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Abstract

Most theories of how human cognition is unique propose specific 
representational capacities or biases, often thought to arise through 
evolutionary change. In this Perspective, we argue that the evidence 
that supports these domain-specific theories is confounded by 
general information-processing differences. We argue that human 
uniqueness arises through genetic quantitative increases in the global 
capacity to process information and share it among systems such as 
memory, attention and learning. This change explains regularities 
across numerous subdomains of cognition, behavioural comparisons 
between species and phenomena in child development. This strict 
evolutionary continuity theory of human intelligence is consistent 
with comparative evidence about neural evolution and computational 
constraints of memory on the ability to represent rules, patterns and 
abstract generalizations. We show how these differences in the degree 
of information processing capacity yield differences in kind for human 
cognition relative to other animals.
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as differences within a species — we make no argument about differ-
ences within a species in the current Perspective. The definition of 
human intelligence specifically is also a matter of debate, but the term 
‘intelligence’ is often used to refer to abilities that psychologists have 
identified as distinctive in humans — capacities such as language, recur-
sion, theory of mind, massive memory, logical and relational reasoning, 
complex tool use and rich conceptual systems.

Theories of human uniqueness
Domain-specific theories have dominated the theory space around 
human uniqueness for decades and are still influential in more expansive 
modern theories of human cognitive origins1,18. The domain-specific 
focus on human origins has generated many different silver-bullet pro-
posals. Silver-bullet theories of human cognition are often derived from 
sociobiological36,37 or adaptationist theories of human behaviour1,38,39 
but they also stem from counter-behaviourist theories about human 
cognition40 and from even earlier theories of biological preparedness 
that helped to spawn the cognitive revolution23,41. Some evolution-
ary frameworks propose that human behaviour is largely influenced 
by genetically specialized cognitive functions1,18,42,43, whereas others 
propose much less innate structure23,31. Many of the hypothetical 
human-specific adaptations that various researchers propose are in 
the social cognitive domain, including cheater detection2, theory of 
mind44,45, imitation46 and joint attention47, whereas others are abstract 
computations such as symbolic geometry3,48,49, recursion50,51, relational 
reasoning52 and language grammar39,53–55.

Silver-bullet theories face multiple logical challenges in explain-
ing the wide range of behaviours that set humans apart from other 
primates. One is that the key behaviours that set humans apart from 
other primates — behaviours such as language, mathematics, logical 
reasoning, complex social structures, tools and technology — generally 
must be acquired. Although each behaviour undoubtedly relies on 
some innate machinery, the specific representations that adults pos-
sess in any of these domains seem to be fairly unconstrained and criti-
cally unknown to the youngest human learners. A second problem is 
that the distinctively human domains are remarkably diverse in the 
representations and processes they require: a silver bullet for language 
is unlikely to be a silver bullet for mathematics or logic, much less 
for social reasoning and tool use. Researchers in these domains have 
tended to highlight their own area as the critical special one, while 
failing to account for uniquely human abilities in the others. Finally, 
each theory of human uniqueness posits that a different cognitive 
representation was the silver bullet, but they cannot all be the unique 
key piece. This observation has led some theorists to conclude that 
perhaps there was no single adaptation that led to human uniqueness 
but, rather, a patchwork of multiple specific adaptations18. However,  
a theory that post hoc posits evolutionary change in each domain lacks 
predictive power and parsimony because it has an unprincipled and 
unlimited attribution of unique adaptations for unique behaviours. 
More importantly, a patchwork adaptation theory contradicts the 
constituent domain-specific theories that form the patchwork, each 
of which maintains that humans are superior to non-human primates 
in one domain but ordinary in other domains56.

Although some silver-bullet studies claim to disprove more gen-
eral explanations of differences between humans and non-human 
primates, the pattern that emerges across studies is that humans dif-
fer in general ways from non-human primates, across many domains 
and cognitive processes. Human advantages extend beyond any one 
process or ability into basic object memory, semantic memory, set and 

Introduction
One of the deepest mysteries about cognition is how human thought 
differs from that of humanity’s close primate relatives. This question 
targets the core of human nature itself, simultaneously pointing back-
wards to the evolution of natural intelligence and forwards to the likely 
mechanisms needed to make artificial intelligence.

The theories that have gained the most traction in the study of 
human uniqueness tend to be ‘silver bullet’ hypotheses that posit a 
single, specific adaptation or ‘instinct’ — such as social reasoning or 
hierarchical syntax — as the central catalyst of human-like thought1–8. 
Such domain-specific theories have largely dominated the field’s 
hypothesis space. These theories tend to propose domain-specific or 
modular adaptations that are innate in humans and arose uniquely in 
human evolution.

Alternatives to a domain-specific evolutionary story have not 
reached a consensus on a general cognitive mechanism or biological 
basis for what is unique about humans9–19. However, several newer 
theories of human uniqueness suggest a shift towards more general 
learning adaptations12,13,19–22. These theories vary in how much innate 
structure they assume, from very little to a lot23. One class of theories 
that sometimes emphasizes the general cognitive origins of human 
intelligence is the cultural intelligence hypothesis13,19,24–33. The cul-
tural intelligence hypothesis suggests that humans stand out among 
animal species due to their unique social learning ability and the accu-
mulation of cultural knowledge it affords. Some variations of this 
hypothesis emphasize the role of purportedly innate, domain-specific 
mechanisms such as joint attention, theory of mind, language and imi-
tation, whereas others emphasize the importance of global increases 
in general cognition such as the innovation rate26 and flexibility13. Even 
cultural intelligence theories that posit innate adaptations to human 
social learning agree that domain-general learning and memory do 
much of the heavy lifting in the assimilation of new, unique human 
knowledge12,31,33.

However, all these theories are inadequate for explaining in detail 
how humans excel at the diversity of tasks they do, and therefore fail 
to explain how unique capabilities emerge in humans. We argue that 
the differences between human and non-human primates are not 
due to one specialized cognitive adaptation or even a bunch of them. 
Instead, human uniqueness largely results from a global adaptation 
for increased information processing capacity, which alters human 
cognition profoundly and qualitatively. Information processing capac-
ity refers to the amount of information34,35 per unit time that can be 
stored and transmitted between cognitive mechanisms or subsystems.

In this Perspective, we propose that global, genetic differences 
in learning and memory are sufficient to account for uniquely human 
capacities across domains. We begin by detailing silver-bullet theories, 
cultural intelligence theories and our information capacity theory. 
We then review evidence for the information capacity theory by 
examining three major predictions: continuity of ability across spe-
cies; differences in capacity limitations across species; and qualitative 
changes in ability enabled by quantitative changes in capacity. We dis-
cuss information capacity across human and non-human species and 
explore capacity limitations in learning models and mathematical 
analyses. We conclude that information capacity is a key determi-
nant of human uniqueness because it determines which rules and 
representations can be learned by species across a range of domains.

Functional specializations within species preclude a unitary 
definition of intelligence across species (Box 1). Differences in intel-
ligence between species might not be driven by the same parameters 
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sequence memory, memory duration, cognitive control and simple 
learning rates — differences in these general cognitive functions are 
not predicted by domain-specific theories.

Theories that attribute human uniqueness to domain-general 
adaptations, such as the cultural intelligence hypothesis, tend to 
focus on evolutionarily new general-purpose neural functions and 
structures57, such as ‘quantum leaps’ in adaptive specializations58, cog-
nitive control in the prefrontal cortex59,60, adaptations for abstraction52 
and other evolutionary discontinuities18. These theories propose an 
evolutionary discontinuity between humans and non-human primates. 
There is general agreement among cultural intelligence theories that 
humans are unique in their social learning abilities, which enhance 
human cognition through the accumulation of knowledge in culture18,19. 

Some cultural theories effectively propose silver bullets by empha-
sizing innate, domain-specific mechanisms such as joint attention, 
theory of mind, language and imitation as key catalysts for human 
uniqueness18,28,31–33,46. Other theories emphasize expansions in general 
cognitive mechanisms such as learning, memory and executive func-
tion as the evolutionary foundation of human innovation, complex 
communication and flexibility13,17,25,26,61–63. These latter theories show 
that global increases in general cognition are adaptive and hypoth-
esize that general cognitive processes ratchet up unique cognitive 
abilities that define humans through adaptations and environmental 
opportunities for social learning. However, none of these prior theo-
ries explain how general capacities benefit uniquely human cognitive 
abilities.

Box 1

Biological basis of information capacity differences
Addressing unique cognitive processes requires considering 
biological implementation. Unlike alternative theories, the theory 
that increased information capacity caused human intelligence 
has a plausible biological mechanism underlying human cognitive 
abilities and satisfies key criteria for a cause for intelligent behaviour 
in biological theory (such as Tinbergen’s questions274). Species 
differences in information capacity are innate and rooted in their 
embryonic biology.

Functional specialization is a fact of species evolution275. Species 
differences in sensorimotor cortices firmly establish functional 
specializations that readily differentiate, for example, a bat from a 
possum from a primate. However, qualitative differences between 
humans and apes are much less profound276,277. Instead, there are 
well-known adaptive advantages to generalized increases in neural 
tissue for cognitive plasticity that drive unique cognitive abilities in 
humans.

