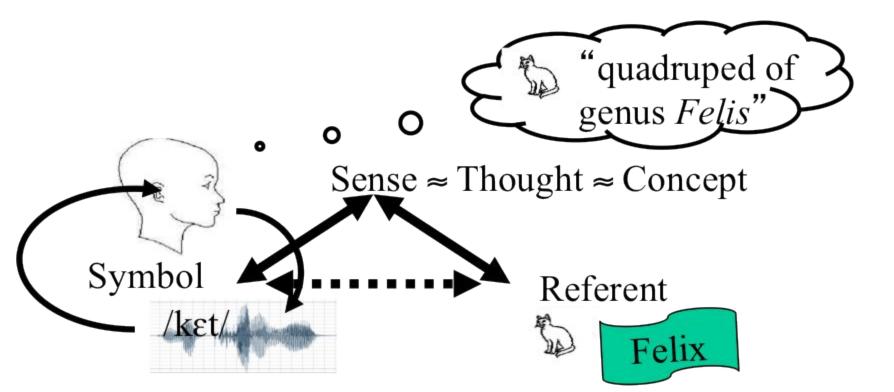
Semantics


Semiotics

Linguistics

4 Meanings of mean

- 1. Representations Ψ conveys info about φ
- 2. Translations potato == tůdòu
- 3. Paraphrases different symbols same info
- 4. Intentions Ψ means ϕ if Ψ is a person and ϕ is something Ψ intends to do

The Semiotic Triangle

Intension vs. Extension

<u>Intension</u> - the meaning of the word that is not grounded in the real world.

E.g. talking about Japan right now

Extension - the physical referents in world that the word can be mapped to.

Composition (Frege)

The meaning of sentences is built incrementally by combining the meanings of their constituents.

First Order Logic

Terms

Terms are unique entities. They are represented by lowercase letters.

Terms Mary hugs **John**: hug(mary, john).

Predicates == Sets

```
Predicates are either properties (i.e., require
one term) or relationships (i.e., require more
than one term).
Predicate
```

Mary hugs John: hug(mary, john).

Conjunction and Disjunction

- Conjunction: \land (, in PROLOG) Disjunction : \lor (; in PROLOG)
- Merida ate liver and onions:
- eat(merida, liver) ∧ eat(merida, onions).
 Elinor or Fergus drank the wine:
 drank(elinor, wine) ∨ drank(fergus, wine).

Implication and Biconditional

- \rightarrow : Implication (reverse direction in PROLOG)
- \leftrightarrow : Biconditonal
- If Mary is asleep, she is at home.
 - sleep(mary) \rightarrow locatedAt(mary, home)
- A polygon is a triangle iff it only has three sides. triangle(polygon) \leftrightarrow 3sides(polygon)

∃*x* : Existential Quantifier

There exists an *x* such that

The bald, king of France ... $\exists x \text{ kingOf}(x, \text{ france}) \land \text{ bald}(x)$

$\forall x$: Universal Quantifier

For all x, ... (e.g., Ducks quack.) Compare: $\forall x$ duck(x) \land quack(x) And

 $\forall x \operatorname{duck}(x) \rightarrow \operatorname{quack}(x)$

$\forall x$: Universal Quantifier

For all x, ... (e.g., Ducks quack.) Compare: $\forall x \operatorname{duck}(x) \land \operatorname{quack}(x)$ And $\forall x \operatorname{duck}(x) \rightarrow \operatorname{quack}(x)$

Scope

Every girl has kissed a boy. Compare: $\exists x [\forall y [girl(y) \rightarrow boy(x) \land kissed(y,x)]]$ And

 $\forall y [girl(y) \rightarrow \exists x [boy(x) \land kissed(y,x)]]$

Model Theoretic Semantics

Models

A model is a representation of a situation or context. A model contains:

Domain -- the set of entities in the context Interpretation Function -- a set of ordered pairs

Assignment Function (g)

Can we assign values to variables that satisfy the constraints in both the model and the query?

For example,

Model:

Query:

Another example,

Model:

Query: