects a “sharp-
ening” of neural representations by differentially
eliminating the responses of neurons that are rel-
atively poorly-tuned to the stimulus (Desimone,
1996; Wiggs & Martin, 1998). However, careful
measurements of neural suppression due to short-
term repetitions (on the order of seconds) appear to
be more consistent with proportional scaling rather
than sharpening (McMahon & Olson, 2007; Miller,
Li, & Desimone, 1993; Weiner, Sayres, Vinberg, &
Grill-Spector, 2010), and a recent test of this ac-
count using an fMRI-adaptation paradigm (Gotts,
Milleville, & Martin, 2014) found broadening rather
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than sharpening of representations following repe-
tition.

An alternative possibility is that the reduction
in overall neural activity is accompanied by an in-
crease in spike synchrony between active neurons
that make them more effective in driving the down-
stream neurons responsible for behavior (Ghuman,
Bar, Dobbins, & Schnyer, 2008; Gilbert, Gotts,
Carver, & Martin, 2010). Although the precise
mechanism that gives rise to increased synchrony
under repetition has yet to be worked out in de-
tail, there is broad supportive evidence for this
account from single-cell recordings (Brunet et al.,
2014; Kaliukhovich & Vogels, 2012; Wang, Iliescu,
Ma, Josić, & Dragoi, 2011) MEG (Ghuman et al.,
2008; Gilbert et al., 2010), and intracranial EEG
(Engell & McCarthy, 2014).

Although our computational formalism does not
have a means of expressing neural synchrony di-
rectly, we formulated a means of generating re-
sponses in lexical decision that could take advan-
tage of the information that might drive increased
synchrony—namely, the activity-dependent reduc-
tion in neural activity. Given that the degree of
decay in our model is determined by the time-
averaged semantic activations (see Equation 2), we
made these values available to the response system
as a proxy for the induced degree of neural syn-
chrony. We recognize that the approximation is
not likely to be fully adequate, but considered it
the best approach available to us for modeling be-
havior under repetition suppression.

3.1. Methods

We trained a response network to distinguish
words and pseudowords using both time-averaged
and instantaneous semantic activation as input. In
some ways, the response system can be thought of
as a trained approximation of Usher and McClel-
land’s (2001) leaky competing accumulator model
of decision making within our neurophysiologically
constrained modeling formalism.

3.1.1. Network architecture

We fixed the weights in the comprehension net-
work, and added a new hidden layer of 25 excitatory
units and a response (output) layer of 2 excitatory
units, corresponding to “yes” and “no” responses.
These hidden units received positive-only connec-
tions from the semantic units and sent positive-only
connections to the response units. The hidden units
also had an associated group of 10 “clean-up” units
with which it was bidirectionally connected with

positive-only weights. The hidden units had an as-
sociated inhibitory group of 3 units, and the two re-
sponse units had a single associated inhibitory unit.
Each group sent positive-only connections to, and
received negative-only connections from, their cor-
responding inhibitory group. We also added a copy
of the semantic units whose activations were set to
the time-averaged activations of the original seman-
tic units (otj in Equation 2) at every tick. Unlike in
the rest of the network, however, the connections
from these units to the new hidden layer were not
constrained to be positive-only. As discussed ear-
lier, our intent in introducing these units was to
make decay-related information available to the re-
sponse network in whatever way may be useful for
improving performance. Although the relationship
between the resulting changes in neural synchrony
and behavior is not well understood, it is unlikely
to reduce to a standard positive-only projection be-
tween groups of neurons, and hence there’s no rea-
son to constrain the influence of decay-related in-
formation in the model in the same way.7

Apart from learning rate and momentum, all
other parameters were the same as in the compre-
hension network.

3.1.2. Training procedures

The response network was trained on the 176
words and also on 176 pseudowords that were
matched orthographically to the words by select-
ing randomly from the remaining 324 CVC inputs
that were not used as words. Inputs consisted of
pairs of stimuli in which a word or pseudoword was
followed by a word or pseudoword, where targets
were applied only during the last 10 ticks of the sec-
ond stimulus. The same timing of inputs was used
as for the comprehension network—and, for word
presentations, the same frequency and associative
constraints. The network was trained to activate
only the “yes” unit in response to each word, and
to activate only the “no” unit in response to each
pseudoword.8 The network was trained for 50,000

7Indeed, if the outgoing connections from the time-
averaged semantic units are constrained to be positive-only,
the model shows poorer rather than better performance un-
der repetition, as expected.