Mammal and bird species with larger brains relative to their body 
size are more successful at surviving in novel environments than 
species with smaller brains30. This pattern suggests that increased 
brain size provides a fitness benefit in vertebrates26, and implicates a 
global implementation of human advantages in cognition. Brain size 
in humans is expanded across most cortical regions relative to other 
primates278,279. Even the prefrontal cortex, which was once thought to 
be qualitatively distinct in humans, seems to have expanded largely 
quantitatively relative to chimpanzees277,276.

The number of cortical neurons is related to information 
processing capacity, and can predict general cognitive abilities 
across species, such as the ability to control prepotent responses 
or make precise quantitative judgements179,183,265,280. The number 
of neurons is genetically determined, set before birth for each 
species by the size of their neural progenitor pool and duration of 
cortical neurogenesis264,265,281–283, and is therefore a likely substrate 
for adaptation284. Humans have an extended period of cortical 
neurogenesis during prenatal development compared with other 
primates269,285. Extended cortical neurogenesis probably increases 
neural density in human cortex generally, although it might be more 
likely to increase frontal density than posterior density because 
prolongations are more efficiently implemented there within the 

developmental schedule281. Prior theories argued that human 
prefrontal cortex underwent special expansion relative to other brain 
regions for functionally specific reasons (for instance, cognitive 
control14). But prefrontal expansion seems, instead, a continuation 
of a new allometric trend, a yoked scaling between brain parts, that 
began in a more distant ancestor shared with other apes281, and might 
be a consequence of general selection for neural density under the 
ease of embryonic rostral–caudal neurogenesis rather than specific 
functional selection for a frontal cognitive process.

Although there is growing genetic evidence in favour of 
species-specific circuits for general learning and motivation281, 
there is no parallel evidence for circuits supporting purported silver 
bullets of human uniqueness, including language, theory of mind, 
cheater detection or relational reasoning. In fact, genetic evidence 
for these domain-specific theories, such as predicted differences 
between identical versus fraternal twins or predicted task-specific 
correlations with genes, does not bear out in the data13. More broadly, 
there are no theories for how new genetic cognitive modules such as 
these would arise, nor how they would have arisen in humans alone. 
Finally, existing theories of human uniqueness cannot explain why 
corvids perform so similarly to non-human primates on many tasks286. 
By contrast, the information capacity theory easily explains this as the 
result of similar neural densities between corvids and primates that 
afford similar flexibility and learning rates287,288.

Evolutionary theories of human intelligence that take the 
chimpanzee mind as a starting point and factor the effects of 
scaling-up on cognition are grounded in genetic physiology. 
The information capacity theory proposes that increased neural 
and glial density, determined by the size of the neural progenitor 
pool at birth, qualitatively improves cognition. A plausible pathway 
to human uniqueness is one in which genetic changes in the 
human brain increase neural density quantitatively, which leads to 
exponential increases in information processing capacity, and results 
in conceptual learning leaps during child development that are 
unseen in other primates. This theory provides a more straightforward 
account of cognitive evolution by natural selection and predicts the 
unmistakable biological continuity between primate and human 
brains.
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By contrast, we propose that a uniquely human genetic change 
in global information capacity, implemented computationally as an 
increased bit rate and biologically as increased cortical density, is 
powerful enough to yield all of the qualitative differences between 
human and non-human cognition. Thus, our idea differs from other 
domain-general theories because it is a strict continuity theory of 
the evolution of human uniqueness. Our theory is synergistic with 
versions of the cultural intelligence hypothesis that propose evolu-
tionary expansions in learning and memory as a key source of human 
uniqueness13,29,30. It builds on constructivist theories of conceptual 
change in childhood64–66 and complements facets of the cultural 
intelligence hypothesis that emphasize the uniqueness of learning 
inputs during human development12,19,31. Our hypothesis expands 
those prior ideas by offering a cognitive explanation for how so many 
qualitatively new types of cognition could emerge in humans through 
simple, quantitative changes in their global information capacity over 
evolution.

We focus on how human cognition is unique at the cognitive algo-
rithmic level. However, information capacity constrains cognitive sys-
tems because neural energy is required to represent information and 
transform it computationally67,68. The key for human-like cognition is 
that all neural systems must work together — improvements in social 
reasoning or tool use will not help much unless information in these sys-
tems can be conveyed to systems for learning, memory and inference. 
In turn, learned and inferred representations guide systems for percep-
tion and interface tightly with memory architecture. Increased global 
information capacity would not only be advantageous but perhaps 
also essential for any expansion of cognitive faculties in human evolu-
tion, ensuring that enhancements in one domain could be effectively 
integrated and utilized across the cognitive system. This mutualistic, 
integrative view directly engages the evolutionary reality of human 
uniqueness in global neural density, the behavioural predictiveness 
of such neural measures across species, and the likely ease with which 
general information capacity parameters are changed genetically in 
evolution (Box 1).

Our theory yields three concrete predictions. First, it predicts 
some degree of success for all species even in domains that are argued 
to reflect unique human ability. To address this prediction, we review 
the comparative cognitive and child development literature, demon-
strating a continuity of success across humans and non-human animals. 
Second, the theory predicts quantifiable differences between humans 
and other species on basic information processing measures. To this 
end, we review literature documenting predictable and systematic 
performance gaps between species across most cognitive tasks, includ-
ing simple memory and learning paradigms. Last, our account predicts 
that small changes in information capacity could yield big, qualitative 
changes in behaviour. We present mathematical analysis, machine 
learning models and cognitive models for which capacity constraints 
have profound consequences.

Continuity of ability across species
The first prediction of the information capacity theory is that 
non-human species will exhibit some degree of success on cognitive 
tests argued to capture the key to human uniqueness. Relational rea-
soning, social reasoning, causal reasoning and tools, and symbolic 
thought and language have been the focus of major silver-bullet theo-
ries (Table 1). We discuss each of these domains in turn and show how 
evidence in each supports our first prediction of partial success by 
non-human primates.

Social reasoning
Multiple silver-bullet theories posit social reasoning as the key to human 
uniqueness, claiming that one or a few social computations that humans 
engage in are genetic adaptations8,33,42,46,56,69–71. One long-standing 
hypothesis is that human intelligence was sparked by ‘theory of mind’ 
abilities56,72,73, or the capacity to predict behaviour based on knowledge 
that another being has a mind. Some theorists even argue that theory  
of mind is an innate module44,45. One problem with the notion of theory of  
mind as an innate human adaptation is that its emergence in childhood 
depends on experience and its learning trajectories are gradual and 
vary widely8. General cognitive capacities such as working memory  
and relational reasoning increase with age and, along with the variability 
in the frequency of social learning input, result in gradual and variable 
age-related development of theory of mind in humans.

Non-human animals can reason about the mental states of others, 
including goals, views and actions. The difference in social reasoning 
between humans and other species lies in the breadth and depth of 
how it is deployed across contexts and complex tasks74–76. For instance, 
similar to young human children, non-human animals possess shallow 
knowledge about agents that is linked to concrete features of the world 
rather than internal states such as deception, ignorance or surprise77.

Non-human primates have demonstrated all cognitive constructs 
thought to be essential to human social intelligence and uniquely 
human: theory of mind78–81, imitation82,83, gaze following84, joint atten-
tion85,86, teaching87,88, helping89,90 and cooperation91. These findings  
demonstrate that humans and non-human primates share substantial 
social cognitive continuity.

The difference between humans and non-human primates is often 
one of degree8,84,92,93. For example, a study of imitation found that some 
chimpanzees and capuchin monkeys could socially learn one-stage 
and two-stage puzzle box behaviours but that only human children 
(aged 3–4 years) imitated and modelled the longer and more complex 
three-stage solutions to the puzzle box task94. The degree of complex-
ity also influences social reasoning in chimpanzees during teaching 
behaviours89. These findings indicate that the amount of information 
processing demand causes species differences in social learning.

Although most theorists think that human social cognition is 
rooted in discontinuous cognitive ‘traits’95, another way to see theory of 
mind is as a continuum from basic action prediction to complex belief 
attribution96, or from shallow reasoning based on representing others’ 
knowledge to abstract reasoning based on inferred beliefs97,98. Children 
and non-human primates are often characterized as able to reason 
about rational action or behaviour and adult humans about mental 
states94,98,99. Differences in complexity and abstractness between 
human and non-human social reasoning imply a bottleneck that is 
quantitative rather than trait-based or qualitative100.

