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Abstract

We study concept learning for semantically-motivated, set-
theoretic concepts. We first present an experiment in which we
show that subjects learn concepts which cannot be represented
by a simple Boolean logic. We then present a computational
model which is similarly capable of learning these concepts,
and show that it provides a good fit to human learning curves.
Additionally, we compare the performance of several potential
representation languages which are richer than Boolean logic
in predicting human response distributions.
Keywords: Rule-based concept learning; probabilistic model;
semantics.

Introduction
Every cognitive theory requires a hypothesis about mental
representation—what structures and operations form the ba-
sis for complex ideas. High-level, symbolic theories often
characterize this representation using a representation lan-
guage (RL) (Fodor 1975) that specifies primitive elements and
composition laws which can be used to form complex cogni-
tive structures. This approach has been extensively studied
within two traditions in cognitive science: concept learning
and linguistic semantics. In models of rule-based concept
learning (Bruner, Goodnow, & Austin 1956, Shepard, Hov-
land, & Jenkins 1961, Feldman 2000) the representation lan-
guage has typically been simple Boolean logic, which rep-
resents concepts—stable mental representations—using con-
junctions, disjunctions, and negation of simple perceptual
primitives. Goodman et al. (2008) presented a model of prob-
abilistic learning for rule-based concepts that represents con-
cepts in a simple propositional language and achieves state-
of-the-art fits to experimentally-measured difficulty of learn-
ing Boolean concepts. The logical complexity of concepts
appears to play a crucial role in determining how these con-
cepts are learned: learners are biased to preferentially learn
concepts with simpler representations.

However, simple Boolean concepts can capture only a very
limited range of the human conceptual repertoire. People
readily conceptualize context-dependent meanings such as
“happiest,” and can form more complex and abstract rela-
tional concepts like “everyone with two or more siblings.”
Semantic theories capture such meanings using primitive op-
erations which manipulate and quantify over sets of objects,
rather than simply features and propositional connectives.
The denotation of a quantifier like “some,” for instance, is a
function which takes two sets, A and B, and is true only when
the intersection of A∩B is nonempty1 (Montague 1974).

1In a sentence like “Some boy smiled,” the set of boys would

In this paper we extend the probabilistic approach to con-
cept induction to representation languages which manipu-
late sets of objects. We first describe an experiment that
explores the difficulty of learning concepts that involve set-
manipulation and quantification. Second, we compare human
difficulty to the predictions of models with varying RLs. Our
modeling work has two goals: the first is to test different RLs
to see which provide the best account of people’s learning
behavior. Each possible RL differs in representational power
and the way in which it assigns probability to potential con-
cepts. This means that different RLs make different predic-
tions about people’s learning trajectories and we can therefore
compare RLs by determining how well they match subjects’
empirical response distributions. The second goal of the mod-
eling work is to provide an explicit learning theory for these
concepts. Work on boolean concept learning has provided a
probabilistic model which accounts for subjects’ behavior in
acquiring boolean concepts, but there is no comparable for-
mal theory for concepts which require a richer representation
language. Such a theory would importantly extend rule-based
concept learning in cognitive science to richer, linguistically-
interesting semantic representations.

Behavioral experiment
The experiment we present aims to extend the rule-based con-
cept learning paradigm to concepts which refer to sets and
properties of sets of objects. To do this, we used a learning
paradigm where subjects see a set of objects, guess at a label-
ing of the objects according to the unknown target concept,
and receive feedback on their responses. Subjects used this
feedback to infer the target concept.

Procedure
Amazon’s Mechanical Turk was used to run 381 subjects.
Each subject was told that they had to learn the meaning of
a novel word, wudsy, from an alien language. Subjects were
told that aliens use wudsy, to refer to some objects in a col-
lection of objects, and that they have to figure out what makes
an object wudsy. Subjects were informed that what makes an
object wudsy may depend on which other objects are present.

During the experiment subjects were shown a set of four
objects which varied in size, color, shape, and background
color. An example set of items is shown below:

be A and the set of things which smiled would be set B. “Some
boy smiled” is true if and only if the intersection of boys and things
which smiled is nonempty.



Figure 1: An example set.