8We do not, of course, believe that human participants
need to be explicitly trained on lexical decision in order to
achieve accurate performance on the task, although we do
believe that they base their decisions, at least in part, on
semantic information (see, e.g., Plaut, 1997). Our use of ex-
plicit training on lexical decisions is intended solely to pro-
vide a basis for measuring the relative difficulty of saying
“yes” to word targets as a function of their properties and
relationship to prime words.
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presentations of stimulus pairs, using cross-entropy
error, a batch size of 1, momentum of 0.8, and
a gradually reducing learning rate (0.1 for 25,000
presentations, 0.05 for 25,000 presentations; clean-
up layers were again trained with a reduced initial
learning rate of 0.001 for the first 5,000 presenta-
tions).

3.1.3. Testing procedures

We tested the network on all words as targets
preceded by all words as primes. As a measure of
behavioral performance, we used the sum over the
last 6 ticks of the difference between the “yes” and
“no” unit activations in response to the target—
positive values reflect greater “yes” than “no” acti-
vation. We chose this measure because it implicitly
reflects both accuracy and latency, as words that
activate the “yes” unit and deactivate the “no” unit
more quickly and accurately will have higher yes-no
sums than words that respond more slowly or less
accurately. We used the last 6 ticks because they
reflect the steady-state activations reached by the
response units after the transient over-activation of
the N400-like wave (although other numbers of ticks
give similar results).

3.2. Results and Discussion

3.2.1. Word frequency, semantic richness, and rep-
etition

The relevant empirical effects on behavior are
that lexical decision performance is better—in
terms of accuracy and/or latency—for high- com-
pared to low-frequency words (Gardner, Rothkopf,
Lapan, & Lafferty, 1987; Forster & Chambers,
1973), for high- compared to low-richness words
(Pexman, Hargreaves, Siakaluk, Bodner, & Pope,
2008; Yap, Pexman, Wellsby, Hargreaves, & Huff,
2012), and for repeated compared to non-repeated
words (Ratcliff, Hockley, & McKoon, 1985; Scar-
borough, Cortese, & Scarborough, 1977). Impor-
tantly, the effects for frequency and repetition are
opposite to those for N400 amplitude. The benefit
from repetition has been reported to be greater for
low- versus high-frequency words (Forster & Davis,
1984; Norris, 1984; although see Versace & Nevers,
2003). Similarly, the repetition benefit has been
reported to be greater for high- versus low-richness
words (Rabovsky et al., 2012; although see Kounios
& Holcomb, 1994).

We carried out a three-factor ANOVA using our
behavioral measure (summed yes-no activation) as
the dependent measure, target word as the ran-
dom variable, word frequency and semantic rich-
ness as between-item factors, and repetition as a

Figure 7: Means (and standard errors) of the simulated be-
havioral measure in the model (summed difference in activa-
tion between the “yes” and “no” unit in the response system)
as a function of word frequency (HF = high-frequency; LF
= low-frequency), semantic richness, and repetition.

within-item factor (see Figure 7). The analysis
revealed reliable main effects of word frequency
(F1,172 = 17.98, p < .001), semantic richness (F1,172

= 6.968, p < .01), and repetition (F1,172 = 28.56,
p < .001). As found empirically, the network’s
performance was better for high-frequency words
(4.54) compared to low-frequency words (3.61),
for high-richness words (4.37) compared to low-
richness words (3.79), and for repeated words (4.37)
compared to non-repeated words (3.79). Moreover,
repetition interacted with both frequency (F1,172

= 4.573, p < .05) and richness (F1,172 = 30.88,
p < .001), such that the repetition benefit was
greater for low- than high-frequency words (0.810
vs. 0.347), and greater for high- than low-richness
words (1.1803 vs. −0.0231, with the latter not reli-
ably different from 0.0). Frequency and richness did
not interact, but the three-way interaction of fre-
quency, richness and repetition was reliable (F1,172

= 13.24, p < .001), because the repetition-by-
frequency interaction was much stronger for high-
than low-richness words. There is no empirical ev-
idence bearing on the three-way interaction, but
the remaining findings are all consistent with those
from empirical studies, with the exception of the
absence of a repetition effect for low-richness words
(cf. Rabovsky et al., 2012).

