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Abstract

A dominant mechanism in the Judgment and Decision Making literature states that informa-

tion is accumulated about each choice option until a decision threshold is met. Only after

that threshold does a subject start to execute a motor response to indicate their choice.

However, recent research has revealed spatial gradients in motor responses as a function

of comparison difficulty as well as changes-of-mind in the middle of an action, both suggest-

ing continued accumulation and processing of decision-related signals after the decision

boundary. Here we present a formal model and supporting data from a number comparison

task that a continuous motor planner, combined with a simple statistical inference scheme,

can model detailed behavioral effects without assuming a threshold. This threshold-free

model reproduces subjects’ sensitivity to numerical distance in reaching, accuracy, reaction

time, and changes of mind. We argue that the motor system positions the effectors using an

optimal biomechanical feedback controller, and continuous statistical inference on outputs

from cognitive processes.

Introduction

Numbers are core cognitive representations, detectable across species and early in develop-

ment [1, 2]. The abstract nature of number makes it ideal as an information source and a deci-

sion tool. A baboon for example can check the heading direction of its troop by checking how

many members move in a given direction [3]. The mechanism to compare numerical values

has mainly been modeled with the idea that agents accumulate evidence and commit to a

course of action only once a decision threshold has been met [4, 5]. Threshold models (single

or multiple stage) can account for detailed behavioral patterns across tasks including reaction

times and accuracies observed empirically [4–10], and have been successfully applied in the

domain of number cognition [2, 11, 12]. However, they do not easily capture all phenomena,

including graded motor attraction to non-targets during movement [13, 14], which suggest

that information processing continues after a decision is made. Moreover, changes of mind,

defined as transient commitments to one option before suddenly turning to another, are not

predicted because, in principle, a threshold was hit and the theory requires ad hoc additions to
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explain the presence of movement deflections [15]. Threshold models have also been criticized

for being unable to capture subjects’ fast appraisal of their environment and task demands

[16]. In fact, it seems too slow of an strategy to wait for thresholds in natural environments

with non-stationary properties (e.g. a river) in which categorical responses (e.g. move left)

might not be appropriate. For example, a salmon in a river with strong currents might be bet-

ter off continuously using information from its surroundings in a dynamical feedback system,

than thresholding each of its individual control actions.

An alternative paradigm for understanding action is that evidence is used continuously and

behavior develops along the output of an inference over the evidence stream. To test this idea,

we analyzed data from a number comparison task in which participants were asked to com-

pare two arrays of dots that differed in number. Their task was to point to the more numerous

array by displacing the index finger from a distant starting position to one of two targets on a

computer screen. During the choice response, subjects’ reach trajectories were spatially modu-

lated by the difficulty of the number comparison. Reaching responses were sensitive to the

numerical distance, with closer numbers generating positions proximal to the midline between

the two targets (Fig 1). The results indicated that number processing occurs during the motor

response, along the reaching trajectory [17].

With the purpose of explaining the empirical results, we developed a threshold-free move-

ment model in which an optimal motor planner [18] was combined with continuous statistical

inference about the correct target for a movement. Because the model is threshold free, move-

ment effectively “starts” immediately after the first units of evidence start to arrive, but slowly

at the beginning due to high uncertainty. As evidence accumulates, certainty increases and the

effector heads to the best target. With such a framework we reproduced signature behavioral

findings, including the sensitivity of motor positioning, accuracy, and reaction times to

numerical distance. In the next sections we present the model and argue that it provides a par-

simonious account of numerical decision-making and motor responses modulated by cogni-

tive output. Furthermore, the use of a numerical task is incidental in the sense that this is not

an investigation on the nature of mental number representation, say log. vs. linear, but of a

decision mechanism. Therefore, the presented framework is potentially applicable to other

judgments and decisions and it raises the novel possibility that decision thresholds are unnec-

essary in other tasks once models of motor planning implement statistical inference in deci-

sion-making.

Experiment

Materials and methods

Ethical statement. Experimental procedures adhered to university and national ethics

standards, as approved by the Research Subjects Review Board at the University of Rochester.

All participants provided written consent to participate in the study.

Participants. 22 right-handed participants (13 female; Mean age: 20.5 yrs, SD: 2.2 yrs)

participated in the experiment.

Task and apparatus. Participants were asked to report the side with more dots by reach-

ing to large clear targets on a screen with their index finger (Fig 1). At each trial, movement

started *29 cm from the screen, with the index finger pressing down on a start button. Dots

stayed on-screen for 200 ms and subjects were free to release the button anytime and reach to

the desired target. Flight time was not enforced and no performance feedback was provided.

Five numerical ratios were used (0.1, 0.25, 0.5, 0.75 and 0.9) equally distributed among 420

trials (presented in 4 blocks). For example, a ratio of 0.1 is a trial with 1 dot vs. 10 dots (we

used maximum 25 dots). The side with more dots was counterbalanced. In half of the trials
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both sides had equal cumulative area covered by the dots (this is the area of each dot summed

over all dots), intended to discourage the use of this visual cue. Also, by randomly placing the

dots a density strategy was thwarted. In general, it is well stablished that people can use visual

number over other cues [1, 20–22].