Many cultural intelligence theories emphasize social learning 
specifically as a key source of human and non-human differences in 
social cognition13,19–21. For instance, biological preparedness accounts 
focus on biases in shared mechanisms as the hypothetical locus of 
genetic differences between humans and other species99. These theo-
ries emphasize innate biases such as prosociality in mechanisms such 
as attention and motivation. There are clear differences in successes 
and failures on social learning tasks between human children and 
non-human primates19. But the innate biases have a comparatively small 
role in those differences because their function is primarily to alter the 
frequency of encountering different learning inputs — which means 
that the bulk of human uniqueness arises from learning. Importantly, 
non-human primates cannot acquire abilities at the level of a human 
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child even when their environment offers higher frequencies of direct 
social input. This difference means that there is something critical in 
the learning component of social learning that differs between humans 
and non-humans beyond innate biases in sociality. Learning rates are 
constrained by information capacity, and because social learning 

occurs by observation it requires the ability to learn passively and on 
someone else’s schedule and pace, which makes social learning more 
demanding than individual learning. Although learning rates for indi-
vidual versus social learning conditions are rarely compared between 
species, we suggest that the time course of social learning required to 

Table 1 | Domains of human uniqueness

Domain Proposed human 
uniqueness

Evidence for continuity across species Proposed influence of information capacity

Social 
reasoning

Theory of mind Human development of theory of mind depends on 
age8,245,246, relational reasoning capacity247,248 and 
experience

Working memory, relational reasoning capacity and the 
frequencies of learning inputs increase quantitatively with age and 
determine theory of mind ability in humans

Non-human animals can reason about simple, 
limited mental states of others such as gaze–action 
relations88–93,99,101,102

Information capacity limits non-human animals to low-complexity 
mind–behaviour relations versus more complex ones

Young children and non-human primates’ reasoning tends 
to be limited to shallow, concrete and perceptual features 
of agents78–93,95,96

Shallow processing requires fewer layers of information 
processing than deep processing and is more likely when 
information capacity is limited

Social learning 
and imitation

Non-human animals can socially learn single items, 
associations and short sequences with short durations but 
not more demanding sequences91,94,97,103

Quantitative capacity differences limit the number of items and 
the duration over which sequences are held in memory — learning 
capacity will be worse or absent for longer sequences

Non-humans can socially learn some tasks that children 
aged 3–5 years learn94,100 but differ from human children 
quantitatively, even in solo learning rates for those 
tasks103,104

Information capacity in non-human primates is insufficient for 
human-like learning; social learning demands more capacity than 
solo learning because it is passive and occurs over narrow bouts 
and durations

Relational 
reasoning

Relations 
between 
relations

Reasoning about relations between relations (quaternary 
relations) develops gradually in humans, in step with 
general cognitive capacities105,233,246,248

Humans need sufficient information processing capacity to 
manage the demands of quaternary relations, which results in 
gradual development of relational reasoning

Apes and young children succeed at relational reasoning 
for unary, binary and ternary relations but similarly fail tasks 
requiring reasoning about quaternary relations103–105,107

Young human children and apes both have lower information 
capacities than older children and adults, which results in similar 
reasoning performance

Young children and non-human primates succeed at 
quaternary relational tasks when they are given symbols for 
the relation69,104,108,110,111

Symbols benefit relational reasoning in a general way, by 
increasing information capacity for demanding relational 
problems in any species

Corvids and monkeys succeed at simple 
relations-between-relations tasks113,114,117

Species with high neural densities succeed at perceptual 
relational matching tasks because relational reasoning depends 
on general information capacity

Causal 
reasoning

Higher-order 
causal relations

Non-human primates and young children often reason 
associatively rather than relationally about causal 
problems119,124,128,130

Differences in information capacity result in variations in the depth 
and breadth of causal reasoning abilities between species

Complex tool 
use

Some non-human primates use tools, but their routines 
typically involve binary relations118,120,124,127

Information capacity constraints limit the depth and complexity  
of tool-use routines in non-human primates

Humans have more complex routines122,126, often involving 
multiple objects and nested subassembly routines, than 
other species122–125,127,128,130

Differences in information capacity lead to quantitative disparities 
in acquired tool complexity and diversity between species

Non-human species that create tools often have limited 
repertoires of one to a few types of tools121–131

The capacity to hold in mind a wide range of actions and objects 
allows humans to develop more extensive tool repertoires

Symbolic 
thought 
and 
language

Symbolic 
representations

Non-human animals can learn symbols that represent 
objects and verbs165,167,168, and tokens to represent 
relations111,112,115,171, but the depth and number of such 
representations is smaller than in humans169,173,174

The synergy between language and information capacity is 
self-reinforcing, and humans’ innately higher capacity yields faster 
acquisition of symbols and concepts compared with non-human 
animals

Symbol-trained chimpanzees show human-like benefits in 
reasoning about relations between relations111,112,114,115

There is a general synergy between symbols and information 
capacity, not specific to humans

Recursion Human recursion has limits, as evidenced by the struggle 
to understand sentences with multiple levels of recursive 
embedding133–136

Even humans need sufficient information processing capacity  
to manage the demands of hierarchical embedding

Some success for non-human species on hierarchical 
tasks, specifically for high-capacity species such as 
monkeys and corvids, suggests a general origin for 
recursion in humans157,158

Non-human species can learn hierarchical patterns but do so more 
slowly and shallowly than humans; differences between humans 
and non-human animals in the capacity to synthesize large 
amounts of information yield differences in hierarchical thought
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attain human-like characteristics is outside the learning capacity for 
non-human primates on many tasks. Thus, information capacity could 
have a causal role in determining the successes and failures of social 
learning across species.

Relational reasoning
Other silver-bullet theories suggest that human uniqueness rests on 
forms of non-social reasoning such as the proposed ‘super-module’ 
of relational reasoning52,101. Relational reasoning requires deep logi-
cal representations — minimally, it requires comparing two relations 
across four entities, a quaternary representation. For instance, rela-
tional reasoning is involved in comparing one relation with another, 
such as knowing that the relationship between the concept of a dog 
as it relates to a doghouse and a bird as it relates to a birdhouse is  
the same.

Many species form common class and category concepts but often 
fail at tasks requiring reasoning about relations between relations102,103. 
Both non-human primates and children younger than 5 years of age 
often fail at these tasks69,104. Some researchers have argued that they 
can succeed only if given a symbol to represent the relation (such as 
the word ‘same’ for children)104. Consistent with this account, children 
younger than 4 years of age succeed at relational tasks only when given 
relational labels, whereas children older than 4 years of age spontane-
ously succeed — presumably because older children have acquired the 
necessary relational labels69,105,106.

If there is a continuity of ability across human children and 
non-human primates, then providing similar symbols to non-human 
primates should enable them to succeed at more complex relational 
reasoning. Indeed, chimpanzees provided with symbols (language 
or shape tokens) succeed at quaternary relational tasks104,107–109. 
The pattern that only ‘apes with symbols’ succeed at relational reason-
ing tasks suggests that tokens of some sort are the key to comparing 
relations. However, there are exceptions to this generalization110–112. 
For instance, corvids (birds with similar neural densities to mon-
keys) can succeed at relational matching tasks (distinguishing same 
and different entities) involving shape, colour or size113. However, 
apes and bonobos succeed more readily than corvids on the same 
task, and comparably with a 3-year-old child114. These latter findings 
indicate that relational reasoning is not uniquely human or strictly 
language-dependent — it can be learned by non-humans and is 
influenced by general capacities such as a species’ learning rate.

Overall, a strict version of the hypothesis that the presence of 
relational reasoning in humans distinguishes them from other species 
is probably not correct. Instead, humans might have an easier time 
processing relations, in part, due to the power of language to pack-
age concepts into lighter-weight mental representations, or chunks. 
Another important component is likely to be humans’ greater general 
information processing capacity, which can also contribute to effective 
management of the informational demands of quaternary comparison. 
Humans’ higher capacity for relational reasoning probably has broad 
applications across domains, including supporting sophisticated 
concepts in social and physical settings.

Causal reasoning and tools
Capacities in causal reasoning have also been posited as the silver 
bullet of human uniqueness. Humans’ causal reasoning is linked to 
exceptional exploitation of the environment, such as tool use and novel 
foraging behaviours such as armed hunting and farming18. Although 
some non-human primate species can use tools115, identify useful tools116 

and create tools114, humans have the ability to create a much higher 
number of novel tools18,117.

Non-human species that create tools — such as rooks, ravens, 
crows, capuchins and chimpanzees — often have limited repertoires of  
one to a few types of tools, whereas humans have larger repertoires by 
the time they are 5 years old113,118–121. Chimpanzees have the largest tool 
repertoires among non-human species and can use around 20 different 
tools122. Human children have large tool repertoires, which they initially 
learn from observing experienced teachers, but by age 7–8 years they 
go further and begin creating tools121.

Non-human primates have limited insight, breadth and generaliza-
tion of even simple causal relations119,123,124, which probably constrains 
their tool use. In the tube-trap task, in which a target object must be 
removed from a tube by using a probe while avoiding trap obstacles, 
non-human animals show a lack of insight and minimal causal gen-
eralization when presented with novel but similar tubes. Rooks and 
chimpanzees show near-transfer to new similar tube traps after learn-
ing to solve the original tube, but not far-transfer to visually distinct 
tubes124,125. Minor tweaks to tube-trap apparatuses can help non-human 
primate performance and non-humans, particularly apes and corvids, 
solve these simple tool-use tasks similarly to children who are younger 
than 5 years old. Specifically, young children and non-human primates 
can make some simple causal inferences about traps but often revert to 
narrow associative reasoning such as side biases that do not generalize 
to novel tasks126. However, as children approach 4–5 years of age, they 
quickly acquire broad causal knowledge of tube-trap tasks and general-
ize to rotated and reconfigured tubes124. Older children and adults not 
only learn action–object associations during tool use but make broad 
causal inferences that generalize to other tasks. The presence of some 
successful learning and generalization in non-human animals implies 
that causal reasoning is not entirely absent126. Rather, differences in 
learning and generalization between humans and non-human animals 
could be caused by the amount of information required to solve a physi-
cal problem. The types of causal concepts and tool-use routines that 
non-human primates and other animals learn are probably shorter, 
simpler and less enduring than those of humans.