In the model, words generally activate seman-
tics to a greater degree than pseudowords (after the
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N400), which means that they suffer from greater
decay, as reflected by greater integrated semantic
activations in the model. The network thus learns
to use these integrated values to support making
word responses, and this support is stronger for
high- compared to low-frequency words, and for re-
peated compared to non-repeated words. Seman-
tic activation itself is also informative, which aids
high- compared to low-richness words. The inter-
actions arise because the integrated values—which
drive the repetition effect—are greater for words
with larger N400s: low-frequency words and high-
richness words.

3.2.2. Semantic and associative priming

When behavioral studies have tested priming
among words that are that are semantically but
not associatively related (Fischler, 1977; Moss et
al., 1995), (Seidenberg, Waters, Sanders, & Langer,
1984; Shelton & Martin, 1992), the priming effect
is generally smaller than that found for purely asso-
ciatively related words, particularly in lexical deci-
sion (see McNamara, 2005; Neely, 1991 for reviews;
although see Thompson-Schill, Kurtz, & Gabrieli,
1998, for conflicting results).

Using the same analyses as for N400 amplitude
but now applied to the behavioral measure (see Fig-
ure 8), the model shows reliable benefits in perfor-
mance for both semantic priming (means: 3.909
for semantic primes, 3.735 for unrelated primes;
paired t175 = 5.505, p < .001) and associative prim-
ing (means: 4.314 for associative primes, 3.897 for
unrelated primes; paired t128 = 3.704, p < .001),
with the latter being larger in magnitude. Thus, in
behavior as well as in the N400, the model shows
stronger associative than semantic priming, as ob-
served empirically. As was true of the N400 re-
sults, semantic priming was numerically greater for
primes with two versus one overlapping feature with
the target (3.892 vs. 3.735) but the difference was
not reliable (paired t175 = 1.356, p > .10).

Both priming effects are driven by greater inte-
grated semantic activations for targets preceded by
related compared to unrelated primes.

3.2.3. Orthographic neighborhood size

The effects of orthographic neighborhood size on
lexical decision performance are, as Rabovsky and
McRae (2014) discuss, rather complicated (see An-
drews, 1997; Carreiras, Perea, & Grainger, 1997;
Siakaluk, Sears, & Lupker, 2002; Ziegler & Perry,
1998) and depend on factors outside the scope of ei-
ther model. Interestingly, in the current model the
correlation of orthographic neighborhood size and

Figure 8: Mean simulated behavioral measures in the model
to targets following semantically (but not associatively) re-
lated versus unrelated primes, and associatively (but not se-
mantically) related versus unrelated primes. The paired dif-
ferences between unrelated and related conditions are also
plotted (against the right axis). The unrelated conditions
differ because they are based on different numbers of obser-
vations (176 vs. 129).

performance is numerically positive and reliable (r
= .29, t174 = 4.0365, p < .001), due to sensitivity of
word responses to greater integrated semantic acti-
vations for high-N compared to low-N words.

3.3. Summary

The performance of the response system is
broadly successful at modeling the relevant empiri-
cal effects. It correctly exhibits better performance
for high- versus low-frequency words, high- versus
low-richness words, repeated versus non-repeated
words, and semantically or associatively primed
versus unprimed words, and it also exhibits the
empirically observed interactions of repetition with
frequency and richness (except that it failed to ex-
hibit a repetition benefit for low-richness words).

4. General Discussion

The study of the N400 ERP component, and how
it is (or isn’t) influenced by various stimulus and
context manipulations, has provided a wealth of in-
formation on the nature of online comprehension
processes (Kutas & Federmeier, 2011), but devel-
oping a precise formulation of its mechanistic ba-
sis has proved elusive. Laszlo and Plaut (2012;
see also Laszlo & Armstrong, 2014) proposed that
the N400 corresponds to transient over-activation
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within semantics due to the distribution of excita-
tion and inhibition found in cortex, and supported
their account with a neural network simulation of
word comprehension that accounted for effects of
orthographic regularity (but not meaningfulness)
on single-item N400 amplitudes (Laszlo & Feder-
meier, 2011).

In contrast to this account, Rabovsky and McRae
(2014) proposed that the N400 reflects implicit se-
mantic prediction error, and showed that seman-
tic error in an attractor model of word comprehen-
sion (Cree, McRae, & McNorgan, 1999) is influ-
enced in the same manner as is N400 amplitude by
a wide range of manipulations, involving word fre-
quency, semantic richness, word repetition, seman-
tic priming, and orthographic neighborhood size.
Moreover, semantic activation in their model does
a reasonable job of accounting for behavioral effects
under the same manipulations. However, in our
view, the model and account suffer from a num-
ber of shortcomings, the most notable of which are
that a) semantic (prediction) error is not plausibly
available under many of the conditions that evoke
N400s (e.g., in response to pseudowords); and b)
the dynamics of the error measure over time does
not pattern at all similarly to the dynamics of the
N400 waveform (see Figure 2 and compare with Fig-
ure 1a).

