
Syntax-Semantics
(Syn-Sem) Interface

Lambda (λ) Calculus
Lambda calculus is a representation of logical
relationships as functions, f(x), and function
compositions, f(g(x)).
f(x) == λx. 2 + x, f(1) = 3
g(x) == λx. x*x, g(2) = 4
f(g(x)) == λx. 2 + x*x f(g(3)) = 11

λ Calculus and Language
Each POS can be represented as a different
lambda expression.
For example,

DT {λP[λQ [∃x P(x) ⋀ Q(x)]]} → a | an
N {λy.pokemon(y)}→ pokemon
IV {λz.appeared(z)} → appeared

λ Calculus and Language
Sentences and Y/N questions can be thought
of as expressions.

Most wh-questions can be thought of as
lambda expressions.

Compare:
A pokemon appeared.

∃x[pokemon(x) ⋀ appeared(x)]
And

What appeared?
λ.P[∃x[P(x) ⋀ appeared(x)]]

λ Calculus and Language

λ Calculus and Language
How do we get from

DT {λP[λQ [∃x P(x) ⋀ Q(x)]]} → a | an
N {λy.pokemon(y)}→ pokemon
IV {λz.appeared(z)}→ appeared

to
∃x[pokemon(x) ⋀ appeared(x)] ?

Function application

λP[λQ [∃x P(x) ⋀ Q(x)]] {λy.pokemon(y)}

λQ [∃x λy.pokemon(y)(x) ⋀ Q(x)]

Reduction

λQ [∃x λy.pokemon(y)(x) ⋀ Q(x)]

λQ [∃x pokemon(x) ⋀ Q(x)]

Finishing up the sentence

λQ [∃x pokemon(x) ⋀ Q(x)] {λz.appeared(z)}

∃x pokemon(x) ⋀ λz.appeared(z)(x)

∃x pokemon(x) ⋀ appeared(x)

Your turn
A wild pokemon appeared.

DT {λP[λQ [∃x P(x) ⋀ Q(x)]]} → a | an
Adj {λR[λw [Z(w) ⋀ wild(w)]}
N {λy.pokemon(y)}→ pokemon
IV {λz.appeared(z)}→ appeared

λ Calculus in PROLOG
lexeme\2 % lexeme(semantics, token)

lexeme(n(X^pokemon(X)),pokemon).
lex(dt((X^P)^(X^Q)^exists(X,and(P,Q))),a).

% Augment rules with semantics

rule(np(B),[dt(A^B),n(A)]).