Recording was done with a Northern Digital Optotrak 3020, sampling at 200 Hz, and

stopped 4 cm from the screen. This was mostly for technical reasons i.e. avoid signal loss

when approaching the screen. Trajectories where subjects pulled back during flight were not

Fig 1. Task (A), reach gradient (B), and discrete behavioral measures (C). (A) Subjects were asked to report the more numerous array of dots by

moving their index finger from a starting position to one of two targets on screen representing each array. The number of the arrays differed by fixed

ratios; for instance a 0.1 ratio could be a trial with 1 dot vs 10 dots. The maximum number of dots on a given array was 25. (B) Average subjects’ reach

revealed an organized gradient as a function of numerical ratio. The heat bar below represents significance of number ratio effects at each time step,

estimated with functional ANOVAs [19]. (C) Accuracy and response times were sensitive to numerical ratio. Dashed line in accuracy plot was fitted

with Eq 2: Weber fraction = 0.17. Mean horizontal positions along the trajectory (HP) are also shown as a discrete summary of the trajectories. For

readers with poor access to color information (e.g. black and white print or colorblindness), all lines and points in this and the remaining figures are

mostly organized according to numerical ratio: in plots with horz. positions easier ratios were more positive; in accuracy plots easier ratios were more

accurate; in RT plots easier ratios were faster (also the x-axis is usually depicting numerical ratio). Shading and error bars are s.e.m.

https://doi.org/10.1371/journal.pone.0195188.g001
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analyzed (7.66% dropout) and only correct trials were considered (see reach in incorrect trials

in S9 Fig). A correct trial was defined as a trajectory with 50% or more of points, including the

end point, on the appropriate response side as determined by the midline of the screen (90%

of trajectories). Therefore, any observed reaching modulation is related to motor plans that

were heading toward the correct target most of the time. To have the same number of points

for all trajectories, time was normalized to an arbitrary number of points (101) [17, 23–25].

Left and right trajectories were averaged by flipping the sign of the left trajectory (see left and

right reach separately in S2 Fig). Results focused on the horizontal axis as the response targets

were placed laterally, and number ratio effects were visibly dampened in the depth coordinate

(S4 Fig).

Model: Evidence and controller

The model accumulated evidence, executed statistical inference on the potential target of

behavior given the evidence, and positioned the motor effector with an optimal feedback con-

troller. This set up allowed us to explore plausible cognitive variables involved in a decision-

making task that requires a number judgment: sample rate (R), sample memory decay (D),

and acuity of the Bayesian estimate of the numerical difference (W). The general picture we

describe is that the participants accumulate evidence about which choice is the correct one,

weight this evidence according to a memory decay, and feed their estimates and uncertainty

into a continuously-operating motor controller in order to move (Fig 2). Note that the term

“accumulation” is not referring to the accumulator model in number cognition literature. We

understand accumulation as the process of obtaining and recording samples from an internal

representation (see below for details) while the number cognition accumulator refers to a

model of non-verbal counting [26].

Evidence

Noisy evidence was sampled from the internal representation of the numerical difference. The

internal representation was assumed Gaussian, following standard psychophysics of number

[27, 28],

sðiÞ � Normal jnL � nRj;o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
L þ n2

R

p� �
ð1Þ

s(i) is the sample i, taken every R ms (a free parameter). The symbol * stands for “distributed

as”. nL and nR are the presented numbers on each side. Samples formed the evidence stream

s = (s1, s2, s3,. . ., si,. . ., sn), with n denoting the total number of samples at a given movement

time t. The values for R were bounded to be between 1-100 ms to reflect realistic values of spik-

ing rates of number processing neurons [29]. A negative sample from Eq (1) is evidence favor-

ing the wrong number.

The value of ω determines evidence noise (Eq (1)). Following number cognition literature it

will be referred to as the Weber fraction and it is computed by fitting average error rate across

participants to,

1

2
erfc

jnL � nRj

o
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
L þ n2

R

p

 !

ð2Þ

erfc is the complementary error function [30]. A Weber fraction was computed for each partic-

ipant. The obtained mean Weber fraction from participants’ choices was equal to 0.17 (s.d. =

0.04; mean R2 = 0.96, s.d. = 0.02), in line with previous number comparison experiments [31].
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We also computed a Weber fraction using all the data and the obtained value was also around

0.17. In the model we used the latter.

The numerical stimulus was on-screen for a brief time which means that evidence samples

were produced from memory (see sampling from memory in [32]). We introduced a memory

decay to the evidence stream s in order to model a upweighting of initial information in the

statistical inference. We used an exponential moving average (EMA) [33]

EMAðiÞ ¼ D � sðiÞ þ ð1 � DÞ � EMAði � 1Þ ð3Þ

We initialize EMA(0) = s(1). D is a free parameter between 0 and 1 that determines the

strength of the memory decay. For example, if D = 1 the evidence stream s is unmodified (no

memory of previous samples). Alternatively, a D close to 0 makes the series gravitate around

the initial sample, akin to a system with primacy effects in memory [34] (for visualizations of

how the memory decay parameter works see S1 Fig). Other way of interpreting D is as a gener-

alization of different accumulation schemes. A D = 1 is a memory-free stochastic accumulator

in which only the noise of the sampling determines choice [35]. A D = 0 is a non-stochastic

Fig 2. Model diagram. (1) The approximate number system produces evidence/samples at a rate R e.g. every 30 ms. (2) This generates a stream of

evidence. The importance of each sample decays with a rate D (S1 Fig). The decay accounts for memory effects in participants. (3) Instead of summing

the stream to a threshold, evidence is used to infer which target has the larger number. As more samples arrive the width or confidence on the

estimation improves. (4) The index finger is placed by a motor controller that minimizes movement jerk and that is slowed down by the degree of

confidence. The green and cyan arrows symbolize the hardest and easiest numerical ratio, respectively. Their length depict degree of uncertainty; e.g.

harder comparisons produce stronger pulls to the other response target. The red line across panels is the veridical numerical difference.

https://doi.org/10.1371/journal.pone.0195188.g002
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linear ballistic accumulator [10] in that sampling noise is completely reduced by the initial

sample. Values in between can be regarded as continuous variations of these possibilities.