After seeing a set of objects, subjects were told to guess
which objects were the wudsy ones. For each object in the
set, they were required to response “Yes,” “No,” or “NA,” and
were told to respond “NA” when it is unspecified whether an
object is wudsy. For this example, subjects might entertain
the concept is “red objects,” in which case they should re-
spond that the second and fourth objects are in the concept
and the first and third are not. However, subjects might also
entertain that the meaning of wudsy is context-dependent, as
in, for instance “unique smallest.” Similarly, the concept may
also be complex, such as “same shape as the object with the
darkest background.” The shape with the darkest background
is a circle, so subjects should say all the circles are in the
concept; if all backgrounds are the same color, subjects may
respond “NA.” After responding, subjects were told what the
correct answer was according to the target concept, but never
given explicit instruction on the target concept. Subjects who
responded incorrectly to any element of the set were penal-
ized with a 5 second delay, during which they saw the set and
the correct responses for each object.

Materials & Concepts
The meanings subjects were required to learn consisted of the
concepts shown in Figure 2. These concepts include simple
boolean rule-based concepts (e.g. “circles” and “circles or
blue objects”), as well as more complex concepts which can-
not be expressed in boolean logic (“larger than all the other
objects”), and concepts which require several bound variables
to express (“Same shape as the largest blue object”).

Several of the concepts we studied focus on size predicates.
This is because size predicates, such as “largest” and “small-
est,” are salient properties of objects in sets. They are per-
haps the simplest words whose meaning is context-sensitive,
and therefore not expressible with only conjunctions, disjunc-
tions, and negation of object features. We included three sim-
ple size relations, “there exists a smaller object,” “larger than
all other objects,” and “one of the largest objects.” Note that
the latter two differ with respect to uniqueness: if there are
two objects of the maximal size, then neither is larger than all
other objects, but both are one of the largest2.

Because we included these simple size predicates, it is nat-
ural to include complex concepts which are also based on
size, such as “same shape as the largest object,” “same shape
as the largest blue object,” and “unique largest blue object.”
All three of these concepts require finding the largest object
and selecting other elements based on the properties of the

2These concepts are interesting in part because it is unclear
which of these meanings corresponds to the denotation of “largest”
in English, and also what role pragmatics plays in understanding
“largest” in normal conversation.

largest. As such, they require answering NA when there is not
a unique largest element3.

Results
The plots in Figure 2 show subjects’ accuracy at labeling
which objects are wudsy (y-axis), as a function of the amount
of labeled data they received (x-axis). Subjects who were
more than 3 standard deviations below the mean accuracy
for each concept were removed in order to exclude subjects
who were not performing the task. The vertical error bars
show binomial 95% confidence intervals, and the red lines
show the best fitting model, which is discussed in the next
section. These results reveal several interesting qualitative
trends. First, subjects accuracies increase for almost all of
the concepts. Importantly, even though the subjects receive
labeled data, they are never explicitly instructed on the con-
cept. This means that high accuracy can only be achieved by
generalizing from the observed data, which requires inferring
abstract rules for these concepts.

Two interesting exceptions to subjects’ general ability to
learn these concepts are “Everything iff there is a triangle”
and “Everything iff there is a single blue object.” Subject per-
formance on these concepts does not substantially improve,
and these are intuitively somewhat unnatural concepts which
require all elements of a set to be selected based on what
the set contains. Words do exist with similar denotations in
English—for instance, a set is contaminated if one element
of the set is bad—but subjects find these types of concepts
unusually hard to learn.

Figure 2 reveals a number of places where subject perfor-
mance drops temporarily for a single set–for instance at item
32 of “there exists a smaller object.” Post-hoc analysis re-
vealed that many of these dips are caused when subjects see
one of the first exceptions to a plausible alternative concept:
item 32 is the first time that all objects in the set are the same
size. Subjects responded true to objects in this item, consis-
tent with a concept such as “not smaller than the rest,” but
incorrect according to the target concept.

Analysis
We first used a regression to analyze how subjects’ learning
rate varied across the 12 concepts studied4. In each logistic
regression the outcome was whether the subject’s response to
each object in a set was correct, and the independent vari-
able was the number of items each subject had seen so far
(0 . . .70). The key prediction we tested is whether slopes
(regression coefficients)—which quantify the effect of addi-
tional data on accuracy—differed between concepts.

