Syntax-Semantics
(Syn-Sem) Interface




Lambda (A) Calculus

Lambda calculus is a representation of logical
relationships as functions, f(x), and function

compositions, f(g(x)).

f(x) ==AXx.2+ X, f(1) =3
g(x) == AX. X*X, 9(2) =4
f(g(x)) == Ax. 2 + x"x  f(g(3)) = 11



A Calculus and Language

Each POS can be represented as a different
lambda expression.

For example,
DT {APINQ[IX P(X) AN QX)]]} — a]an
N {\y.pokemon(y)}— pokemon
IV {Az.appeared(z)} — appeared



A Calculus and Language

Sentences and Y/N questions can be thought
of as expressions.

Most wh-questions can be thought of as
lambda expressions.



A Calculus and Language

Compare:
A pokemon appeared.
3 x[ pokemon(x) A appeared(x)]
And
What appeared?
A.P[3 X[ P(x) A appeared(x)]]



A Calculus and Language

How do we get from
DT {AP[ANQ [IXx P(X) AN Q(X)]]} — a | an
N {Ay.pokemon(y)}— pokemon
IV {Az.appeared(z)}— appeared

to
3 x[ pokemon(x) A appeared(x)] ?



Function application

AP[AQ [T x P(x) A Q(x)]] {Ay.pokemon(y)}

AQ [3 x Ay.pokemon(y)(x) A Q(x)]



AQ [ 3 x Ay.pokemon(y)(x) A Q(X)]

AQ [ 3 x pokemon(x) A Q(x)]



Finishing up the sentence

AQ [ 3 x pokemon(x) A Q(x)] {Az.appeared(z)}
3 x pokemon(x) A Az.appeared(z)(x)

3 x pokemon(x) A appeared(x)



Your turn

A wild pokemon appeared.

DT {APIANQ [IXx P(x) A Q(X)]]} — a | an
Adj {AR[Aw [Z(w) A wild(w)]}

N {Ay.pokemon(y)}— pokemon

IV {A\z.appeared(z)}— appeared



A Calculus in PROLOG

exeme\2
exeme(n(X*pokemon(X)),pokemon).
ex(dt((XAP)A(XAQ) exists(X,and(P,Q))),a).

rule(np(B),[dt(A*B),n(A)]).