Tool use in non-human species often involves a single object 
impacting another object but rarely requires multiple objects organ-
ized into an action hierarchy. The integration of multiple objects and 
actions into a behaviour is rare in non-human species11. Although some 
species use objects in binary combinations, such as hitting a nut with a 
stone, non-human tool use lacks nested subassembly routines, which 
are observed frequently in human behaviour11. For example, field data 
show that non-human animals do not frequently implement hierarchi-
cal action routines where one tool is used to make another tool11. These 
patterns suggest that the limitations that non-human animals face in 
causal reasoning are quantitative ones in the breadth and depth of 
action abstraction, and the number of nested levels of subroutines. 
These quantitative limitations are plausibly explained by differences 
in information capacity.

Symbolic thought and language
Many theories of human uniqueness centre on language, but the spe-
cific evolutionary changes responsible for this ability are debated. 
Some theorists have suggested that recursion is the defining element 
of uniquely human language11,50,51,127. Although the term was not defined 
in these proposals, the example given by these authors was sentential 
embedding, the ability to take a sentence S (such as ‘It is raining’) and 
put it inside another sentence, such as ‘Mary thinks that S’ (‘Mary thinks 
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that it is raining’)51. This capacity presumably provides the ability to 
build complex, hierarchical expressions that are predicated on other 
complex expressions. Despite the importance of recursion, humans 
face a limit of two levels of recursive embedding in certain construc-
tions, struggling to understand sentences such as ‘The senator the 
chef the mouse saw attacked laughed’128,129. Additionally, not all human 
languages use sentential embedding130–132, and it has been argued that 
relatively little daily language use involves recursive capacity133,134. 
These discrepancies challenge the notion that recursion broadly is the 
keystone of human-like thought.

A revised proposal is that the relevant sense of recursion for human 
uniqueness is the capacity to unboundedly put two arbitrary elements 
together into a new unit135–138. For example, the sentence ‘Wendy ate 
marshmallows’ is recursive in this sense because it has three words. 
An operation that can only put two words together at a time must 
therefore operate multiple times on these words, including on its 
own output. For example, most theories assume the verb and object 
are combined into a new unit, {ate, marshmallows}, and then that 
unit is combined recursively with the subject to form {Wendy, {ate, 
marshmallows}}.

This idea critically relies on the assumption that even simple sen-
tences involve underlying binary structures. Some theorists have 
argued that binary structure building is the simplest computational 
operation55, the key to human thought and language53, and the result 
of a single mutation leading to a rapid evolutionary change139. This 
proposed capacity is distinct from non-human animals’ ability to gener-
ate sequences of behaviour as sequences need not have the required 
hierarchical organization140. However, this proposal has been critiqued 
logically and in evolutionary models141,142. For instance, there are prop-
erties of language that cannot be explained by minimal change to 
enable recursive structure building, including features that are useful 
in communication, even when only partially present6. Communica-
tive properties of human language tie it to animal communication 
systems in that they suggest continuity in the evolution of language, 
driven by the pressures of usage, rather than genetically determined 
discontinuity143,144. Such communicative explanations in linguistics 
have found empirical support across linguistic subdomains140,145–148, 
often showing how information-theoretic or usage-based constraints 
shape the form of linguistic systems149.

More generally, the existence of innate grammatical constraints —  
recursive structure building or others — is widely contested150–153.  
It has been argued that, essentially, none of the key properties of lan-
guage previously suggested to be universal across human groups 
actually are154.

Instead of language-specific adaptations, the human capacity for 
representing and synthesizing large amounts of information might 
yield more complex, hierarchical patterns of thought. Humans tend 
to attribute tree-like structures to data155,156: people across ages and 
cultures generalize ambiguous data hierarchically. In one study, Indig-
enous Amazonian adults, American adults, American children and 
non-human primates (macaques) were taught sequences of symbols157. 
All humans tended to generalize to novel combinations of the learned 
symbols hierarchically rather than using an ordinal strategy, even 
though either strategy was consistent with the training data. Macaques 
only used a hierarchical strategy with additional training, suggest-
ing that hierarchical generalization was not out of reach for them 
but was a weaker bias. Children’s use of a hierarchical strategy in this 
task was predicted by their working memory capacity, suggesting 
that the development of hierarchical reasoning is gradual and limited 

by information capacity. Corvids, a family of birds with similar neural 
densities to primates, perform at least as well as macaques on the same 
task, further highlighting continuity between humans and the rest of 
the animal kingdom in the capacity to generalize hierarchically158. These 
data that show some success for non-human species on hierarchical 
tasks, and specifically for species with high information processing 
capacity, implicate a more general origin story for recursion in humans 
that does not depend on specific adaptations for language.

A general problem for language-based theories of human unique-
ness is that they are at odds with the continuity between humans 
and non-human animals in many aspects of language learning159. 
Non-human animals can learn hundreds of words and symbols, gen-
erate strings and comprehend basic syntax160–164. Baboons show expec-
tations about some aspects of semantics in word learning tasks165 and 
exhibit some capacity for compositionality166. A trained bonobo (Kanzi) 
could comprehend sentences and differentiate them, but had limited 
capacity with coordinate noun phrases and a shorter mean utterance 
length than a 2-year-old human child167. Although these differences are 
sometimes interpreted as evidence of a unique human genetic adapta-
tion for grammar, they could also reflect quantitative differences in 
abilities that snowballed into qualitative ones. For instance, insufficient 
capacity to deal with parts of a phrase can impair one’s access to the 
hierarchical structure of sentences, regardless of a grammar-specific 
adaptation.

General computations related to language and symbolic struc-
tures have also been proposed as uniquely human. Humans show fluent 
learning of symbolic mental algorithms and procedures3,48, including 
advantages over non-human primates in domains such as geometry49. 
However, it is unclear what class of algorithms other species are capa-
ble of acquiring and whether their limitations are due to memory or 
underlying algorithmic competence (Box 1). Indeed, the question 
of uniquely human language abilities might not even make sense if 
underlying memory capacities differ between species.

Informational limits are a known constraint on language learn-
ing and might be critical in how children acquire language168. How-
ever, non-human primates face more drastic information limits. For 
instance, non-human primates’ inability to learn human-like language 
has been attributed to their difficulties learning and remembering 
even lexical items167. Similarly, humans are thought to uniquely pos-
sess the ability to learn massive numbers of arbitrary symbols; human 
knowledge of tens of thousands of arbitrary word meanings contrasts 
greatly with the few dozen calls known to non-human primates169. Many 
accounts of human language emphasize the role of memorized struc-
tures or chunks (rather than a small set of syntactic rules) in determin-
ing linguistic competence170,171. Human learners acquire, on average, 
2,000 bits of information per day about word meanings, from birth to 
adulthood172 — a monumental feat of memory with probably no parallel 
in animal cognition.

Information capacity constrains the ability to learn language but 
language also enhances information capacity once learned. The cog-
nitive changes associated with symbolic representation are believed 
to be profound. Compositionality enables new conceptual structures 
and information transfer between domains173 and grammar provides an 
“endless compacting of information limited only by human memory”174 
akin to hierarchical organization for memory or concepts175. Words 
provide a handle on complex meanings176. For instance, the word ‘hun-
dred’ does not need be broken down into ‘ten tens’177 and the word ‘aunt’ 
need not be broken down into its component defining relations to 
access these meanings. This synergistic relationship between symbols 
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and information capacity is not unique to humans. For example, as 
described above, chimpanzees trained with symbols for ‘same’ and 
‘different’ learned to reason about relations between relations more 
easily than those without symbol training — showing clear benefits of 
symbols for complex rule learning even in non-human primates114–116.

We conclude that human uniqueness in symbolic thought and 
language lies not in an exclusive adaptation for grammar but, rather, 
in humans’ extraordinary capacity to manage vast quantities of infor-
mation. Non-human animals have demonstrated their ability to learn 
words, construct sequences and grasp basic syntax to a certain extent, 
challenging the notion of exclusive grammar adaptations in humans. 
What truly sets humans apart is their unparalleled information capacity 
and their ability to transcend information limits in language acquisi-
tion. Unlike any other species, humans possess remarkable learning and 
retention of an extensive array of symbols and rules. Once acquired, 
language serves as a powerful tool for expanding information capac-
ity. This synergy between symbols and information is observed in 
symbol-trained chimpanzees, suggesting that successfully acquired 
symbols benefit reasoning in other animals too, but the outcome of 
this synergy is amplified in humans because they store more symbols, 
including symbols upon symbols in recursive structures.

Species differences in capacity
The second major prediction of our information capacity theory is 
that human and non-human primate species differ in their general  
information capacity. We predict that species will differ on basic, 
domain-general cognitive tasks involving general learning and  
memory.

All domains that are purported to define human uniqueness — 
including complex relational concepts such as social relations, mind–
behaviour relations, analogies, rule induction and grammar — are 

probably constrained by more fundamental domain-general limi-
tations on information capacity. Human adults are also subject to 
limitations on information capacity (Box 2). Cognitive information 
processing capacities such as learning rate, attention, memory and con-
trol vary greatly across species10,14,29,62,178–184. Such differences feed into 
every other cognitive process, with the consequence that performance 
on any task requiring learning, attention, memory or cognitive control 
will differ across species because of those underlying constraints. It is 
therefore hard to posit fundamental representational differences in 
any individual task without accounting for global informational fac-
tors. Moreover, such differences feed into learning, which can amplify 
the differences: animals use informational capacities adaptively to 
learn new things and therefore some species might end up with fun-
damentally different representations because of their information 
capacity rather than domain-specific factors. Four key domain-general 
capacities are particularly relevant to cross-species comparisons: 
simple learning rates, simple memory capacity, cognitive control, and 
sequence learning and memory. We review these four capacities 
and their impacts on purported human-unique domains here.