Controller and statistical inference

The model used an optimal feedback control, a framework that has been successful at explain-

ing a wide array of motor behavior [36]. In general, this framework proposes that motor com-

mands try to minimize a cost function along the movement, while concurrently taking into

account the present state of the system and task demands. This flexibility was essential for our

purposes of generating movements that were affected by continuous number processing.

Specifically, we tackle the kinematic problem with a criterion of jerk (third derivative of

position) minimization [37] and an optimal feedback controller derived by [18] (refer to those

works for further details on the analytical derivations). At each time step t, changes to the state

q of the motor effector were determined by,

_qðtÞ ¼

_x
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The controller used the current position x, velocity _x, acceleration €x, the remaining time

δ = tf − t, and the end target xf, to update the effector state. Here t refers to current movement

time and tf to total movement time. Movement time tf was randomly sampled at the beginning

of each simulated trial from the data of the appropriate ratio. Even though fixed movement

times are not ideal, spontaneously generating them is a difficult problem and many influential

motor models use a similar strategy of deriving them from data [18, 23, 37, 38]. For the inter-

ested reader, derivations of optimal movement time for the jerk model can be found in [39].

The kinematic state q was initialized at 0.

Recent work suggests that motor plans are modulated by certainty [40], an assumption that

we incorporate and extend. The model first determined the probability of which side had the

largest number of dots with the cumulative probability,

pL ¼ pðm > 0Þ; ð5Þ

pR ¼ 1 � pL ð6Þ

with μ = nL − nR i.e. the numerical difference. If the left side has the larger number, Eq (5) rep-

resents the probability of being correct.

The probabilities pL and pR evolved according to the sampled numbers. More concretely,

we assumed that subjects were trying to position the effector with the best possible estimate

of the numerical difference μ = nL − nR, given all the samples e in EMA taken up to time t.
The numerical difference μ was inferred with a uniform prior p(μ), and normal likelihood

p(e|μ,W, n1, n2,); with W as a free parameter representing the likelihood noise. The resulting

posterior p(μ|W, n1, n2, e) from a uniform prior and normal likelihood is itself normally dis-

tributed (due to space considerations we direct the reader interested in this derivation to [41]),

p mjW; n1; n2; eð Þ � N �e;
W
n

� �

ð7Þ

where, �e is the mean of the EMA samples. The free parameter W determines the overall confi-

dence in the obtained mean numerical difference. It should not be confused with ω above,
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which determines the noise of the internal numerical samples: ω characterizes sampling in per-

ception, while W characterizes confidence in action. Conceptually, Eq 7 tells us that the Bayes-

ian estimate of μ is centered at the mean of the samples e and the noise of that estimate (W) is

reduced as more samples (n) arrive. In more direct terms, a Bayesian agent should be more

confident of their numerical perception as they get more evidence.

Heading direction was then determined with the largest probability e.g. if pL� pR, move to

the left. The certainty was defined to be a rescaling of the entropy over pL and pR that gives a

measure between 0 and 1:

certainty ¼
Hð0:5Þ � HðpLÞ

Hð0:5Þ
¼
Hð0:5Þ � HðpRÞ

Hð0:5Þ
ð8Þ

where H(p) = −(p log p + (1 − p)log(1 − p)). Thus, Eq (8) effectively measures how much infor-

mation there is favoring the current heading direction.

The certainty is then used to modulate the motor update,

weighted _q ¼ certainty � _q ð9Þ

The incorporation of certainty is equivalent to delaying the updates of the effector without

altering the nature of the optimal control (minimizing jerk). The end result is that velocity and

the other kinematic changes are slowed down according to the available level of information.

Traditional threshold model

We also implemented a more traditional threshold model [5] with five parameters: threshold

(thr), drift of samples (dft), variance of samples (sig2), non-decision time (ndt), collapse rate of

threshold (k). We actually tested two versions: a) one drift that functionally changed with diffi-

culty level and b) five drifts. Results were practically similar with both versions and we decided

to present the results of the simpler first version. The functional form that we used was based

on a traditional formula in number cognition literature that reflects how numerical ratio

affects difficulty [30],

driftTriali ¼ 1 � erfc
absðratioi � 1Þ

ffiffiffi
2
p
� dft �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðriÞ
2
þ 1

q

0

B
@

1

C
A ð10Þ

The threshold collapsed every ms as follows,

thresholdðtÞ ¼
thr
ð1þ tÞk

ð11Þ

Fitting

The model has three free parameters: sampling rate (R), confidence/acuity (W), and memory

decay (D). Fitting them allows us to test the influence of these cognitive variables. Parameter

values were determined with a global search of the parameter space with the DIRECT-L algo-

rithm [42] as implemented in nloptR [43]. The algorithm minimized the sum of two mean-

squared errors (MSE): 1) MSE of mean horizontal positions along the trajectory (Fig 1C), and

2) MSE of accuracy (Fig 1C). We simulated 480 trajectories per numerical ratio and computed

an average simulated trajectory for the MSE. As with data, we normalized time to 101 points

and use positions up to 99% of the end target to account for the gap that was not recorded (see

Task and apparatus).