In the current work, we apply an extension of the
Laszlo and Plaut (2012) model to the same phenom-
ena that Rabovsky and McRae (2014) modeled—
adding, among other things, a variant of Laszlo and
Armstrong’s (2014) activation-based decay func-
tion, and an explicit response system. Overall, the
current model provides a more satisfactory account
of the relevant phenomena. Perhaps most critically,
the model—like its predecessors (Laszlo & Arm-
strong, 2014; Laszlo & Plaut, 2012)—actually pro-
duces N400-like deflections in an activation-based
measure that could plausibly correspond to the
population post-synaptic potentials that underlie
ERP components.

It is important to point out that this is not
simply a case in which there are two models
that both account for the same set of findings—
the nature of what it means to “account” for a
finding is fundamentally different on the two ap-
proaches. Rabovsky and McRae (2014) identi-
fied variables in their model—error and summed
semantic activation—that are influenced in the
same directions as empirically observed effects on
N400 amplitude and behavioral performance, re-
spectively. However, doing so does not pro-
vide a mechanistic account of the empirical

phenomena—notwithstanding the use of computa-
tional modeling—unless the model variables can be
linked to participants’ neural and cognitive mecha-
nisms in a plausible manner. The fact that seman-
tic error is based on information that is unavailable
to participants, and does not exhibit the signature
temporal dynamics of the physiological measure to
which it putatively corresponds, undermines for us
the relevance of the model to understanding com-
prehension mechanisms in brain and behavior. By
contrast, the current model—despite its many lim-
itations (as discussed below)—provides a more di-
rect and therefore more informative mapping be-
tween real-time activation processes in the model
and real-time activation processes in the brain. In
this way, the approach offers the beginning of an
explanation of the relevant empirical phenomena.

4.1. Relation to Rabovsky and McRae (2014) Ac-
count

To be clear, we think there is much to recommend
Rabovsky and McRae’s (2014) theoretical emphasis
on prediction (see also Kuperberg & Jaeger, 2015),
and, in fact, it aligns with our own perspective un-
der many conditions. Consider associative priming.
In terms of prediction error, the prime leads to an
elevated expectation of the occurrence of the tar-
get’s features, and thus when the target actually
occurs there is less prediction error than when the
target is unexpected following an unrelated prime.
Note, though, that the same thing is true in terms
of degree of over-activation of semantics (under the
proper constraints on excitation and inhibition):
the prime partially pre-activates features of the as-
sociated target, giving those features an advantage
in—and, thus, shortening—the subsequent compe-
tition when the target presentation activates fea-
tures of its orthographic neighbors. On this latter
account, any source of pre-activation of appropri-
ate semantic features, including sentence-level and
discourse-level context, would be expected to re-
duce N400 amplitudes. Indeed, the word-level effect
of semantic/associative priming on the N400 is in-
distinguishable from the sentence-level effect on fi-
nal words of congruent versus incongruent sentences
(Kutas, 1993). Thus, our account and one based
on prediction error agree in cases where any kind of
prior context pre-activates (or “predicts”) semantic
features. We prefer our account account in part be-
cause it maintains a clear relationship between sim-
ulated neural activity and the EEG signal. Neurally
explicit formulations of predictive coding (e.g., Fris-
ton, 2010; Park & Friston, 2013) typically employ
a population of “prediction error” neurons that are
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separate from more conventional “representational”
neurons, but it is unclear why, on the RM14 ac-
count, the EEG signal would reflect only the former
(although see Friston, 2005).