Simple learning rates
Some species learn novel associations, generalizations, rules and 
strategies more quickly than others61,185,186. For instance, oddity learn-
ing, in which animals must tip over the odd object between three 
wooden objects on a board to find a food reward, has shown species 
differences. In one typical experiment, chimpanzees and monkeys 
learned to decipher which object was the odd one above chance (60%) 
in 1,152 trials, whereas cats and raccoons performed at chance for 
4,800 trials187. Chimpanzees reached 90% accuracy at 2,208 trials, 
whereas monkeys took 3,508 trials. Human children aged 3–5 years 
learned to 90% accuracy in one fifth of the trials (mean = 203 trials) 

Box 2

Capacity limits in adulthood
Capacity limits are a key constraint in human adult cognition, 
apparent in all posited silver-bullet domains. In many cases, adult 
human abilities bump up against processing limitations, which 
suggests that species with different limitations should not show 
behaviour that is qualitatively human-like. For instance, adults exhibit 
upper limits on the number of meaningful chunks of information 
they can hold in mind at one time, which interacts with the resource 
demands of the task289. Effects of capacity limits on adult cognition 
are observed in relational, causal and social reasoning and language. 
For example, adults have highly limited abilities to understand 
recursive embedding136,137. Furthermore, adults’ analogical reasoning 
shifts from abstract and relational to more concrete and object-based 
when information processing is taxed, such as with increased working 
memory load290. Finally, human social interactions become more 
challenging and less cohesive if there are more than four people 
involved in the discourse, a phenomenon known as ‘the dinner party 
problem’291. Thus, adult human cognition is limited by its information 
capacity, and there are certain rules and patterns that are too long or 
complex for humans to comprehend.

‘Rational’ accounts of cognition attempt to explain behaviour in 
terms of what would be expected from an ‘ideal’ learner who has 
a perfect memory292,293. However, models that posit that adults are 
efficient at solving problems have obvious difficulty approximating 
behaviour when adults’ behaviour is suboptimal. A growing area of 
computational modelling seeks to understand so-called resource 
rational models, which formalize optimal or efficient use of finite 
mental resources such as memory or attention294,295. Resource 
rational models posit that people are efficient relative to their 
resource constraints, but their resource constraints prevent them 
from achieving normatively perfect behaviour. This type of approach 
can be seen in theories of human perception296, decision-making297,298, 
encoding of subjective value299, generalization300, processing of 
centre-embedding linguistic structure301 and number cognition302. 
Across these domains, models with limited resources provide a better 
account of human behaviour than those that assume unlimited or 
unrestricted resources. Limited capacity is therefore a promising 
approach to understanding cognition that highlights ways in which 
finite informational capacity shapes how humans solve problems.
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and those aged 6 years in one twentieth of the trials (mean = 96 trials) 
compared with chimpanzees (mean = 2,208 trials)188. With instruction, 
human children learn even faster than they do by trial and error189. 
Thus, humans learn abstract rules faster than primates from early 
childhood, due partly to an inherently higher learning rate and partly 
to instruction, enabling more abstract rule learning in humans com-
pared with other primates. Abstract rules with arbitrary stimuli such 
as wooden blocks are unlikely to arise from domain-specific adapta-
tions and silver-bullet representations because the target of learning 
is arbitrary stimuli and the rule applies to features of those stimuli 
generally. Instead, species differences on these rule-learning tasks 
indicate varying domain-general capacities.

Learning rates vary even within narrower clades of species, such 
as among primates10,190. In basic learning set tasks185,187,191, animals must 
choose correctly between two arbitrary stimuli (such as a cylinder and  
a cube) to get a food reward. Once they do so, two new objects (such as a 
sphere and a cone) are presented and they must learn which is rewarded. 
Attention set-shifting involves switching between stimuli on the basis 
of one dimension (such as shape) and then another (such as colour) 
within the same task. Animals learn the overarching task rule rather 
than just an association between object or feature and reward, as dem-
onstrated by the fact that they learn faster with each new contingency10. 
A meta-analysis of learning set performance with primates revealed 
that apes exhibit faster learning than Old World monkeys, and Old 
World monkeys perform better than prosimians10. Humans, including 
young children, acquire learning set rules in a fraction of the trials it 
takes apes and monkeys to learn192,193. As with oddity learning, species 
differences in this task are attributable to differences in underlying 
information capacity. All species we described can learn the basic 
associative task and the task sets with arbitrary stimuli but they con-
sistently differ in the rates at which they acquire and generalize those 
contingencies, implicating general learning differences rather than 
differences in domain-specific adaptations.

Reversal learning is similar to learning set tasks but requires 
the exact opposite choice of what was just learned. During reversals, the 
previously unrewarded object becomes the rewarded one and vice 
versa61,194,195. Animals who learn broad task strategies are more success-
ful on the task than those who rely on associations, as they learn to rep-
resent the task strategically with a rule (such as ‘reverse’ or ‘win–stay, 
lose–shift’) and can adapt when an item that yielded a reward for many 
trials suddenly becomes unrewarded. Some species (including apes) 
show fast rates of acquisition on both initial learning set and reversals, 
but others (including lemurs) show fast learning rates for sets but not 
reversals. Thus, some species easily learn simple associations but do 
not learn abstract rules as easily.

Reversal learning shows qualitative differences in task perfor-
mance between species. Species with lower learning capacities are una-
ble to transfer their learning. After learning one association (‘choose A, 
not B’) they must build up a new association de novo (‘choose B, not A’), 
so each reversal takes them a long time to learn186. There was substantial 
variability among 79 primate species who were trained to identical 
criteria on reversal learning186. Some primates such as apes learned 
a global strategy or rule whereas other species such as prosimians 
learned a series of associations. Some animals lack the flexibility to 
readily derive an abstract rule, perhaps in part because they perseverate 
or adhere to known successful responses.

These results suggest that general learning capacity yields qualita-
tive differences in cognition because different species solve identical 
tasks in different ways. Systematic performance gaps emerge between 

species even across simple, domain-general tasks — which supports the 
second prediction of our theory.

Simple memory capacity
Humans have a large memory capacity, estimated at a billion bits196, 
with language alone requiring 12.5 million bits177. With training, human 
memory capacity can be substantially improved197,198. Humans can 
learn and remember more than 2,500 new, unique visual items in a 
simple 5-h experiment and are thought to be capable of maintaining 
more than 200,000 unique visual items in memory at a time199. Using 
a comparable paradigm, pigeons required 700 sessions to learn 1,000 
images and baboons required 3–5 years to learn 3,500–5,000 images200. 
The pigeons and baboons showed set size effects, suggesting similar 
underlying mechanisms to human memory201. Baboons’ ability to learn 
four times more stimuli than pigeons suggests genetic differences in 
simple memory capacity between primates and pigeons. Humans are 
estimated to have 50 times the memory capacity of baboons202 so those 
genetic differences in simple memory capacity between pigeons and 
non-human primates plausibly extend to differences between humans 
and non-human primates as well. Such memory differences are certain 
to cause profound species differences in cognitive domains such as 
relational reasoning, social cognition, complex action and tool use, 
and complex rule learning that require representing many items such 
as symbols, words and concepts.

Cognitive control
Flexibility during problem-solving is a criterion for intelligent behav-
iour29,183. Some species are more likely to ‘get stuck’ during problem- 
solving than others. There are a few general mechanisms relevant 
to flexibility, which might be termed control, attention, inhibition, 
self-regulation or executive function. These mechanisms have a role 
in tasks that require remembering the past, avoiding errors and con-
sciousness, all task behaviours that are proposed as markers of human 
uniqueness attributed to unique neural evolution of human prefrontal 
cortex14. However, the role of these general cognitive mechanisms 
in behavioural flexibility is enhanced not just in species with larger 
prefrontal regions but also in species with larger overall brains and 
relatively small prefrontal cortices.

Two self-regulation tasks include the A-not-B task, in which 
a prepotent response (A) is built up and then a new response (B) is 
prompted and researchers measure the time needed to adopt the 
new response203, and the perseveration test, in which a naturally prepo-
tent response is unsuccessful and researchers measure how long it takes 
subjects to change course202,204. Species vary in their ability to control 
prepotent responses in these tasks, with larger-brained animals such as 
apes, elephants and dolphins exhibiting the highest degree of control, 
and marmosets and rats showing the weakest control183. Overall neural 
densities, which are genetically determined, seem to influence an ani-
mal’s capacity for self-regulation. Humans rank high in control relative 
to other primates, starting around age 2–3 years205, which suggests 
that human advantages in cognitive control develop early. The early 
development of advantages in self-regulation suggests a genetic and 
general cause for human advantages in cognitive control. This ability is 
essential for conceptual change and complex learning — for example, 
substantial evidence shows that these general cognitive capacities 
are critical precursors to relational reasoning in human children206. 
Together, these findings implicate a general and evolutionary basis for 
species differences in acquiring simple rules, hinging on their ability 
to rapidly integrate new information into new action.
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Sequence learning and memory
The capacity to hold multiple items in mind at the same time is needed 
to solve complex problems. For example, to recognize that a pattern 
such as ‘ABBA’ also applies to ‘CDDC’ and ‘EFFE’, one must hold the 
four elements of ‘ABBA’ in mind, extract a rule and apply it to four new 
elements (Box 3). Species vary in their ability to hold multiple items in 
mind207. Many songbirds demonstrate exquisite sequential memory, 
although it is species-specific205. Humans excel at learning arbitrary 
sequences of colours, tones or shapes208. A meta-analysis of 108 experi-
ments across 14 species209 found that humans required far fewer trials 
to reach a given level of performance on sequencing tasks than other 
species. For example, rats required thousands of trials to discriminate 
between two 3-item sequences above 50%; pigeons required 300 trials 
to reach 95% accuracy, and then showed almost no improvement for 
2,000 trials; and humans reached nearly 100% accuracy in 10 trials. 
On a sequence discrimination task, humans took 30 trials to reach 90% 
accuracy whereas macaques took 400 trials210.