3This makes it difficult to compare these concepts with the sim-
ple size-predicate concepts since the latter never require NA, which
may be a difficult response for subjects to learn, independent of the
concept.

4Because subjects typically were only run on one concept, sub-
ject effects are confounded with concept. We therefore performed
a separate mixed-effect logistic regression (Gelman & Hill 2007)
within each concept including slopes and intercepts by subjects. Re-
gression coefficients across concepts were compared using t-tests.



Figure 2: Subject accuracy (y-axis) in labeling the wudsy objects as a function of trial number (x-axis). Black lines show subject
mean percent correct. Error bars are 95% confidence intervals. The red line shows the best-fitting model, although note that the
model is fit based on agreement with the full distribution of responses, not the accuracies shown here. Numbers in the lower
right show the correlation between the model and human accuracies.

Our results replicate basic effects in Boolean concept learn-
ing (Bruner, Goodnow, & Austin 1956, Shepard, Hovland, &
Jenkins 1961). As is clear from Figure 2, simple concepts
(“blue objects”) are easier to learn than complex concepts
(“circles and blue objects”) (t = 2.70, p < 0.01). In addition,
our results replicate that conjunctions (“circles and blue ob-
jects”) are easier to learn than disjunctions (“circles or blue
objects”) (t = 3.10, p < 0.01). These replications provide val-
idation for our experimental paradigm.

These effects of complexity also generalized to more com-
plex functions than those expressible in Boolean logic. For
instance, “The unique largest blue object” was easier to learn
than “The same shape as the unique largest blue object” (t =
2.71, p < 0.01). This effect is interesting because it shows
the additional difficulty associated with more complex set-
theoretic concepts. The latter concept requires an additional
bound variable to express in first-order logic, or a lambda ab-
straction to express in lambda calculus, and the effect of this
complexity is reflected in subjects’ learning rates. The re-
gression revealed no difference between uniqueness presup-
positions for concepts involving the largest element of a set:
“larger than all other objects” was no more difficult than “one
of the largest objects” in either slopes (t < 1.26, p > 0.20) or
intercepts (t < 1.83, p > 0.05).

Importantly, subjects may infer a different concept from

the one that was used to generate the data—high accuracy
on some concepts can be achieved by inferring related con-
cepts. To address this, we compared how well closely-related
concepts predicted subjects’ responses in the last half of the
experiment. For each target concept in Table 1, we looked
at data points for which the target concept made a differ-
ent prediction from the specified alternative hypothesis. For
instance, we looked at sets for which “Largest blue object”
and “blue objects” made different predictions—that is, when
there are multiple blue objects, so not all of them are the
largest. We then computed the percent of subjects who re-
sponded more than half the time in agreement with the target
concept, as well as the overall proportion of time subjects
responded with the target concept. These results show that
for most of the concepts, subjects typically responded in ac-
cord with the target concept and not a close alternative. The
only exception to this is the comparison between “One of the
largest objects” and “size = 5” (In the items, “5” is the max-
imal size for objects), which showed that subjects may have
been learning to identify objects based on comparing them
to absolute size, rather than a context-sensitive measure of
“largest”. In general, though, these results show that subject’s
pattern of learning cannot be explained by simpler theories
which make reference only to only individual objects’ prop-
erties. This is especially striking given that many of the alter-



Target Alternative Subject pct. Response Pct.

Larger than all other objects
One of the largest
objects

1.00 0.94

Size = 5 0.81 0.67
Size ≥ 4 1.00 0.82
Size ≥ 3 1.00 0.88

Unique largest blue object
One of the largest
objects

0.79 0.66

Blue Objects 0.79 0.74
Larger than all other
objects

0.79 0.63

Same shape as the unique
largest blue object

Same shape as the
largest object

0.52 0.58

One of the largest objects
Size = 5 0.36 0.46
Size ≥ 4 1.00 0.67
Size ≥ 3 1.00 0.67

There exists a smaller object
Size = 5 1.00 0.67
Size ≥ 4 1.00 0.73
Size ≥ 3 1.00 0.91

Table 1: Comparison of subject agreement with target concepts
compared to alternative concepts. Subject pct. shows the propor-
tion of subjects agreeing more than 50% with the target concept,
Response Pct. shows the overall percent agreement with the target.

native hypotheses are much simpler than the target concepts,
and provides strong evidence that subjects are attending to
more than simple object properties.