Another advantage of an account based on tran-
sient over-activation is that it also applies in the
absence of informative context and, hence, in the
absence of a basis for making predictions. Con-
sider the word frequency effect. In our model, low-
frequency words generate larger N400s because they
have not learned to suppress their neighbors’ fea-
tures as well as have high-frequency words. Ac-
cording to Rabovsky and McRae (2014), implicit
prediction error can explain the word frequency ef-
fect because:

An internal model should encode the fact
that, in general, it is less probable to en-
counter a low frequency as compared to a
high frequency word. Therefore, implicit
prediction error would be higher for low
frequency words. (p. 71)

This sounds plausible but works only if one assumes
localist word representations, so that the units for
high-frequency words can be pre-activated more
than those for low-frequency words. It doesn’t work
for the distributed (semantic) representations in
their model and ours: the features of high-frequency
words are no more common (and hence would
not be more strongly pre-activated) than those
of low-frequency words. Thus, the word MILK
is very high-frequency but “produced by cows”
is certainly not; AQUIFER is very low-frequency
but being “related to water” is relatively common.
The Rabovsky and McRae (2014) model produces
lower prediction error for high-frequency words be-
cause the stronger activations for such words are
compared against correct semantic targets, even
though these are unavailable from implicit predic-
tion. Stronger semantic activation might very well
produce higher error if compared against the type
of generic predictions that are actually possible in
random word lists.

This issue is, of course, even starker in the case
of nonwords, including illegal strings and pseu-
dowords, which don’t have correct semantic values
to compute error against. Rabovsky and McRae
(2014) did not apply their model to any nonword
stimuli, but suggested (p. 84) that “illegal strings
presumably correctly elicit very little expectation
for semantic features at all, so that implicit predic-
tion error would be low”. The problem with this
suggestion is that prediction error is low only if the
presumed low levels of semantic activation are com-

pared against “correct” semantic targets of all ze-
ros, and yet the system has no way to know that
these are the correct targets until after the stim-
ulus has been processed and determined to be a
nonword. The N400 itself reflects this processing,
and thus an account of the N400 cannot presume it
has already occurred.

Repetition effects are perhaps the clearest exam-
ple of reduction in N400 amplitude due to pre-
activating semantic features. On our account,
though, this alone is insufficient to give rise to the
pattern of interactions of repetition with semantic
richness and, in particular, with word frequency.
In both cases, reductions are greatest for the items
that produce the largest initial N400—high-richness
words and low-frequency words. But in the latter
case, the source of the larger N400 is the activation
of neighbors’ features, not those of the word itself.
Pre-activation of competitors’ features gives no ad-
vantage to the features of the low-frequency word
on the second presentation (to resolve the compe-
tition more quickly)—quite the opposite in fact.
Rather, the interactions with repetition, and much
of the main effect of repetition itself, are due to the
operation of activation-dependent decay. Greater
overall activation during the first presentation leads
to greater decay on those active features, and thus
a larger reduction in N400 on the second presenta-
tion.

Laszlo and Armstrong (2014) introduced the idea
that activity-dependent decay formed the basis for
reductions in N400 amplitudes following repetition.
They employed an alpha function which is used
to model fatigue effects in post-synaptic poten-
tials (Bugmann, 1997), which underlie ERP signals
(Fabiani et al., 2007), and related functions have
been shown to approximate activation dynamics in
actual neurons (David et al., 2006; see also Gotts
& Plaut, 2002, for related modeling of the rele-
vance of synaptic depression to comprehension im-
pairments). We chose to adopt a version of activity-
dependent decay that is somewhat simplified rela-
tive to the alpha function but gives rise to qualita-
tively similar effects. Although the specific decay
function may not matter much, we do think that
some form of repetition suppression is critical to
accounting for repetition effects on the N400, and
context effects more generally.

Following Rabovsky and McRae (2014), we at-
tempted to model not just the electrophysiological
consequences of the various factors but also their
impact on behavior. Rabovsky and McRae as-
sumed that greater semantic activation corresponds
to better performance, and showed that this largely
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aligned with human performance for their model
(although sometimes very weakly, and not always
over the time range corresponding to response gen-
eration). However, this approach in untenable in
our model—and, we believe, in any model that
incorporates repetition suppression—because some
conditions that give rise to better performance,
such as repetition, actually produce weaker over-
all activation. As discussed earlier, there is as yet
no clear explanation for improved performance un-
der repetition suppression (see Gotts et al., 2012),
but one promising possibility is that the reduced
neural activation increases neural synchrony which,
in turn, increases the efficacy of downstream com-
munication (Ghuman et al., 2008; Gilbert et al.,
2010).

Given these considerations, we decided against
stipulating a particular measure as corresponding
to behavioral performance, but rather provided a
response system with potentially relevant infor-
mation and allowed it to learn to produce accu-
rate behavior. As our framework does not have
a means of expressing neural synchrony directly,
we provided the response system with information
that is thought to govern synchrony—the degree of
activation-based decay, as determined by each se-
mantic unit’s time-averaged activation. The perfor-
mance of the resulting trained response system does
accord with the observed empirical effects (apart
from the repetition benefit for low-richness words;
Rabovsky et al., 2012). Even so, further work is
needed to replicate these findings using better ap-
proximations to the effects of repetition on neu-
ral synchrony, and of neural synchrony on response
generation.