Human adults might use language encoding as a tool to enhance 
their capacity on sequencing tasks with verbalizable materials211. How-
ever, non-verbal tasks such as the Corsi tapping task also show capacity 
differences between humans and non-human primates211. Baboons 
performed significantly worse than humans on this task, being only 
consistently above chance with three-item and four-item sequences, 

whereas humans were above chance up to six items. Humans also 
showed evidence of using a sequencing strategy involving encoding 
relative distances and proximities among the sequence items, which 
demands more resources initially than rote memory of locations but 
could feed back into better memory in the long run. This strategy 
difference suggests a more limited capacity in non-human animals to 
represent sequential relations compared with humans66,162,212,213.

The amount of time an individual can hold something in working 
memory (duration) is independent of the number of items an individual 
can hold in working memory214. The duration of working memory varies 
between species. On a one-item delayed matching task with one dis-
tractor, memory duration is similar across non-human primates and, 
potentially, some birds, whereas insect memory is poorer213. The serial 
probe recognition task215 tests memory duration per item position, 
without requiring animals to remember the sequence order. Pigeons, 
monkeys and humans all perform this task with high accuracy and show 
the signatures of primacy and recency in their memory performance216. 
However, pigeon memory decays approximately three times faster than 
monkey memory, and monkey memory decays three times faster 
than human memory.

Chimpanzees showed impressive memory capacity on a touch-
screen task in which numerals between ‘1’ and ‘9’ are briefly flashed on 
a screen and subjects have to press the locations in a trained order217. 

Box 3

Information capacity constrains rule learning
A computational model can be used to evaluate how capacity 
influences what structures a learner can acquire. Domain-general 
pattern learning models are able to find concise algorithmic 
descriptions of discrete data sequences303. For example, when 
provided with input such as ‘abbabbabb’, such a model would learn 
an iterative or recursive representation that generalizes to longer 
sequences following this pattern, such as ‘abbabbabbabbabb …’. 
When given input such as ‘aaabbbccc’ the model would generalize to 
both shorter (‘aabbcc’) and longer (‘aaaabbbbcccc’) strings that also 
follow this anbncn pattern. This program learning model can acquire 
key structures in natural language, including different kinds of 
recursion and hierarchy by constructing representations of grammars 
out of a handful of algorithmic pieces, just as programmers build 
complex programs out of a few dozen built-in operations304.

Very similar models can be found in, for example, sequence 
memory305 and other cognitive domains48. All such models work 
by finding programs that provide a concise description of the data. 
For example, if learners saw the sequence ‘abbabbabb’, they might 
construct a program F defined as F() : = repeat(pair(‘a’, pair(‘b’, ‘b’)), 3). 
Here, F first pairs together ‘bb’ from its component parts (using 
pair(‘b’,’b’)), and then pairs that structure with an ‘a’ to yield ’abb’ 
(using pair(‘a’, pair(‘b’, ‘b’))). The ‘repeat’ operation then repeats the 
entire ‘abb’ structure three times. Thus, this program F is one way to 
describe the regularities in the string ‘abbabbabb’. The task of the 
learner is to find program F by searching over ways of composing 
the parts to capture the data (or an approximation to it). Such models 
work essentially similar to scientists who observe data and try to 
craft formal theories to explain the data they see. The models are 

typically biased to find short or concise programs to capture the data 
they observe, following ‘minimum description length’ accounts of 
statistical inference306 as well as theories of artificial intelligence that 
argue that an intelligent agent should try to find concise programs to 
explain observations307,308.

The complexity of pattern a learning model can find in a sequence 
is a function of the length of the data its memory system can handle. 
We used a version of a sequential rule-learning model308 that includes 
several operations including repetition (such as ‘repeat’), alternation, 
reversals, list-building functions (such as ‘pair’) as well as recursive 
and logical operations309 to demonstrate this point. This model also 
enables learners to generate arbitrarily long sequences, meaning that 
one could hypothesize that the observed data were part of an infinite 
longer sequence. We looked at the length of every possible data 
sequence (such as ‘abbabbabb’) versus the length of the shortest 
computing program (rule) that would produce it. The key is that if 
there is a program that is shorter than the data sequence, this means 
that there is a pattern present that a learner could detect. Generally, 
for short sequences there is no program shorter than the data, 
meaning that even an ideal learner would memorize these sequences 
and not find any pattern, nor be able to generalize a pattern to longer 
sequences. However, once the learning model had enough memory 
to use more than four or five items, it became possible to detect 
patterns in the input and create a shorter generating program, just as 
in the ABAB example. Thus, idealized learners with memory of fewer 
than four or five items would not be able to discover much structure 
from the world, even in principle. In this way, limits on information 
capacity obscure competence.
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Chimpanzees practised this task over a 1-year period, 4 times per week 
for 50 trials per session. After training, they were given a novel testing 
session in which the items were flashed at sub-second speeds and their 
performance was compared with that of humans. With six items, chim-
panzees were less accurate than humans and achieved 65% accuracy, 
compared with 80% for humans during the two testing sessions, and 
with five items, chimpanzees’ performance was generally within the 
range of human performance. However, non-human primates typically 
perform much worse than humans on memory tasks. For example, 
chimpanzees and macaques struggle to integrate information in the 
memory game (in which players flip over pairs of cards to find matching 
pairs), tracking items over fewer than 4 cards218 compared with humans 
tracking items over 12 cards. Thus, whereas chimpanzees can perform 
similarly to humans on some memory tasks, typically humans excel in 
this area compared with other species213.

Other domains requiring sequence memory are tool use and lan-
guage. Non-human animals cannot produce complex, hierarchical 
sequences of behaviour in a range of domains from communication 
to tool use11,219 but they can integrate a limited number of action–
object relations into their tool-using routines. Most non-human animal 
tool use involves a single object impacting another object11. However, 
human tool use often requires hierarchical embedding: using one 
object to make another object and then impacting a third object (and 
deeper levels of subroutines)11. Hierarchical embedding is the same 
limitation observed in ape language wherein apes did not produce 
multi-word utterances and struggled to comprehend multi-item hierar-
chical syntax166. General differences in hierarchical reasoning for action 
and language might in this way distinguish humans from non-human 
primates11,220. This general constraint on non-human primate action 
and communication is a quantitative one — the number of levels of 
embedding in communication and action.

Differences in item capacity and temporal decay in sequence 
memory, as seen between humans and non-human primates, can sub-
stantially impact a species’ ability to extract various types of rules 
from new information, even when there are no other differences in 
representation. Intricate rules, such as analogies, grammars and hier-
archies, require the observation of patterns across multiple items that 
unfold over time. When one’s capacity to faithfully represent multiple 
items over an extended duration is small, it is impossible to extract the 
kinds of complex patterns or rules that only emerge in longer sequences 
and sets. Consequently, memory capacity for sets and sequences is a 
critical bottleneck for representing relations and rules across domains, 
including social cognition, tool use and communication.

Qualitative impacts from quantitative change
The third prediction of the information capacity theory is that quan-
titative change in information capacity can underlie qualitative leaps 
in ability. In this section we discuss these impacts across human 
development and in machine computation.

Developmental change in representing relations
Theories of uniquely human cognitive processes are stymied by the 
lack of evidence of new neural functions or conceptual primitives 
that are both innate and unique to humans221. However, this state is 
not an issue for theories of uniquely human information capacity. 
Indeed, the same developmental primitives are present in humans 
as in other primate species: associative and statistical learning216,222, 
ordinality and iteration220,223, object representations224, spati-
otemporal intuitions130, quantitative and numerical reasoning225, 

categorization and generalization226, gaze following227 and speech  
segmentation228.

It has been argued that an ape can do anything a human child can 
do up until around the age of 3 years179. At around 3 years of age, some-
thing changes in the human child that affords deeper abstract concepts 
and mental operations. According to our theory, this developmental 
change is due to an enhanced information processing capacity, an 
account that has a counterpart in constructivist theories of human 
development dating back to the 1960s. At that time, it was theorized 
that intelligence in children emerges by way of a generalized combina-
torial system: developing general resources for mentally writing down 
combinatorial rules that are abstract and generalizable229.

Expanding on these initial ideas, many researchers have described 
how conceptual change in childhood is fuelled by increases in general 
capacities48,68,70,230–232. For instance, the speeds at which many cogni-
tive processes take place, such as mental addition, mental rotation, 
memory search and simple motor skills, follow a consistent and predict-
able exponential pattern of change throughout development233. This 
observation indicates that there is a general constraint on global cog-
nitive processing and reflects properties of the information capacity 
of children.