Computational model
The behavioral experiment shows that generally subjects are
able to induce these types of set-theoretic concepts from the
labeled data. Although it is important that subjects can even-
tually learn most of these concepts, we are also interested in
whether their learning trajectory—their guesses and hypoth-
esized concepts at each point in time—follow sensibly from
the observed data. It may be rational to initially learn simpler
related concepts which give approximately correct answers.
There is no guarantee, for instance, that 70 items are enough
to justify learning the correct form of the target concepts. We
next present a computational model which can learn these
types of set-theoretic concepts.

Our computational model aims to extend the rational rules
model of Goodman et al. (2008) to a richer hypothesis
space—one which is capable of representing these types of
set-theoretic concepts. The probabilistic structure of the
model and inference algorithm we use are neutral with respect
to the RL, meaning that any potential RL can be incorporated
and tested to see what distribution of responses it predicts for
each object in each concept.

Each potential RL L defines a hypothesis space of potential
concepts corresponding to the set of all ways to compose the
RL’s primitive functions in order to create functions which
map objects to labels (true, false, NA). For instance one con-
cept might be5

λx.(red x)∧ (square x)
5We write functions as lambda expressions, meaning that the

name for the argument is preceded by λ. We also use prefix no-
tation: a function f applied to an argument x is written (f x).

This expression represents a function which checks whether
its argument, x, is red and a square, and returns true or false
for any object (since red and square are assumed to return
true or false). We might also have concepts which take two
arguments, a contextually-relevant set S and an element x:

λS λx.(equal x (unique-smallest S))

This function checks if x is the object which is the unique,
smallest element of S.

We use a probabilistic context-free grammar (PCFG)
which assigns probability to every possible composition of
primitive elements. This PCFG functions as a prior over con-
cepts and for simplicity, we assume that all PCFG expansions
are equally probable6. In general, the PCFG assigns high
probability to short or “simple” compositions of L’s primi-
tives, and lower probability to complex rules. For instance,
a function λx.(red x) will be higher probability a-priori than
λx.(red x)∧ ((square x)∨ (circle x)). This captures the no-
tion that people should be biased to prefer simple explana-
tions of the labeled data they observe.

The second part of the model is a likelihood function which
provides the probability of labels according to a hypothesized
RL expression. Specifically, for any composition E of prim-
itives in L , the correct label is generated with probability α,
and a label is chosen uniformly at random with probability
1−α. However, it is also likely that memory factors come
into play in remembering past labeled examples. We include
this in the model by weighting the log likelihood for the n’th
data point back in time by n−β, where β > 0. As β→ 0, the
model has perfect memory, and as β→ ∞ the model quickly
forgets past data points. This leaves us with two unknown
free parameters: α, which controls how reliably set elements
are labeled, and β which controls how much more recent set
elements matter than past ones.

Together, the prior and likelihood specify a complete prob-
abilistic model for any RL. Formally, we can score the prob-
ability of a hypothesized concept expression E conditioned
on a collection of example sets S with corresponding labels L
according to Bayes rule:

P(E | S,L,L) ∝ P(L | S,E)P(E | L). (1)

Here, P(E | L) is the probability of E according to the PCFG
for L and P(L | S,E) scores the likelihood of the labels L
under the observed sets of objects S and hypothesized expres-
sion E. While Equation 1 scores the probability of any given
expression E, it is a complex inference problem to actually
determine what expressions are likely given the data. This
problem is difficult because the space of possible expressions
E is in principle infinite and difficult to search. We solved this
problem using a Markov-Chain Monte-Carlo (MCMC) sim-
ilar to Goodman et al (2008)’s method, which takes samples

6Unlike the rational-rules model, we do not integrate out the
PCFG production probabilities. This is because primitives which
introduce new bound variables, such as quantifiers, make this inte-
gration difficult and potentially not analytically tractable in general.



from the posterior distribution P(E | S,L,L). This method
takes a biased random walk around the space of hypotheses
by making local changes to hypothesized expressions E, and
can be shown to, in the limit, draw samples from the poste-
rior distribution. We ran the MCMC algorithm for a range
of α and β values for each amount of data, in each sequence,
conditioning on the correct, observed labels for all previous
sets in the sequence. This gives a distribution P(E | S,L,L)
on expressions E in the RL L at each point during learning.
These expressions can be evaluated on the next item in or-
der to provide a model prediction of subject’s distribution of
responses, conditioned on the observed labeled data. Thus,
the model was run conditioned on the same labeled data hu-
man subjects were given, and—just like human subjects—
was asked to make predictions about the correct labels for the
next data point. Ideally, subjects’ distribution of responses at
each point in time during learning should correspond to the
predictions of the model, conditioned on the exact same se-
quence of training data.

One goal of the model is to test different representational
languages to see which provide the best theory of people’s
inductive biases in learning these concepts. We computed the
posterior predictive distribution of responses for each repre-
sentation language L and saw which assigned the human re-
sponses highest likelihood7. We compared four different RLs
with differing primitives and representational power:

Language Primitive Operations
RESPONSE-BIASED true, false, undefined
SIMPLE-BOOLEAN and, or, not, shape, size, color,

background-color, equal
SET-FUNCTIONS contains, filter, only, unique-

largest, unique-smallest, set-of-
largest, set-of-smallest, same-
object

QUANTIFIERS exists, forall

Each RL is a superset of the preceding languages, ex-
cept that none other than RESPONSE-BIASED contain true,
false, and na as primitives. Here, shape, color, and
background-color are functions which extract the corre-
sponding properties of objects. equal tests if two properties
are equal. contains returns true if a set contains an element,
filter removes all elements in a set not satisfying a predicate,
and only return the only element of a set and NA if the set
has more than one element. The primitives unique-largest
and set-of-largest return the unique largest element in a set
(and NA otherwise), and the set of elements for which none
are larger, respectively. same-object tests if two objects are
identical on all dimensions. exists and forall are first-order
existential and universal quantifiers.

Intuitively, the RESPONSE-BIASED language allows learn-
ers only to infer a distribution on responses, but not give re-
sponses which depend on the current objects. This serves

7Model predictive distributions were smoothed to give each re-
sponse a minimum possible probability of 0.01, to prevent diver-
gence.

as a baseline, and way to test if subjects are really per-
forming the task. The SIMPLE-BOOLEAN language is one
which include basic logical operations and object proper-
ties, and implements the representational system studied most
in previous rule-based concept learning experiments. The
SET-FUNCTIONS language extends the SIMPLE-BOOLEAN
language by including primitive operation for testing if sets
contain elements, extracting sets or elements with maximal
or minimal properties along the size-dimension and filtering
sets by elements. The QUANTIFIERS language extends the
SET-FUNCTIONS language by incorporating quantification.

Results & Discussion
Table 2 shows the performance of these models in predicting
the human distribution of responses across the 12 concepts
studied. This shows the average log-likelihood of the human
responses for the best-fitting values of α and β within each
concept8. This table illustrates several key properties of the
RLs. First, the RESPONSE-BIASED model is overall the worst
predictor of human responses. This is important because it
shows that subjects are performing the task, and performing
nontrivial inferences about the target concepts.

In addition, this figure shows that while SIMPLE-BOOLEAN
is a good predictor for the simple Boolean concepts, SET-
FUNCTIONS and QUANTIFIERS provide a better account for
the set-theoretic concepts that subjects are able to learn.
SIMPLE-BOOLEAN provides the worst account for “same
shape as the largest object” and “same shape as the unique
largest blue object.” While subjects do not learn these con-
cepts especially well, these results show that the SIMPLE-
BOOLEAN does not account well for subject responses.

Overall, the best RL is QUANTIFIERS; however, the differ-
ences between QUANTIFIERS and SET-FUNCTIONS is small.
Richer representation languages not only have the formal
power to represent the types of set-theoretic and logical con-
cepts required by human conceptual systems, but also provide
a better account of human inductive leaning than the other
RLs considered here.