A threshold-free model of numerosity comparisons
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We did not model a button and the forces required to release it. We used the median

amount of movement before participants released the button. The median value was 0.28 mm

across participants. We used that reference to define RT. RT was the amount of time required

to move 0.28 mm plus non-decision time. Non-decision time refers to a constant time, mainly

visual and motor response delays [5]. This was set manually, after the fitting procedure, with

values found in the threshold literature: 200-500 ms [7, 15].

Changes of mind were defined as correct or incorrect trajectories that penetrated 1 cm of

the opposite side of the last recorded position of the index finger.

Accuracy and response times for the traditional threshold model were fitted using BADS

algorithm [44] (again minimizing a function of MSE). After obtaining the best parameters we

then produced positions as explained along the main text.

Interim summary

The number comparison task (Fig 1) was modeled by combining key ideas from three influen-

tial approaches in the sensorimotor domain (Fig 2).

1. Accumulation of evidence [4]: it was assumed that subjects sampled evidence about the

numerosity from each display according to Weber’s law [27, 28, 30, 45, 46]. This evidence

was sampled at a rate (R) and it was affected by a memory decay (D).

2. Bayesian inference [47]: the most likely location of the correct option was inferred using the

accumulated evidence and the precision of the inference was determined by an acuity

parameter (W).

3. Optimal feedback control [18]: a minimizing jerk movement was weighted by certainty

[40] computed from the probabilities of the inference.

Results

Participants were accurate (overall accuracy = 90%) and relatively fast (mean RT between tri-

als = 510.8 ms, s.d. = 254.5 ms). A repeated measures ANOVA revealed that accuracy

(F (4,84) = 335.06, p< 0.001, Z2
g ¼ 0:92) and response times (F (4,84) = 6.34, p< 0.001,

Z2
g ¼ 0:08) were sensitive to numerical ratio (Fig 1C). RTs have been previously reported to be

faster when larger numbers are to the right side [48]. Nonetheless response side effects and

interactions with numerical ratio were not significant (p>0.7).

Average trajectories were smooth [38, 49, 50] and the numerical distance between the

arrays modulated subjects reach (Fig 1B), suggesting a fluid integration of cognitive represen-

tations to motor plans. The smoothness in Fig 1B is a result of averaging a large amount of tra-

jectories. Still, smooth reach can be observable in single trials (random examples in S3 Fig).

A continuous view of decision making predicts that choice signals should be detectable at

every time step of the process, not only at threshold. The mean value of displacements of the

infrared marker before the button being depressed and the mean heading angle during the

first 100 ms were modulated by numerical ratio (Fig 3) (micro motion: F (4,84) = 4.01,

p = 0.005, Z2
g ¼ 0:009; heading angle: F (4,84) = 2.57, p = 0.043, Z2

g ¼ 0:03).

To explain modulation of behavior in accuracy, RT, and reach, we tested a model with 3

parameters: sampling rate (R), sampling memory decay (D), and likelihood noise (W). The

model reproduced the observed sensitivity to numerical ratio across the three measures

(Fig 4). Such sensitivity appeared because evidence quality depends on numerical distance. For

example, when comparing close numbers, say 9 dots against 10 dots, perceptual evidence is

A threshold-free model of numerosity comparisons
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too noisy affecting the inference, delaying motor output, and producing slower response

times. In general, the model accounts for classical indexes of mental processing by means of

continuous statistical inference and optimal motor planning, without a decision threshold.

Perhaps because our task was memory intensive (stimulus was static and on screen for only

200 ms) the best model required strong primacy effects (D = 0.06; or, equivalently, it behaved

as a noise-reduced linear accumulator). To further test how general was the process of contin-

uous inference regardless of memory dynamics we fitted positions to the most basic model:

sampling rate (R), likelihood noise (W), but no memory decay (D = 1). Even though the simu-

lated effects were less human-like, the sensitivity to numerical ratio in reach, accuracy, and

response time was still present (S5 Fig). This supports the notion that a slowly evolving motor

plan that takes time to generate momentum due to statistical uncertainty is behind the

observed reach gradient.

It is possible to extend the model to include decision thresholds. Samples from Eq 3 were

summed up and once the accumulation got to a ± threshold motor positioning and statistical

inference began (Eqs 4 and 9). Statistical inference was done with pre and post-threshold sam-

ples. The best fit model required a practically zero threshold (0.27). The reason a 0.27 threshold

is practically zero is better appreciated with an example. When comparing 5 vs. 10 the mean

value of evidence is 5 (see Eq 1). Moreover, assuming a Weber fraction of 0.17, the probability

of an evidence value less or equal to 0.27 is roughly 0.006 (Eq 1). This means that any initial

sample is enough to initiate movement i.e. no threshold is required. The alternative is to claim

that 0.27 is not literally zero. We believe that this is an excessively conservative stance. To reit-

erate, evidence in our model is in units of numerical difference. We used numerical values in

the range of 1 to 32; a 0.27 threshold is miniscule.