Major leaps in human conceptual development require integrat-
ing four items into a logical rule or relation. There is a mathematical 
reason for this quantitative constraint on logical rule learning (Box 3). 
Complex patterns and rules only exist across four or more items organ-
ized into dimensions, subgroups and hierarchies (not across one, 
two or three items). Logical rules requiring four items are sometimes 
called quaternary relations70. Analogies70, embedded and conjoint 
conditional rules234, recursive syntax235, conjunctive syntax with two 
subjects, a verb, and an object167, centre-embedded hierarchies162,236 
and the successor function in counting237 can only be extracted across 
sets or sequences of at least four entities. For example, an analogy such 
as ‘dog is to wolf as cat is to cougar’ requires representing dog, wolf, 
cat and cougar in an A:B::C:D rule. Furthermore, a centre-embedded 
hierarchy is only distinct from iteration when it has at least four items 
(for instance in an AnBn rule162).

The types of rules and patterns that children can explicitly rep-
resent at different ages vary quantitatively: unary relations at age 
1 year, binary relations at age 2 years, ternary relations at age 5 years 
and quaternary relations at age 11 years70. Unary means the child is 
representing one relation, such as ‘The colour of the sky is blue’. The 
number of relations scales with the depth of meaning from concrete 
to operational — unary relations compare object and feature simi-
larity whereas quaternary relations compare operations such as the 
similarity of ‘similarities’ between groups. For example, in category 
similarity judgements, children’s knowledge transitions from the 
unary object-based sameness (for instance, a dog is more similar to a 
wolf than a parrot) to quaternary relational-sameness (for instance, 
a dog is similar to a wolf in the same way a cat is similar to a cougar)70. 
We suggest that between the ages of 3 and 5 years children become 
capable of representing rules and relations across four items because 
they develop greater (functional) information processing capacity, 
enabling complex rules and operations.

Non-human primates typically lack the ability to represent qua-
ternary relations. Even with years of language and symbol training, 
non-human primates struggle with the combinatorial functions of 
language learning50,167,233. Thus, they remain stuck at the level of a human 
child aged 2–3 years when it comes to generating and comprehending 
a sentence or relational phrase. Multiple studies have shown that even 
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with more than 4 years of experience, language-trained apes have an 
approximate mean utterance length of around 1.6 words, which is 
similar to 2-year-old children167,238. By contrast, by 3 years of age human 
children have mean utterance lengths of three to four words239.

One longitudinal project directly compared language comprehen-
sion in a 2-year-old child and a 2-year-old bonobo who had similar lan-
guage experiences. The child and bonobo were trained from 3 months 
of age to produce words and strings with a lexigram keyboard and to 
comprehend spoken language167. Over a testing period of 9 months, the 
child initially produced utterance lengths averaging 1.91 morphemes 
and rose to an average of 3.19, whereas the bonobo’s utterances began 
at 1.15 morphemes and remained stuck at that level throughout the 
testing period. Language comprehension was tested by presenting an 
array of real objects and asking the subject via novel spoken sentences 
to carry out actions with those objects (for example, ‘Put the ball on 
the pine needles’). Comprehension of language was far easier than 
production for the bonobo, who could carry out tasks from utterances 
that were longer than those he produced. This pattern mirrors child 
language development167 and highlights the importance of memory 
constraints in interpreting language production. The bonobo also 
used word order to interpret the meaning of the sentences and could 
understand syntactic reversals (such as ‘Put some water in the coke’ 
versus ‘Put some coke in the water’). The specific limitation of the 
bonobo compared with human children was with long utterances 
and conjunctive constructions that burden memory capacity, such as 
‘Give the peas and the sweet potatoes to Kelly’. These findings suggest 
that the key constraint on the bonobo’s language learning was the 
capacity for multiple simultaneous representations.

Developmental change in domain-general capacity
Also consistent with the notion that quantitative changes yield con-
ceptual change, developmental changes in domain-general capaci-
ties are related to children’s conceptual changes68. For example, the 
emergence of theory of mind accompanies conceptual change in early 
childhood. Theory of mind requires integrating multiple relations 
between minds and behaviours of oneself and others240. Infants have 
knowledge about the goal-directed and intentional acts of people and 
themselves but struggle to integrate that information across multiple 
agents and events159. Tasks such as the false belief task that measure 
theory of mind ability show poor performance until around the age of 
5 years, after which children typically succeed241. Children’s individual 
differences on this task are highly correlated with their executive func-
tion abilities234,242. Furthermore, relational capacity explains 80% of 
age-related variance in the performance of children aged 3–5 years 
on false belief tasks243. That is, children’s performance on tasks such 
as transitive inference, which require high relational capacity (but 
not theory of mind), predicts their performance on tasks that do require 
theory of mind. The capacity to integrate multiple relations develops 
gradually in children and once present, theory of mind can develop. 
Although the emergence of theory of mind might look similar to a 
qualitative conceptual change, it is underlain by quantitative changes 
in information processing capacity.

Over development, expansions in general information capacities 
increase the number of rules and relations that children can represent, 
compare or embed, which increases the types of rules that can be rep-
resented. Qualitative conceptual change requires semantic knowledge 
and experience but is fundamentally fuelled by changes in information 
processing capacity. Thus, the phylogenetic and ontogenetic causes of 
intelligence have a common coupling to information capacity.

Information capacity in computation
Capacity differences, even minor or continuous changes, can pro-
foundly impact computational performance. For instance, Turing 
machines, a standard abstract model of computation, are formalized 
mathematically as possessing an infinite memory. However, early 
results in complexity theory showed that if the computer has a tight 
bound on memory available (as a function of its input size), then the 
class of computations it can execute is strictly limited. If the amount of 
memory available to process an input of size n is less than log(log(n)), 
then the computer is provably only capable of recognizing regular 
languages244 — languages that can be processed with a finite number of 
memory states245. Such capacity-limited computers are therefore inca-
pable of processing the kinds of hierarchies such as context-free lan-
guages that are considered to approximate human language, much less 
more complex context-sensitive features or transformations246. This 
result seems to establish a ‘quantum jump’ in memory requirements 
for regular versus non-regular languages: a small quantitative increase 
in memory can lead to qualitatively different computational ability.

These formal results provide a clear demarcation between regular 
and non-regular languages that is governed by the amount of available 
memory: algorithms or species that use comparatively little memory 
cannot be generating or recognizing anything other than the simplest 
kinds of string patterns. Although these results are more than 60 years 
old, they are strongly connected to contemporary cognitive science. 
Several studies have examined what kinds of string patterns animals 
are capable of processing157,164,247–250; other work has attempted to rig-
orously characterize the level of computational complexity in human 
languages251–256. The primary distinction examined in animal work is 
whether non-human species are capable of recognizing or generating 
strings from languages other than regular languages, but the results 
are mixed and difficult to interpret, in part, because the sets of strings 
studied can often be processed with other heuristics.

More general findings about the linkage between memory and 
computational ability can be found in the space hierarchy theorem257, 
which proves that computers that are given more memory capacity 
(as a function of their input size) are capable of solving a larger number 
of problems. This conclusion can be contrasted with, for example, the 
fact that many modifications of Turing machines do not increase their 
computational capability. For example, altering a standard Turing 
machine to give it two tapes, or even two-dimensional tapes, does 
not fundamentally change the rules it can use or the problems it can 
solve. But allocating it more internal memory space, as a function of 
input size, does.

When a learner’s memory is only a few items, it will not be pos-
sible for them to learn classes of patterns that only become apparent 
after several items. For example, neither the sequence AB nor ABA 
leads one to see the repetition pattern in ABAB, meaning that this 
repetition pattern would be inaccessible for learners with memories 
of fewer than four items. This idea can be formulated in the context of 
structured learning models, for which limited memory of the input data 
would prevent acquisition of patterns, including hierarchical structure. 
In this case, the best a learner could do is try to memorize the data. The 
behavioural consequence of this memory limitation would be limited 
rule-like generalizations in relational reasoning, imitation, tool use, 
language learning and any domain that requires representations of 
multiple actions, agents and entities.

Although this impact is debated, capacity constraints have also 
been argued to critically shape machine learning capability in mod-
ern neural networks. Machine learning performance depends on 
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parameters such as the amount of training data, the number of training 
steps and the number and arrangement of nodes in the network258,259. 
Some models only show above-floor performance on tasks involving 
human-like intelligence when they are able to use billions of param-
eters. Indeed, although some tasks scale smoothly with model size, 
at other times changes in capacity are profound and discontinuous 
as the parameters or capacity of the models is increased260. Such 
neural networks show systematic scaling patterns, often power laws, 
between performance and both the amount of data and the neural 
network size or capacity261–263. The highest performing deep learning 
models can memorize massive amounts of data, fitting even random 
labels264,265, and it is likely that this ability for memorization is critical 
for extracting the higher-order regularities necessary for high perfor-
mance in domains such as language usage and image classification. 
Indeed, modern high-capacity systems have been argued to show 
signs of general intelligence, succeeding on a diverse array of tasks 
such as mathematics, tool use, theory of mind and programming266, 
although the ability of these systems to truly reason in a human-like 
way is contested267.

Part of the success of modern neural networks has been driven 
by the realization that increasing computational power can outper-
form tailored (silver-bullet) representations268. For domains including 
speech recognition, chess and computer vision, experts once believed 
that tailored representations were the solution, but these efforts stalled 
and, arguably, even inhibited future progress269. These problems were 
eventually solved using simpler techniques with models that built 
in less knowledge of each specific domain, combined with higher 
computing power and more general capacity269.