As discussed above, the black line in Figure 2 shows learn-
ing curves showing percent accuracy over time for human
subjects. This figure also shows a red line, corresponding to
the performance of the RL QUANTIFIERS for the best-fitting
α and β within each concept. We chose the best-fitting model
parameters based on which parameter values assigned highest
likelihood to the observed distribution of human responses,
“true,” “false,” and “NA.” Doing this does not necessarily pro-
vide the best fit to the human learning curves in Figure 2 since
the model is not fit to human accuracy (correct/incorrect).
This means that Figure 2 shows a conservative view of the
agreement between human accuracies and model accuracies.
For the concepts “circles or blue objects” and “unique largest
blue object” the model’s learning trajectory would increase

8That is, these numbers are the total log likelihood assigned to
human responses, divided by the number of responses. This was
necessary for cross-concept comparison since concepts may have
differing numbers of subject responses.



Concept RESPONSE-BIASED SIMPLE-BOOLEAN SET-FUNCTIONS QUANTIFIERS

Blue objects -0.66 -0.18 -0.19 -0.18
Circles -0.73 -0.17 -0.17 -0.17
Circles or blue objects -0.81 -0.73 -0.74 -0.74
Circles and blue objects -0.30 -0.27 -0.27 -0.27
Everything iff there is a triangle -0.80 -0.73 -0.73 -0.73
There exists a smaller object -0.81 -0.51 -0.40 -0.41
Larger than all other objects -0.58 -0.48 -0.46 -0.36
One of the largest objects -0.80 -0.63 -0.28 -0.28
Everything iff there is a single blue object -0.85 -0.78 -0.78 -0.78
Same shape as the largest object -1.10 -1.75 -0.99 -0.99
Unique largest blue object -1.05 -1.54 -1.06 -1.06
Same shape as the unique largest blue object -1.08 -1.34 -1.06 -1.04
Mean -0.797 -0.760 -0.594 -0.584

Table 2: Model log likelihoods per response for each concept. These represent the model log likelihood assigned to human
responses, divided by the total number of responses in each concept to allow comparisons across concepts.

more for other values of α and β, and thus look more like
subject’s accuracies, but provide a less-good fit to subjects’
overall response distribution.

This figure shows good fit between the probabilistic model
and human learning. This fit appears especially remarkable
for concepts which subjects have a difficult time learning,
such as “Everything iff there is a triangle.” Because subjects
do not learn this concept well, the best-fitting α is low and
β is highly negative, meaning that the model is not penal-
ized much for incorrect answers and down-weights old data.
The model therefore responds with in simple ways, such as
always responding true, or responding true to only the trian-
gles; subjects appear to use similar strategies, and thus both
show similar patterns of response accuracies9

The model also shows more subtle agreement patterns with
human subjects. First, it is capable of learning simple boolean
concepts in a way similar to humans, quickly arriving at the
correct meaning given the training data. This is also true for
concepts like “there exists a smaller object” and the other
size-predicates. The model also matches local dips and peaks
in reasonably well. This is because the model, like people,
may temporarily be led to a concept which is not the target
concept, just as subjects (e.g. at item 32 of “there exists a
smaller object”). This provides evidence that people make
the same rational, statistical inferences given the same data.

Conclusion
While the SIMPLE-BOOLEAN RL provided a good fit to hu-
man response data in some cases, it is insufficient to represent
some of the complex concepts that subjects learned. Subjects’
ability to learn these concepts was demonstrated by their
learning curves for several context-dependent concepts. The
comparison of different RLs suggests a potentially fruitful ap-
proach to discovering the precise form of semantic represen-
tations. Recently, Pietroski et al. (2009) and Hackl (2009)
have used psychophysical measures to make inferences about
plausible representations and computations that underlie se-

9The best fitting β also shows a modest negative correlation
(R = −0.55, p = 0.06, N = 12) with response accuracies over the
12 concepts, suggesting an interaction between the target concept
and the attentional or memory resources people allocate.

mantic meaning for words like “most.” Our work provides
a complementary approach to the same problem—instead of
measuring response times, we studied what RLs provide a
good account of human inductive biases during learning. This
method may be broadly applicable to discovering the form of
semantic representations in natural language.

Of course, the RLs we study here are still incomplete with
respect to the full richness of human conceptual systems;
however, this work suggests that rule-based concept-learning
can be extended to complex concepts which can begin to ap-
proach the complexity and context-dependence observed in
human linguistic systems. Furthermore, the model provides
one potential acquisition theory for semantic concepts. Chil-
dren may learn semantic meanings like adults in our exper-
iment did—by inducing concepts in a sufficiently-powerful
compositional RL.
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