A sensitivity analysis reveals the main difficulty thresholds have in explaining reaching gra-

dients in our model (Fig 5). Sufficiently large thresholds allow for the production of enough

information to confidently decide which target to hit. Thus, as thresholds increase reach

becomes direct and modulations by trial difficulty disappear (Fig 5). The challenge for a

threshold model is to translate evidence quality at decision to a motor plan. Our model is a

plausible implementation and makes transparent one potential limitation of thresholds to

Fig 3. Mean micro motion before lift-off (left) and heading angle during the first 100 ms after lift-off on correct trials (right). There were early

signs of modulation of movement by cognitive difficulty. Heading direction was computed as the angle of the vector formed by the infrared position

and the initial position at the time of peak velocity [51]. Error bars are within s.e.m. [52].

https://doi.org/10.1371/journal.pone.0195188.g003
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explain cognitive modulation of reaching: with enough information movement should be deci-

sive and straight to target; however this is not observed.

We also tested a more traditional threshold model with five parameters: threshold (thr),

drift of samples (dft), variance of samples (sig2), non-decision time (ndt), and collapse rate of

threshold (k). The general idea of traditional threshold models is that evidence is accumulated

up to a decision threshold (thr). This evidence is sampled from a Gaussian distribution with

mean equal to the drift (dft) and variance (sig2). The model assumes a fixed delay, called non-

decision time, arising from initial perceptual encoding and motor output stages unrelated to

Fig 4. The proposed framework reproduced the sensitivity of participants to numerical ratio in reach, accuracy, and response times (for RT

distributions and incorrect RTs see S7 and S8 Figs). Error bars are s.e.m.

https://doi.org/10.1371/journal.pone.0195188.g004
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the decision. Finally, to account for some human behavioral nuances, it has been proposed

recently that the threshold should collapse as time passes by.

Traditional threshold models are excellent at replicating human discrete choice patterns

and as expected the model reproduced accuracy and response times of human participants

(Fig 6). However, traditional threshold models were not designed to deal with motor position-

ing as their objective was to explain discrete choice [5]. To generate motor positions, we com-

puted the posterior probability of being correct as follows,

pðCorrjsamplesÞ ¼
pðsamplesjCorrÞpðCorrÞ

pðsamplesjCorrÞpðCorrÞ þ pðsamplesjIncorrÞpðIncorrÞ
ð12Þ

the prior of being correct or incorrect is p(Corr) = p(Incorr) = 0.5, the likelihoods p(samples|

Fig 5. Sensitivity of the best fit model to larger thresholds. The top panels have examples of different threshold levels. Note how the reaching gradient

gets weaker with larger thresholds (left to right). The bottom panel has the goodness of fit measure as a function of threshold values. Red dots are for the

examples in the top panels.

https://doi.org/10.1371/journal.pone.0195188.g005
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Corr) and p(samples|Incorr) were assumed Gaussian i.e. * Normal(dft, sig2) and * Normal

(-dft, sig2), respectively. It has been proposed before that a proxy of confidence is to compute a

likelihood ratio between both hypotheses and place a new threshold on that metric [53]. But

the question remains on how to transform that likelihood ratio to motion. Instead, to compute

certainty (Eq 8), we used the posterior in Eq 12 because it is already in probability space, and

updated positions with Eq 9. We further assumed that sampling continued after hitting the

threshold.

It is important to highlight that this model differs from our previous threshold model in

that it has a collapsing threshold. Also, the parameters of the Gaussian evidence: the drift or

mean is related to cognitive difficulty via Eq 10 and the variance is not connected to cognitive

difficulty. And finally, in the posterior: one posterior is based on two discrete hypothesis (Eq

12) and the other on a continuous hypothesis space, namely the estimate of the numerical dif-

ference (Eq 7).

The traditional threshold model replicated discrete choice, namely accuracy and response

times, but it could not displace the index finger to the target (Fig 6). We tried to include a sec-

ond post-lift off threshold for changes of mind and a post-lift off deadline to stop accumulation

[15] and select the target with highest posterior. However, it was not possible to replicate the

position gradient even with the addition of these two parameters (S10 Fig). We note that this

result depends on the posterior used (Eq 12) and the general setup.

Fig 6. Traditional threshold model. The model reproduces human accuracy and response times (bottom panels). The mean response times for the

hard ratios (red an green) are slightly faster than human participants, but the quantiles, including the median are well fitted (S11 Fig). Reaching (top

right panel), however, was different from human subjects. Best fit parameters: thr = 0.62; dft = 0.28; ndt = 0.19 s; sig2 = 0.14; k = 3.56.

https://doi.org/10.1371/journal.pone.0195188.g006
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Thresholds can explain discrete choice (Fig 6). Continuous output, however, impose a chal-

lenge on the framework that requires non-trivial extensions. For instance adding post-lift off

thresholds, time limits on accumulation, formalization of confidence metrics, and their inter-

action with motor plans. We could not strike the correct balance so that a single or multiple

stage discrete threshold model could explain the data (but in principle there should exist an

appropriate one). A continuous inference scheme, on the other hand, was successful in

approximating human choice patterns.

Changes of mind

Changes of mind are deviations of the motor effector toward a target different from the initial

selection. They are of interest because they confirm the presence of online processing during

reach. Even though the model and the static nature of the stimulus were not designed to probe

changes of mind, the model was able to produce them (Fig 7D).