4.2. Limitations and Future Directions

There is no question that our model of word
comprehension suffers from a number of limita-
tions in its design and scope, and understanding
these is critical to informing the development of
better models in the future. In addition to the is-
sues related to neural synchrony just mentioned,
the small size of the vocabulary, the artificiality
of the semantic representations, and the implau-
sibility of the learning procedure are all aspects
that could be improved. But perhaps more fun-
damental than these is the restriction to sequences
of pairs of words, and to deriving isolated word
meanings rather than sentence- or discourse-level
interpretations. A large proportion of the litera-
ture on the N400 concerns its sensitivity, or lack
thereof, to sentence-level contexts and manipula-
tions. For this reason, a critical extension of the

current work would be to apply the same computa-
tional principles and account within a model of sen-
tence comprehension (e.g., McClelland, St. John,
& Taraban, 1989; St. John & McClelland, 1990).
It is also important to extend the approach to ad-
dress the properties of other comprehension-related
ERP components, such as the P600 and its ap-
parent complementary sensitivity to syntactic but
not semantic violations (Friederici, 1995; Hagoort,
Brown, & Groothusen, 1993; but see Brouwer, Fitz,
& Hoeks, 2012; Brouwer & Hoeks, 2013; Brouwer,
Crocker, Venhuizen, & Hoeks, in press; Kuperberg,
2007, for an interesting alternative perspective in
which the relevant distinction is between lexical-
level vs. sentence-level integration).

It is also important to acknowledge that the cur-
rent treatment of the relationship between model
activity, neural activity, and the EEG signal is
highly simplified and in need of elaboration. We
make the standard assumption that the real-valued
sigmoid activation function approximates neural fir-
ing frequency relative to some maximal rate (Cohen
& Servan-Schreiber, 1992), and our activation-
based decay function can be interpreted as approx-
imating neural adaptation due to synaptic depres-
sion (Abbott, Varela, Sen, & Nelson, 1997; Gotts &
Plaut, 2002; Varela et al., 1997). We also assume
that summed activation within a layer of the model
is a sufficient approximation of the population-
based post-synaptic potentials underlying EEG sig-
nals (Fabiani et al., 2007). However, these assump-
tions are clearly inadequate in light of a consid-
eration of neural oscillations. First, the efficacy of
neural communication is not solely a function of fir-
ing rate but also of the degree of synchrony among
incoming action potentials (see Konig, Engel, &
Singer, 1996; Salinas & Sejnowski, 2001; Singer,
1999), and our introduction of integrated semantic
activity is, at best, a poor approximation to this.
Moreover, a number of researchers have argued that
neural oscillations are directly relevant to interpret-
ing ERP components like the N400 (see Makeig et
al., 2002; Roehm, Schlesewsky, Bornkessel, Frisch,
& Haider, 2004; Sauseng et al., 2007). Nonetheless,
we believe it is prudent to explore and understand
the limitations of simpler accounts (i.e., overall neu-
ral activity) before introducing more complexity.
We see no fundamental problem with extending a
model based on neural activity to include a consid-
eration of neural oscillations and synchrony.

4.3. Conclusions

We have presented an extension of computa-
tional work by Laszlo and colleagues (Laszlo &
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Armstrong, 2014; Laszlo & Plaut, 2012) in which
the N400 ERP component corresponds to transient
over-activation within semantics, due to the intrin-
sic distribution of excitation and inhibition within
and between cortical areas. The model accounts
for the same range of ERP and behavioral findings
as an alternative model based on semantic predic-
tion error (Rabovsky & McRae, 2014). The two
accounts broadly agree on the basis for the effects
of prior context on the N400. However, we believe
that the current account has a number of important
advantages, including the fact that it actually pro-
duces N400 morphology, is based solely on neural
activation rather than implausible access to correct
semantic information, and can explain N400 effects
even for meaningless stimuli (e.g., pseudowords).
Although considerable work remains in improving
the scale of the simulation and in applying the ap-
proach to a broader range of phenomena, including
sentence-level effects, the current findings further
contribute to establishing the value of developing
computationally explicit theories of the relationship
between brain function and behavior.
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