Together, these results generally show that the informational 
limits faced by a system are an important determinant of the range 
of computations it can perform. Moreover, the success of the best 
learning models does not seem to be due to carefully constructed 
silver-bullet representations but, rather, the discovery of how to make 
learning scale to large data sets and numbers of parameters, suggesting 
that general scaling of informational capacity might have been a route 
to the evolution of human-like intelligence.

Conclusion
We propose that global, genetic differences in learning and memory are 
sufficient to account for uniquely human reasoning across domains, as 
an alternative to theories that require qualitative, domain-specific evo-
lutionary changes specifically in human cognition to explain uniquely 
human behaviours. This theory of human uniqueness makes three con-
crete predictions. First, the theory predicts that non-human primates 
will show some degree of success on tasks previously purported to 
draw on domain-specific specializations in humans. Second, the theory 
predicts continuous, quantifiable advantages for humans relative to 
non-human species on basic tasks, even tasks that only require repre-
sentations of a few items, actions or features. Last, the theory predicts 
that subtle increases in information capacity yield qualitative changes 
in behaviour in humans, non-human animals and computational 
systems more broadly.

No existing theories have been able to adequately disentangle 
information capacity from domain-specific functions, nor explain the 
concrete implications these capacity limitations have on the ability 
to learn and represent knowledge. Theoreticians of domain-specific 
theories have been too eager to posit that specific mechanisms are 
unique to humans, leaving all the other differences in the information 
processing machinery of cognition unaddressed and confounding. 

We suspect that global information capacity tends to take a backseat 
in theories of human uniqueness because researchers underestimate 
its potential to yield qualitative changes in cognition between species. 
However, general capacity constraints have profound consequences 
and information capacity determines which species can learn the 
hierarchical, abstract patterns and generalizations and which spe-
cies, simply, cannot. We showed how information capacity gradually 
expands over human development and how it relates to qualitative 
changes in human cognition. Expansions in information capacity ena-
ble rule-based, compressed representations of complex phenomena 
such as sequences, sets and relations that are abstract and generalizable 
(Box 3). The ability to think symbolically probably enriches this benefit 
of information capacity even further. Independently of the neural or 
cognitive instantiation, changes to capacity have a surprising qualita-
tive effect on the abilities of computational systems: differences in 
degree yield differences in kind.

We detailed how basic differences in information capacity 
between humans and other animals can lead to qualitatively unique 
human cognition, both developmentally and evolutionarily, offer-
ing new research possibilities. New directions include testing how 
variations in information capacity relate to complex rule learning and 
concept formation across species, how the synergy between informa-
tion capacity and language expands concept and rule learning during 
human development, and the role of sequence and set memory in rule 
extraction across different species and age groups. One key prediction 
is that the capacity for complex rule learning (whether social, physical 
or abstract) is inherently and mathematically linked to the capacity for 
representing multiple items simultaneously — a hypothesis that can 
be tested in animals, developing children and machines. A key experi-
mental direction will be to test causal evidence for the role of informa-
tion capacity on the tasks hypothesized to show human uniqueness. 
However, measuring information capacity directly poses a challenge 
(Box 4), due to the complexity of the target behaviours and the limited 
tasks for which information can be formally characterized at present. 
Information measures vary across inputs, abstractions and processes. 
For instance, channel capacity for high-level vision of objects might 
differ between species, even if the capacity for low-level vision is the 
same because the information processing demands of high-level 
versus low-level abstractions probably differ. Information process-
ing demands also can vary across content types, such as between 
social interactions and object use. Simulations of information capac-
ity under different processing conditions are critical for developing 
experimental predictions.

‘How’ human cognition is unique is probably intertwined with ‘why’ 
human cognition is unique. Several authors have proposed accounts 
of human evolution that provide a compelling answer to ‘why’ new 
cognitive abilities might have emerged specifically in humans. Perhaps 
primitive human environments contained unique survival pressures 
to cooperate and learn socially31 or humans uniquely benefited from 
cumulative culture, which altered the human environment so dramati-
cally that it prompted new genetic adaptations12,270. The problem with 
prior ‘why’ accounts such as these is that they do not explain ‘how’, 
cognitively, human minds and brains changed271. In light of the behav-
ioural, neurobiological, computational and developmental evidence 
we reviewed, we propose that unique expansions in global, generic 
information capacity are the most plausible genetically based cogni-
tive adaptation to ratcheting environmental pressures on learning, 
memory, attention, semantics and logical rule use arising from ever 
more demanding human culture.
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The uniquely human adaptation for information processing capac-
ity provides an opportunity to represent multiple complex behav-
ioural alternatives, to enact flexibility and innovation272 and to learn 
quickly, and yields a substrate for ‘cognitive gadgets’, wherein humans 
acquire unique capacities by building on cultural innovations13. One cog-
nitive gadget, writing, provides important clues to the pressures humans 
faced for information capacity. Over cultural evolution, the human 
species was so pressured for increased information capacity that they 
invented writing, a revolutionary leap forward in the development of our 
species that enables information capacity to be externalized273, frees up 
internal processing and affords the development of more complex con-
cepts. In other words, writing enabled humans to think more abstractly 
and logically by increasing information capacity. Today, humans have 
gone to even greater lengths: the Internet, computers and smartphones 
are testaments to the substantial pressure humans currently face — and 
probably faced in the past — to increase information capacity.

Darwin claimed that humans differed from other primates in 
degree rather than kind, which has been dismissed by some as a mis-
taken claim52. But if there is one lesson from formal computer sci-
ence, it is that differences in degree yield differences in kind. Evolution 
doubled the information processing capacity of humans, which set 
in motion a cycle of advances between logic innovation and develop-
mental acquisition that snowballed over millions of years of human 
cultural evolution. Other species could never learn human-like rules 
and structures, internalize human-like logic and relations or exhibit 
the same complex behaviour as humans when their cognitive systems 
face severe information constraints. Unique information capacity 
magnifies human cognition, qualitatively alters its representations 
and processes, and is essential for understanding the evolution and 
development of human intelligence.

Published online: xx xx xxxx

Box 4

Measuring information capacity
There are several methods that have been developed to measure 
information processing, and each targets information specific to a 
given behavioural task or setting.

Speed and bit rate
One approach to measuring information capacity is to use tasks in 
which participants are asked to respond as quickly and accurately as 
possible to a stimulus. Hick’s law quantifies the ‘rate of information 
gain’ in a simple choice paradigm310; memory tasks such as digit span 
and working memory measure item, sequence and channel capacity 
for information213,308. Posner cueing tasks, flanker tasks and Stroop tasks 
also have been used to measure bit rates in humans with simple rules 
and stimuli311. One study showed that the speeds at which numerous 
diverse cognitive processes occur, including mental addition, mental 
rotation, memory search and simple motor skills, exhibit a consistent 
and predictable exponential pattern of change over development239 
— a global cognitive processing constraint reflecting children’s 
information capacity. Additionally, some work has provided estimates 
of information capacity in humans for long-term memory and linguistic 
storage180,202,205, often by quantifying what coding capacity would be 
required to achieve the observed performance.

Predictability
Machine learning models are often evaluated by computing the 
log probability that they assign to the observed data, which is an 
information measure (often surprisal or cross-entropy). Following 
the same logic, one could measure the effective predictability of, 
for example, sequential stimuli for any species and task, and use 
that to quantify information processing ability. For instance, in one 
study people were asked to predict upcoming letters in text and their 
accuracy was used to deduce how much information they had about 
upcoming linguistic material312. In a context in which an individual 
predicts upcoming sequential material that follows a novel pattern — 
for example, simple formal language rules — accuracy could be used 
to estimate how much information about the pattern is internalized. 

For example, from an individual’s accuracy or pattern of errors in 
predicting the next character in the sequence ‘abbacabbacabbac …’, 
one can compute how much they have learned about the sequence 
(see Reber309 for people’s learning of similar string patterns and 
Saffran et al.313 for work on early language learning). Empirically 
measuring predictive ability in this setting is potentially powerful 
because above-chance accuracy means that some information must 
be present, which can be examined as a function of developmental 
age, amount of training exposure or species.

Learning rate and lapse rate
The learning rate and the lapse rate are another pair of measures for 
estimating information capacity314. The learning rate quantifies change 
in accuracy per unit time, and the lapse rate is the asymptote of the 
learning curve. Both of these metrics vary across species and can 
be used to query global information processing across tasks. Lapse 
rates are especially useful for measuring general motivation during 
a given task, which is a common confound for comparing cognition 
between populations. Similarly, species might make different speed–
accuracy trade-offs in any given task315, with different strategic choices 
potentially confounding conclusions about overall ability.

Recoding
Estimating and comparing information capacity between groups is 
difficult when recoding occurs316. Recoding is the process by which 
information is mentally compressed during task performance. Humans  
are very good at recoding information using chunking, rules, heuristics 
or verbalization, thereby making space for more information. Non- 
human primates also have some ability to recode information171,217. 
The ways that humans and non-human primates recode and compress 
information are only beginning to be understood, but it is critical 
to understand these phenomena in order to measure information 
capacity. For example, symbolic recoding could facilitate human 
learning during passive or social learning tasks in ways that exceed 
the capabilities of non-human primates.
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