Fig 7. Changes of mind without post-lift off thresholds. (A) Changes of mind in human participants. Thick color lines are averages colored by

numerical ratio. Arrows on the x-axis are a mean proxy of where the change of mind first appeared (the x coordinates of the minimum points of the thick

lines). (B) Changes of mind produced by a parametrization of the model. (C) They increased with cognitive difficulty, both in the model and human data.

The minority of changes of mind were from correct to incorrect (gold). (D) Examples of double changes of mind in the model and human data.

https://doi.org/10.1371/journal.pone.0195188.g007
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Also, we observed more than one change of mind in some trials (Fig 7D). In the model,

changes of mind are the result of continuous statistical fluctuations. This means that multiple

changes of mind are possible without additional assumptions (Fig 7D; they are highly scarce in

human data and the model (<0.3%).

Thirdly, a manually-tuned parametrization of the model replicates known characteristics of

changes of mind reported in previous literature [15]: 1) highly scarce and more prevalent in

hard trials (Fig 7C); 2) they tend to fix an error i.e. they go from incorrect to correct (Fig 7C);

and 3) most of them appear relatively far from the target depending in trial difficulty (see

arrows in Fig 7A and 7B). Therefore, the model in Fig 7 represents a plausible average cogni-

tive state present when changes of mind occurred. This was obtained with a manually tuned

model because fitting the model with the global method by adding changes of mind (see Meth-

ods) produced a mildly informative compromise between positions, accuracy, and changes of

mind. This may only testify about the difficulty to fit 3 dependent variables at once. More rele-

vant is that the manually-tuned parameter values were insightful about changes of mind as

continuous in nature. Note, however, that the parameter values obtained by fitting positions

and accuracy (Fig 4) produced too few changes of mind (< 1%). Subjects’ cognitive parameters

may have fluctuated to produce the rate of observed changes of mind (*3%). The details of

such fluctuation are beyond this work but could be caused by drops in attention or fatigue,

leading to a higher Weber fraction or an altered likelihood noise.

Importantly, changes of mind can occur in the proposed continuous regime and comply

with features found in previous behavioral work [15]. For example, in the model the reason

that changes of mind tend to be prevalent in hard trials and correct an error is that an initial

stream of incorrect evidence is more likely to occur when numbers are close (Eq 1) but as

more samples arrive, and because there is a correct answer, the initial stream of incorrect evi-

dence is overrun and the inference changes. Similarly, the point where a change of mind

occurs along the reaching trajectory depends on numerical distance (see colored triangles in

Fig 7A and 7B) because difficult comparisons generate low quality information taking longer

to overrun an initial stream of incorrect evidence.

Weber fractions

So far we used the Weber fraction ω estimated from accuracy, following standard practices in

number cognition literature (Eq 2). With the model it is possible to estimate it using subjects’

positions and accuracy (see Methods). That is, we add ω as a free parameter in the fitting pro-

cedure. We found parameter values that reproduced sensitivity to numerical ratio in reach,

accuracy, and response time (Fig 8). The obtained Weber fraction ω was higher than the one

obtained from accuracy alone (0.17 vs 0.39). A perceptual system that is noisier, as revealed by

a higher Weber fraction, reproduces accuracy. In other words, even though it is possible to

estimate a low Weber fraction from accuracy the underlying uncertainty, as revealed by reach-

ing, is not captured by just using percentage of correct answers. However, it is worth to high-

light that the larger Weber fraction may also be a reflection of a strong memory effect in

sampling (D = 0.06). Future experiments could try to separate memory effects from purely per-

ceptual noise.

Discussion

We presented a model that translated a high level cognitive representation, number, into

dynamic action. Our threshold-free model accounted for the subtleties of human numerical

decision-making, including accuracy, response time, the spatial layout of reach trajectories,

and changes of mind.
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Number cognition

There is a considerable amount of work exploring number representations and their effects on

movement plans [17, 54–56]. The novelty of our work is a formalization of how psychophysical

representations of number may be projected to reach. Two relevant theoretical insights are

worth noting. First, the model never directly projected the details of the numerical representa-

tion. Previous work has proposed otherwise and suggests that the motor system forces loga-

rithmic scales or numerical formats in how the motor effector, i.e. index finger, is moved in

physical space [25, 54, 57]. In our model the displacement of the index finger is not forced to

follow precise aspects of the number representation; it is the state of the inference and confi-

dence that is being reflected along the reaching trajectory (see a similar discussion in [56]). In

a broader sense, movement may only be a window to a domain-general process, such as confi-

dence, rather than domain-specific aspects of cognition (log. scaling of mental space).

