
Words

Morphology
Linguistics

What’s morphology?
Morphology is the study of the form of words.
Words may seem like atomic units of meaning;
however, they can often be broken down into
smaller atomic units of meaning called
morphemes.

What’s a morpheme?
A morpheme is the smallest linguistic unit
which has both sound and meaning.
There are two types of morpheme:

Roots/Stems (e.g., <swim>)
Affixes (e.g., <-ing> <pre->)

Roots
A root morpheme can stand by itself.
It does not have to be attached to other
morphemes although other morphemes can
attach to it.

Affixes
Affixes need to be attached to a root
morpheme.
There two ways to classify affixes:

By position
By use

Affixes by Position
Prefix -- before the root (e.g., <pre->)
Suffix -- after the root (e.g., <-ed>)
Suprafix -- over the root (cf. produce (n) & (v))
Infix -- inside the root (e.g., abso-freaking-lutely)

Affixes by Use
Inflectional

Does not change word class
Serves grammatical functions

Derivational
Changes either word meaning or
word class

Inflectional Morphemes I
Attached to nouns:

<-s> as in John’s book (Genitive Case)
<-s> as in Cats are cute (Plural)

Inflectional Morphemes II
Attached to adjectives:

<-er> as in warmer (Comparative)
<-est> as in warmest (Superlative)

Inflectional Morphemes III
Attached to verbs:

<-s> as in John swims (3SG-Present)
<-ing> as in John is thinking (Gerund)
<-ed> as in John walked (Past)
<-en> as in John had chosen (Past Perfect)

Excursus: Allomorphs
Plural morpheme <-s> is one morpheme with
three phonetic realizations.

boot-s -> /but -s/
bee-s -> /bi-z/
bush-es -> /bυ∫ -əz/

Derivational Morpheme
Snoozeville
Builder
Predetermination
Relive
Inevitable

Field Exercise

PROLOG BREAK

Finite State
Automata
Computer Science

Five Components of FSA
1. A finite set of states (e.g., {q0, q2, q3})
2. A finite input set of symbols (e.g., {a, b})
3. A start state q0
4. A set of final states (e.g., {q2})
5. A set of transitions (e.g., {δ(q0,b,q1),δ(q1,a,

q2),δ(q2,a,q2)})

FSA: Graphically

FSA: Graphically: Example
● Try doing an example to see which strings

get accepted by the FSA
● Try building your own FSA that accepts the

strings that meet the requirements
● If you have time, try building the larger

language-based FSA

FSA (in Prolog)
q0([b|L]) :- q1(L).
q1([a|L]) :- q2(L).
q2([a|L]) :- q2(L).
q2([]).

> q0([baaaa]).
true

Finite State Transducer
An FSA with labeled output

FST Graphically

FST (in Prolog)
q0([X|L1],[n|L2]):- reg_noun(X), q1(L1,L2).
q1([X|L1], [pl|L2]):- plural_s(X), q4(L1,L2).
q1(L1, [sg|L2]):- q4(L1,L2).
q0([X|L1],[n|L2]):- irr_sg_noun(X), q2(L1,L2).
q2(L1,[sg|L2]):- q4(L1,L2).
q0([X|L1],[n|L2]):- irr_pl_noun(X), q3(L1,L2).
q3(L1,[pl|L2]):- q4(L1,L2).
q4([],[]).