Second, the model allowed us to estimate Weber fractions using both accuracy and move-

ment patterns. We found a larger Weber fraction than the one estimated from accuracy alone

(0.39 vs 0.17, respectively). This suggests that human numerical sensitivity may be misesti-

mated if confidence and decision dynamics are not taken into account. This has direct implica-

tions for math education given the efforts to connect perceptual numerical estimation,

Fig 8. Weber fraction estimation from dynamic (reach) and discrete (accuracy) dependent variables. In all the previous figures the Weber fraction

was a fixed parameter obtained from subjects’ accuracy, as traditionally done in most psychophysics papers of numerosity. In this figure, we fitted a

model with the Weber fraction as a free parameter. This means that the parameter is obtained both from dynamic reach and discrete accuracy. By

including reach, we obtained a higher Weber (0.17 vs 0.39) i.e. a noisier perceptual system that reproduces the same accuracy and reach. Error bars are

s.e.m.

https://doi.org/10.1371/journal.pone.0195188.g008
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number metacognition, and formal math learning [31, 58, 59]. By bringing forth the idea that

numerical estimation may be affected by confidence or other decision parameters, such as

memory in sampling, it may be possible to explain why some researchers find positive and oth-

ers negative results regarding the importance of approximate numerical estimation in formal/

symbolic mathematics; an argument also extended in [11]. In brief, the observed relation

between the approximate number system and mathematics may be mediated by aspects unre-

lated to numerical Weber ratios (e.g. perhaps the quality of the inference varies between stu-

dents, as indexed by the parameter W in our model).

Thresholds and action

In most domains decision thresholds are useful for describing a large number of brain and

behavioral responses [4, 5]. However, our results show that in some very simple computational

systems, threshold-like behavior may arise as essentially an epiphenomenon: behavior may be

effectively delayed due through uncertainty over motor plans, not inherent cognitive or neural

mechanisms that set bounds for action. This suggests that in some domains thresholds may be

replaceable with other rational processes.

Thresholds are a dominant framework in the field. However, there are prior reports of

their failure to capture some aspects of behavior. In a recent neurophysiology paper, one of

the monkeys failed to show neural signatures of a threshold when selecting one of the

options [60]. The monkey’s neurons behaved as if they were not accumulating evidence,

even though the accuracy of the monkey in the task was high. In another study testing for

sources of noise in the accumulation process, it was found that subjects (rats and humans)

were best fit by models with infinite thresholds [35]—bounds were not necessary. In work

that used dynamical systems to model behavior it was found that very low thresholds were

required to produce changes of mind [61], and that fast response times and high spike rates

were not correlated as predicted by a rise-to-threshold theory [62]. Finally, neural responses

in canonical accumulation areas can be explained by discrete steps rather than ramping

accumulation [63], plausible indicating the production of discrete samples instead of a rise-

to-threshold.

Our study complements these findings and strongly suggests that once motor models are

combined with statistical inference models, threshold-like behavior may emerge as a conse-

quence of motor planning. This work therefore points towards models which make explicit

the interrelation of decision and action, and show how interesting behavior may emerge from

the confluence of simple processes in inference, choice, and movement.

An interesting result was that micro movements before button release were modulated by

numerical ratio, suggesting information processing early on. There are precedents on this idea.

Micro eye motions during fixation have been connected to active information processing that

transforms seemingly static visual space to temporal signals interpretable by the retina [64].

Studying early signals becomes important in a continuous decision framework but can also

inform on whether choice is discrete or not.

Decision making is highly likely to be a mixture of discrete and continuous mechanisms.

The results herein are not directly undermining the whole idea behind thresholds. In fact, it

should be possible to come up with a discrete scheme that explains the observed human behav-

ior in our task, perhaps by adding multiple post-lift off thresholds. Rather, we think the main

insight is that decisions can be placed in a continuous framework, even for simple static com-

parison tasks. It would be interesting to extend this to classic dynamic contexts such as the ran-

dom dot motion task, usually modeled with a discrete framework.
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Choice error and movement uncertainty

The task design (stimulus on-screen for only 200 ms) and model results (D = 0.06) suggest that

subjects gathered evidence from memory or, equivalently, that they accumulate non-stochasti-

cally and linearly [10]. In general, the literature suggests that both of them are plausible [10,

32]. However, it is important to clarify that this implicates that for the model the source of

error made by subjects is mostly due to a bias in the mean of the internal memory representa-

tion. The initial samples strongly bias subjects and when wrong they produce mistakes. That

is, the source of error is driven mostly by a bias in the perceived mean of the internal represen-

tation, rather than its variance.

Another intriguing aspect of our results is that it is unclear how to move when there is

ambiguous evidence. In our task, ambiguous information appears in trials with equal number

in both sides (S6 Fig). A simple average of parallel motor plans to each option will make the

movement land in between the options (e.g. [65]). Similarly, weighting by amount of informa-

tion, as we did here, will fail to fully drive the index finger to the target (S6A Fig). Dealing with

uncertainty gridlocks is a difficult challenge for future decision-making models that try to

account for movement patterns, accuracy, and response times in 2AFC. Still, we present a pos-

sible solution using a satisficing strategy in the supplemental material (S6 Fig).

A signature of uncertainty is the presence of changes of mind [15]. We propose that they

result from an early incorrect inference due to initial numerical evidence favoring the non-

selected target. Also, because the model produced changes of mind with slightly different

parameters than the best fitted ones, they may require fluctuations in cognitive parameters;

perhaps brought about by external variables, such as drop in attention or fatigue. More inter-

esting is that changes of mind in number comparisons can be framed as continuous events

rather than the arrival to a discrete post lift-off threshold [15].

Supporting information

S1 Fig. Effects of the memory parameter D. Each row has the effects of different memory

parameters in an example series. Column 1: orange trace is the original sample series; black

trace is the EMA series. Column 2: illustrates how the weight of each previous sample decays

as more samples arrive.

(PDF)

S2 Fig. Left (+) and right (-) trajectories. Upper and lower heat bars are pointwise signifi-

cance effects of numerical ratio of a functional ANOVA. Shading is 2 s.e.m.

(PDF)

S3 Fig. Examples of randomly picked trajectories. Rows organized by numerical ratio (0.1,

0.25, 0.5, 0.75, 0.9) and colored as in Fig 1B.

(PDF)

S4 Fig. Movement modulation in different axes. Number ratio effects were stronger in the

horizontal axis. Shading is 2 s.e.m.

(PDF)

S5 Fig. No memory decay. A model without memory decay is also sensitive to numerical ratio

in reach, accuracy, and response time.

(PDF)

S6 Fig. Model and participants in trials with equal number. (A) The best fit model in Fig 4

favors one side even in these trials (blue trace). This happens thanks to the limited number of

stochastic samples in a brief reach lasting 600 ms on average. (B) In trials with equal number
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human participants fully arrive to target, suggesting a type of satisficing strategy that settles to

the closest target. (C, D) A modification of the model that implements a satisficing strategy

unrelated to the inference successfully arrives to target in all numerical ratios (C), and repli-

cates accuracy and RT patterns (D). Dashed line in accuracy plot is chance. In the model

motor plans were modulated by certainty. This seems to predict that when both options are

identical, say 10 dots to the left and right, subjects will end up at exactly midway between the

targets due to maximal uncertainty. Contrary to this assumption, in a movement that is time

and space constrained, the amount of stochastic evidence is limited and one side would be

favored. We tested the model using the parameter values in Fig 4 and simulated trials with

equal number on both sides (number ratio = 1). Interestingly, in these trials average reach is

dominantly tilted to one side (S6 Fig, A). To fully arrive to target subjects could produce a top-

down signal and satisfy. For example, as the index finger gets closer to the computer screen

they settle towards the closest target. Satisficing strategies are well known in decision-making

literature [66] and can be implemented in the model with a simple extension to Eq (9),

weighted _q ¼ certaintydistance � _q ð13Þ

distance is the normalized depth distance to the screen (0 screen arrival and 1 start button). As

the finger approaches the screen the pull exerted by certainty becomes weaker and the move-

ment is mostly driven by the kinematic update _q (e.g. at screen arrival: certainty0 = 1). Physical

distance is not changing certainty levels, just how relevant it is for updating motor positions.

To observe what human participants do and test the extended model, we ran a new experiment

with trials that had equal number of dots on each side (tested numerical ratios: 0.25, 0.5, 0.75,

0.9, 1; n = 22, mean age = 19.91 years, s.d. = 1.80, Weber fraction = 0.15). Subjects and the

model got to target in trials with equal number (S6 Fig, B,C). The model was also successful in

reproducing sensitivity to numerical ratio in accuracy and response times (S6 Fig, D). In this

experiment, though, participants’ RT flattened out in the hardest numerical ratios (0.9 and 1).

It is unclear why but recently it was demonstrated that motor initiation in humans is usually

delayed *80 ms and under volitional control [67]. Movement initiation is part of a non-deci-

sion time which means that the assumption we made of being fixed is wrong (but also found

in all evidence-to-bound models). These participants may have reduced the delay in move-

ment initiation for the hardest trials to optimize time spent in the task. More important is that

the flattening out of RT and satisficing strategies do not contradict the general argument that

subjects modulate their movements based on a rational inference.

(PDF)

S7 Fig. Distribution of response times. The model reproduces fairly well response times

(quantiles 0.25, 0.5, and 0.75) but the distribution of RT for subjects is noisier (see extreme

quantiles 0.1 and 0.9). We argue that such additional noise may be in part explained by muscle

forces or flight time estimations which were not explicitly included in the model and could

have been affected by certainty levels. Ratio 0.1: cyan; 0.25: black; 0.5: purple; 0.75: red; 0.9:

green.

(PDF)

S8 Fig. Response times in incorrect trials. Similarly to human participants, the model was

slower in incorrect trials. Ratio 0.1: cyan; 0.25: black; 0.5: purple; 0.75: red; 0.9: green. Lower

right panel is overall mean across ratios (F(1,21) = 6.10, p = 0.02, Z2
g ¼ 0:05). Error bars are

s.e.m.

(PDF)
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S9 Fig. Index motion by performance. Mean reach in correct and incorrect trials of

humans (left panel) and the best fit model (right panel). Incorrect trials are more medial in

the model than in humans. This is similar to what happens in trials with the same numerosity

on each side (S6 Fig): Evidence quality is weak and hinders arrival to the target. We reasoned

that humans may be using a top-down signal to hit the target. See a plausible implementation

of such top-down signal in S6 Fig i.e. distance to the screen is used as a cue to stop relying in

evidence and instead try to arrive to target (Eq 10).

(PDF)

S10 Fig. Change of mind threshold and movement. Adding a second post lift-off threshold

and a deadline to stop accumulation, as in [15] did not improve motor positioning of the tradi-

tional threshold model. On average, they collapsed to a similar trajectory (top right). After the

second threshold the model makes a definitive commitment and on average the finger goes

directly to target. The fitting procedure could not find a better solution. Best parameters: thr:

0.62, 2nd thr: 1.02, deadline: 51 ms; dft: 0.28; ndt: 0.19 s; sig2: 0.14; k: 3.56.

(PDF)

S11 Fig. Response time quantiles for the traditional threshold model. Traditional threshold

models are excellent at reproducing response times.

(PDF)
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